
Lighting and Shading

Learn to shade objects so their images appear three-dimensional

Introduce the types of light-material interactions

Build a simple reflection model---the Phong model--- that can be
used with real time graphics hardware

Work on fragment shaders for different types of lighting

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shading

Why does the image of a real sphere look like

Light-material interactions cause each point to have
a different color or shade

Need to consider
• Light sources
• Material properties
• Location of viewer
• Surface orientation

4 Key elements of image
formation

Light-Material Interaction

Specular surface

Diffuse surface

Translucent surface

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Recall Simple Light Sources

Point source
• Emits light equally in all direction
• Model with position and color – proportional to the inverse

square of the distance
• Distant source = infinite distance away (parallel)

Spotlight
• Restrict light from ideal point source

Ambient light
• Uniform illumination everywhere in scene -- An intensity

identical at every point

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Phong Model

Uses four unit vectors to calculate a color on a surface
• Surface normal 𝐧
• To viewer 𝐯
• To light source 𝐥
• Perfect reflector 𝐫

Each light source has three
components

• Ambient

• Diffuse

• Specular

Normal
To viewer

To light source

Perfect
reflection

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Computation of Vectors
Need to compute the four vectors

• Surface normal 𝐧
• To viewer 𝐯
• To light source 𝐥
• Perfect reflector 𝐫

Simplifications can apply, e.g.
• Normal can be the same for all points on
a flat polygon
• Light direction is the same for all points
if the light is far away from the surface

How to tell if the light is far way?

W=0

Normal
To viewer

To light source

Perfect
reflection

Computation of Vectors

l and v are specified by the application

h can be computed from l and v

How to calculate n?

Depending on surface

E.g., given three noncolinear points, e.g., the three vertices of
a triangle 𝑃1, 𝑃2, and 𝑃3, the outfacing normal can be obtained
by

𝐧 =
(𝑃2 − 𝑃1) × (𝑃0−𝑃2)
(𝑃2 − 𝑃1) × (𝑃0−𝑃2)

Order of vectors is important!

p0

p1

p2

n

p

E. Angel and D. Shreiner:
Interactive Computer Graphics

6E © Addison-Wesley 2012

Normal to Sphere

How we compute normals for curved surfaces?

Depend on how we model the surface.

Normal is given by gradient

𝐧′ =

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
𝜕𝑓
𝜕𝑧

 (Implicit form) or

𝐧 =
𝐧′
𝐧′

𝐧𝐧 = 𝜕𝐩
𝜕𝜕

× 𝜕𝐩
𝜕𝜕

 (Parametric form)

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison-

Wesley 2012

Blinn-Phong Model

For each light source and each color component, the
Blinn-Phong model can be written as

𝐼 =
𝑘𝑑 𝐿𝑑𝑚𝑚𝑚 𝐥 · 𝐧, 0 + 𝑘𝑠𝐿𝑠 max 𝐧 · 𝐡 𝛽, 0

𝑎 + 𝑏𝑏 + 𝑐𝑐2 + 𝑘𝑎 𝐼𝑎

For each color component we add

contributions from all sources

Other Issues

Point light source and a distant light source
• If w =1.0 -- a regular point light source at a finite location
• If w =0.0 – a distant light source at infinity = a parallel source

with the given direction vector

Spotlights derived from point light source
• Angle between l (direction to the light) and the focus of

spotlight
• Cutoff angle 𝜃
• Attenuation proportional to 𝑐𝑐𝑐𝛼𝜙

Emission term
• A light source allowed in the scene, e.g., the moon
• Unaffected by any other sources
• Not affect other surfaces

P

l Direction of focus
of spotlight 𝜙

Per-vertex Lighting vs Per-fragment Lighting

Per-vertex lighting
• Lighting is handled in vertex shader
• Color is computed for each vertex, then interpolated for each

pixel
• Efficient, but rough

Per-fragment lighting
• Lighting is handled in fragment shader
• Color is computed for each fragment (potential pixel)
• Sophisticated, but slow

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygonal Shading

In per vertex shading, shading calculations are done for each
vertex

• Vertex colors become vertex shades and can be sent to
the vertex shader as a vertex attribute

• Alternately, we can send the parameters to the vertex
shader and have it compute the shade

Smooth shading (default), vertex shades are interpolated
across an object if passed to the fragment shader as a
varying variable

Flat shading: use uniform variables to shade with a single
shade

Polygonal Shading – Flat Shading

Need to calculate 𝐧, 𝐯, 𝐥 for every point on a surface

Simplifications:

• 𝐧 is a constant for a flat polygon and can be precomputed

• 𝐯 is a constant for a distant viewer

• 𝐥 is a constant for a distant light

If all the three vectors are constants, the shading calculation
can be done once for each polygon

Every point has the same color/shade on the polygon

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley

Smooth Shading - Gouraud Shading (Per-vertex)

Gouraud used the average of the normals around a mesh
vertex

Gouraud Shading
• Find average normal at each vertex
• Apply modified Phong model at each vertex
• Interpolate vertex shades across each polygon

 n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Phong Shading (Per-fragment)

• Find average vertex normals 𝐧𝐴 and 𝐧𝐵

• Interpolate vertex normals 𝐧𝐶 and 𝐧𝐷

across edges
𝐧𝐶 𝛼 = 1 − 𝛼 𝐧𝐴 + 𝛼𝐧𝐵

• Interpolate edge normals across polygon
𝐧 𝛼, 𝛽 = 1 − 𝛽 𝐧𝐶 + 𝛽𝐧𝐷

• Apply modified Phong model at each fragment

n

From Vertices to Fragments

Assign a color to every pixel

Pass every object through the system

Required tasks:
• Modeling
• Geometric processing
• Rasterization
• Fragment processing

clipping

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Clipping 2D Line Segments

Brute force approach: compute intersections with all
sides of clipping window

• Inefficient: one division per intersection

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Cohen-Sutherland Algorithm

Idea: eliminate as many cases as possible without computing
intersections

For each endpoint, define an outcode

b0b1b2b3
b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise

Using Outcodes
Consider the 5 cases below

AB: outcode(A) = outcode(B) = 0
• Accept line segment

CD: outcode (C) = 0, outcode(D) ≠ 0
• Compute intersection
• Location of 1 in outcode(D) determines which edge to intersect with

Both outcodes are nonzero for other 3 cases, perform AND
• EF: outcode(E) AND outcode(F) (bitwise) ≠ 0

–reject
• GH and IJ: outcode(G) AND outcode(H) =0

–Shorten line segment by intersecting with one of sides of
window and reexecute algorithm

Efficiency

Inefficient when code has to be reexecuted for line
segments that must be shortened in more than one
step

For the last case, use Liang-Barsky Clipping

Liang-Barsky Clipping

Consider the parametric form of a line segment

We can distinguish between the cases by looking at the
ordering of the values of α where the line determined by the
line segment crosses the lines that determine the window

𝑃 𝛼 = 𝑥 𝛼
𝑦 𝛼 = (1 − 𝛼)𝑃1 + 𝛼𝑃2 1 ≥𝛼≥ 0

𝑃 𝛼 = 𝑥 𝛼
𝑦 𝛼 = 1 − 𝛼 𝑥1 + 𝛼𝑥2

1 − 𝛼 𝑦1 + 𝛼𝑦2

P1

P2

𝑃(𝛼)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

Liang-Barsky Clipping

When the line is not parallel to a side of the window, compute
intersections with the sides of window

For example, 𝛼𝟒 is the parameter for the intersection with the
right side 𝑥 = 𝑥𝑚𝑚𝑚 ⟹ 𝛼𝟒 = 𝑥𝑚𝑚𝑚−𝑥1

𝑥2−𝑥1
.

In (a): α4 > α3 > α2 > α1
• Intersect right, top, left, bottom
• shorten

In (b): α4 > α2 > α3 > α1
• Intersect both right and left before intersecting top and bottom
• reject

Polygon Clipping

Not as simple as line segment clipping
• Clipping a line segment yields at most one line segment
• Clipping a polygon can yield multiple polygons

–Increase number of polygons

Clipping a convex polygon can yield at most one other
polygon

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Pipeline Clipping of Polygons
For all edges of polygon, run the pipeline

Three dimensions: add front and back clippers

Not efficient for many-sided polygon

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rasterization (Scan Conversion)

Produces a set of fragments

Fragments have a location (pixel location) in the buffer and other
attributes such color and texture coordinates that are determined
by interpolating values at vertices

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan Conversion of Line Segments -- DDA Algorithm

Digital Differential Analyzer
• DDA was a mechanical device for numerical solution of

differential equations
• Line 𝑦 = 𝑚𝑚 + ℎ satisfies differential equation

𝑑𝑑
𝑑𝑑

 = 𝑚 =
Δ𝑦
Δ𝑥

=
𝑦2 − 𝑦1

𝑥2 − 𝑥1

Along scan line ∆x = 1

For(x=x1; x<=x2,ix++) {
 y+=m;
 write_pixel(x, round(y), line_color)
}

two endpoints

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bresenham’s Algorithm

𝑚 is a floating point

Bresenham’s algorithm eliminates all fp calculations

Consider only 0 ≤ 𝑚 ≤ 1 , other cases by symmetry

Assume pixel centers are at half integers

Decision variable:

𝑑 = (𝑥2 − 𝑥1)(𝑎 − 𝑏)
= ∆𝑥(𝑎 − 𝑏)

d < 0 use upper pixel
d > 0 use lower pixel

Polygon Rasterization

How to tell inside from outside – inside-outside testing
• Convex easy
• Nonsimple difficult
• Odd even test: count edge crossings with scanlines

– Inside: odd crossings
–Outside: even crossings

• Winding test: number of times of a point encircled by the edges
– Inside if winding number ≠ 0

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Filling in the Frame Buffer

Fill at end of pipeline: coloring a point with the inside color if it
is inside the polygon

• Convex Polygons only
• Nonconvex polygons assumed to have been tessellated
• Shades (colors) have been computed for vertices (Gouraud shading)

Two approaches
• Scanline fill
• Flood fill

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison

Scanline Fill: Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
Interpolate points between C4 and C5 along span

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Flood Fill

Starting with an unfilled polygon, whose edges are rasterized
into the buffer, fill the polygon with inside color (BLACK)

Fill can be done recursively if we know a seed point located
inside. Color the neighbors to (BLACK) if they are not edges.

flood_fill(int x, int y) {
 if(read_pixel(x,y)= = WHITE) {
 write_pixel(x,y,BLACK);
 flood_fill(x-1, y);
 flood_fill(x+1, y);
 flood_fill(x, y+1);
 flood_fill(x, y-1);
} }

Back-Face Removal (Culling)

θ

Only render front-facing polygons

• After transformation (projection

normalization), the view is orthographic
v = (0 0 1 0)T

• The coordinates are normalized device
coordinates

• If the plane of face has form
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑 = 0

Need only test the sign of c

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Hidden Surface Removal

Object-space algorithms:
• Consider the relationships between objects

–Pairwise testing
–Painter’s algorithm with depth sorting

• Reduce number of polygons
• Works better for a smaller number of objects

Image-space algorithms:
• Works at fragment/pixel level
• Z-buffer algorithm

z-Buffer Algorithm

Use a buffer called the z or depth buffer to store the depth of
the closest object at each pixel found so far

As we render each polygon, compare the depth of each
pixel to depth in z buffer

If less, place shade of pixel in color buffer and update z
buffer

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Buffer

Define a buffer by its spatial resolution (n x m) and its
depth (or precision) k, the number of bits/pixel

Writing in buffers

• Bit block transfer (bitblt) operations

Writing model

• Read destination pixel before writing source

Writing Model
Source and destination bits are combined bitwise
s: source bit
d: destination bit
16 possible functions (one per column in table)

• 0 and 15: clear mode
• 3 : replace mode
• 7: OR mode
• 6: XOR mode

How to choose the mode?

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

XOR (Exclusive OR) Mode

Property of XOR: return the original value if apply XOR twice
𝑑 = (𝑑⨁𝑠)⨁𝑠

XOR is especially useful for swapping blocks of memory such
as menus that are stored off screen (backing store)

If S represents screen and M represents a menu, the
sequence

 S ← S ⊕ M

 M ← S ⊕ M

 S ← S ⊕ M

swaps S and M

For example, S=1010, M=1100
S=S ⊕ M=0110
M=S ⊕ M=1010
S=S ⊕ M=1100

Modify color in fragment processing after rasterization

Three Major Mapping Methods
• Texture Mapping

• Uses images to fill inside of polygons

• Environment (reflection mapping)
• Uses a picture of the environment for texture maps of reflection

surface
• Allows simulation of highly specular surfaces

• Bump mapping
• Emulates altering normal vectors during the rendering process

Mapping

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Mapping

Map an image to a surface or map every texel to a point on a geometric
object – Backward mapping in practice

Textures are stored in images - 2D arrays.

Each element is called a texel

Coordinate systems
• Parametric coordinates

– May be used to model curves and curved surfaces
• Texture coordinates

– Used to identify points in the image to be mapped
• Object or World Coordinates

– Conceptually, where the mapping takes place
• Window/screen Coordinates

– Where the final image is really produced

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Mapping

parametric coordinates

texture coordinates
𝑇(𝑠, 𝑡)

world coordinates window coordinates

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Two-part mapping

First mapping: map the texture to a simple intermediate
surface, e.g.,
• Cylindrical mapping
• Spherical mapping
• Box mapping
Second mapping: map from intermediate object to the
actual object

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Texture Mapping

Texture mapping is part of fragment processing

Three steps to applying a texture
1. Generate the texture map

– read or generate image
– assign to texture
– enable texturing

2. assign texture coordinates to vertices
– Texture coordinates can be interpolated
– Proper mapping function is left to application

3. specify texture parameters
– wrapping, filtering

Treat texture coordinates as a vertex attribute, similar to
vertices and vertex colors.

Pass the vertex texture coordinates to the vertex shader.

The rasterizer interpolates the vertex texture coordinates to
fragment texture coordinates.

Associate Texture Coordinates with Vertices
of Object

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Environment/Reflection Map

Instead of using the view vector to determine the texture,
environment map uses reflection vector to locate texture in
cube map

corresponding texel
for reflection map

corresponding texel
for regular cube map

Bump Mapping

Perturb normal for each fragment before applying lighting

- Add noise to the normal or

- Store perturbation as textures and lookup a perturbation value in a
texture map

Bump mapping must be performed in shaders

Approximating the Perturbed Normal

n’ = p’u × p’v

≈ n + (∂d/∂u)n × pv + (∂d/∂v)n × pu
The vectors n × pv and n × pu lie in the tangent plane
The normal is displaced in the tangent plane
n’, p’u and p’v form a local coordinate space – Tangent Space

Tangent Space and Normal Matrix

However, n’, p’u and p’v may be not unit vectors and not
orthogonal to each other

Need to get an orthogonal basis
• Normalized normal: 𝐦 = 𝐧𝐧

𝐧𝐧

• Tangent vector: 𝐭 = 𝐩𝐩𝑢
𝐩𝐩𝑢

• Binormal vector: 𝐛 = 𝐦 × 𝐭

A transformation matrix is used to transform the view and
light to tangent space

𝐌 = 𝐭 𝐛 𝐦 𝐭

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Blending Equation

We can define source and destination blending factors for each
RGBA component

 s = [sr, sg, sb, sα]

 d = [dr, dg, db, dα]

Suppose that the source and destination colors are

 b = [br, bg, bb, bα]

 c = [cr, cg, cb, cα]

Blend as c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , bα sα+ cα dα]

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

Suppose that we start with the opaque background color
(R0,G0,B0,1)

• This color becomes the initial destination color

We now want to blend in a translucent polygon with color
(R1,G1,B1,α1)

Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA
as the source and destination blending factors

 R’
1 = α1 R1 +(1- α1) R0, …

Note this formula is correct if polygon is either opaque or
transparent

The composition method
discussed earlier

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instance Transformation

Start with a prototype object (a symbol), e.g.,
• Geometric objects
• Fonts

Each appearance of the object in the model is an instance
• A instance transformation from model frame to world frame by scaling,

rotation, and translation
𝐌 = 𝐓𝐓𝐓

Model frame World frame

Symbol-instance table does not show relationships
between parts of model

Consider model of car
• Chassis + 4 identical wheels
• Two symbols

Rate of forward motion determined by rotational speed of
wheels

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Relationships in Car Model

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modeling with Trees

Must decide what information to place in nodes and what to put in edges
Nodes

• What to draw
• Pointers to children
• information on incremental changes to transformation matrices (can

also store in edges)
Edges

• May have information on incremental changes to transformation
matrices (can also store in nodes)

Left-child right sibling binary tree
Tree travelsal

• Stack-based travelsal
• Preorder travelsal

Animation

Procedural Approaches

• Physically-based models and particle system
• Describing dynamic behaviors
o Fireworks
o Flocking behavior of birds
o Wave action

• Language-based models
• Describing trees or terrain
• Representing relationships

• Fractal geometry

Design approaches based on procedural methods

Newtonian Particle
Particle system is a set of particles

Each particle is an ideal point mass
• Gives the positions of particles
• At each location, we can show an object

Six degrees of freedom
• Position
• Velocity

Each particle obeys Newtons’ law
𝐟 = 𝑚𝐚

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Force Vector

Depending on how particles interact with each other
• Independent Particles O(n)

–Gravity
–Drag

• Coupled Particles O(n)
–Spring-Mass Systems
–Meshes

• Coupled Particles O(n2)
–Attractive and repulsive forces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

	Lighting and Shading
	Shading
	Light-Material Interaction
	Recall Simple Light Sources
	Phong Model
	Computation of Vectors
	Computation of Vectors
	Normal to Sphere
	Blinn-Phong Model
	Other Issues
	Per-vertex Lighting vs Per-fragment Lighting
	Polygonal Shading
	Polygonal Shading – Flat Shading
	Smooth Shading - Gouraud Shading (Per-vertex)
	Phong Shading (Per-fragment)
	From Vertices to Fragments
	Clipping 2D Line Segments
	Cohen-Sutherland Algorithm
	Using Outcodes
	Efficiency
	Liang-Barsky Clipping
	Liang-Barsky Clipping
	Polygon Clipping
	Pipeline Clipping of Polygons
	Rasterization (Scan Conversion)
	Scan Conversion of Line Segments -- DDA Algorithm
	Bresenham’s Algorithm
	Polygon Rasterization
	Filling in the Frame Buffer
	Scanline Fill: Using Interpolation
	Flood Fill
	Back-Face Removal (Culling)
	Hidden Surface Removal
	z-Buffer Algorithm
	Buffer
	Writing Model
	XOR (Exclusive OR) Mode
	Mapping
	Texture Mapping
	Texture Mapping
	Two-part mapping
	OpenGL Texture Mapping
	�Associate Texture Coordinates with Vertices of Object
	Environment/Reflection Map
	Bump Mapping
	Approximating the Perturbed Normal
	Tangent Space and Normal Matrix
	Blending Equation
	Example
	Instance Transformation
	Relationships in Car Model
	Modeling with Trees
	Procedural Approaches
	Newtonian Particle
	Force Vector

