
Midterm Exam 1

• Thursday Feb. 10 in class

• Covered material: 1st class → the class on Tuesday
Feb. 8th

• Closed-book and closed-notes

• Do not forget to prepare your cheat sheet (a single-
side letter-size paper)

Review for Midterm Exam 1 – Chapter 1

What is the algorithm?

• a sequence of unambiguous instructions for solving a problem

Algorithm design process

Typical problems discussed in this class: sorting, searching, string
processing, graph problems, combinatorial problems, geometric
problems, and numerical problems

The same problem can be solved by different algorithms with different
efficiency

Typical data structures – array, linked list, stack, queue, graph,
(adjacency matrix/linked-list), tree, binary tree and set

Pseudocode

Review for Midterm Exam 1 – Chapter 1

Graph

• Loop v.s. cycle

• Complete graph

• Edges and vertices

• Adjacency list and adjacency matrix for directed/undirected graph

Tree

• Connected and acyclic graph

• |E|=|V|-1

• Height of the tree

2/)1|(|||||0 − VVE

 1log2 − nhn

Review for Midterm Exam 1 – Chapter 2

Time efficiency (complexity) of an algorithm

What is the input size and basic operation?

Measured by a function of the input size -- best case, worst
case, average case

The order of the growth and how to prove it

• ‘Limit’ technique

• Definition

Three important symbols – O(n), Θ(n) and Ω(n)

Typical efficiency (complexity) class –constant, logn, linear,
nlogn, square, cubic, exponential, factorial, ……

Polynomial and non-polynomial Complexity

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorial

Review for Midterm Exam 1 – Chapter 2

Analyze the efficiency of nonrecursive algorithms

• Find all the loops

• The operation in the innermost loop is the basic operation

• Write the complexity in the form of summations

• Simplify the expression using formulas in Appendix A

Analyze the efficiency of recursive algorithms

• Find the recurrence relations and initial conditions

• Find the closed-form solution (Appendix B)

– Forward substitution

– Backward substitution

– Linear 2nd order with constant coefficients (homogenous and
inhomogenous cases)

– Properties of smooth functions

• Typical kinds of recurrence relations

• Master Theorem

Important Recurrence Types

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) = (n-1)c + d linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c T(1) = d

Solution: T(n) = c log2 n + d logarithmic, e.g., binary search

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn T(1) = d

Solution: T(n) = cn log2 n + d n n log2 n, e.g., mergesort

Useful Formulas in Appendix A

Make sure to be familiar with them

Prove by Induction

𝑖=𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑

𝑒𝑛𝑑𝐼𝑛𝑑

1 = 1 + 1 +⋯1 = endInd − startInd + 1

𝑖=1

𝑛

𝑐𝑎𝑖 =𝑐

𝑖=1

𝑛

𝑎𝑖

𝑖=1

𝑛

(𝑎𝑖 + 𝑏𝑖) =

𝑖=1

𝑛

𝑎𝑖 +

𝑖=1

𝑛

𝑏𝑖

endInd-startInd+1 times

Note: this is not a full list in

Appendix A! Copy the full

list on your cheat sheet!

𝑖=1

𝑛

𝑖 = 1 + 2+. . . +𝑛 =
𝑛(𝑛 + 1)

2
∈ Θ(𝑛2)

𝑖=1

𝑛

𝑖𝑘 ∈ Θ(𝑛𝑘+1)

Three Recurrence Types We know How to

Find the Closed-Form Solution

Please related them to the following algorithms we learned in
the last class

• Recursive algorithm for computing n!

• Recursive algorithm for Tower of Hanoi

• Recursive algorithm for finding the number of digits in the
binary representation of a decimal integer

• Recursive algorithm for finding the Fibbonacci numbers

𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛 − 1) + 𝑛𝑘

𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑛𝑘 (𝑎 ≥ 1, 𝑏 ≥ 2) ⇒ Master Theorem
𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛 − 1) + 𝑏 ⋅ 𝑇(𝑛 − 2) ⇒ Linear Second Order

Three Recurrence Types We know How to

Find the Closed-Form Solution

Forward substitutions (not recommended for complex patterns)

Backward substitutions (a general approach to solve recurrence, but not
recommended for linear second order recurrence)

Linear 2nd order recurrences with constant coefficients

The solution to important recurrence type (pay attention to the initial
condition)

Master Theorem (recommended for solving general divide-and-conquer
recurrence)

𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛 − 1) + 𝑛𝑘

𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑛𝑘 (𝑎 ≥ 1, 𝑏 ≥ 2) ⇒ Master Theorem
𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛 − 1) + 𝑏 ⋅ 𝑇(𝑛 − 2) ⇒ Linear Second Order

