Midterm Exam 1

- Thursday Feb. 10 in class
- Covered material: $1^{\text {st }}$ class \rightarrow the class on Tuesday Feb. 8 ${ }^{\text {th }}$
- Closed-book and closed-notes
- Do not forget to prepare your cheat sheet (a singleside letter-size paper)

Review for Midterm Exam 1 - Chapter 1

What is the algorithm?

- a sequence of unambiguous instructions for solving a problem

Algorithm design process
Typical problems discussed in this class: sorting, searching, string processing, graph problems, combinatorial problems, geometric problems, and numerical problems

The same problem can be solved by different algorithms with different efficiency

Typical data structures - array, linked list, stack, queue, graph, (adjacency matrix/linked-list), tree, binary tree and set

Pseudocode

Review for Midterm Exam 1 - Chapter 1

Graph

- Loop v.s. cycle
- Complete graph
- Edges and vertices $0 \leq|E| \leq|V|(|V|-1) / 2$
- Adjacency list and adjacency matrix for directed/undirected graph

Tree

- Connected and acyclic graph
- $|E|=|V|-1$
- Height of the tree

$$
\left\lfloor\log _{2} n\right\rfloor \leq h \leq n-1
$$

Review for Midterm Exam 1 - Chapter 2

Time efficiency (complexity) of an algorithm
What is the input size and basic operation?
Measured by a function of the input size -- best case, worst case, average case

The order of the growth and how to prove it

- 'Limit' technique
- Definition

Three important symbols - $O(n), \Theta(n)$ and $\Omega(n)$
Typical efficiency (complexity) class -constant, logn, linear, nlogn, square, cubic, exponential, factorial,

Polynomial and non-polynomial Complexity

1	constant
$\log n$	logarithmic
n	linear
$n \log n$	quadratic
n^{2}	cubic
n^{3}	exponential
2^{n}	factorial
$n!$	

Review for Midterm Exam 1 - Chapter 2

Analyze the efficiency of nonrecursive algorithms

- Find all the loops
- The operation in the innermost loop is the basic operation
- Write the complexity in the form of summations
- Simplify the expression using formulas in Appendix A

Analyze the efficiency of recursive algorithms

- Find the recurrence relations and initial conditions
- Find the closed-form solution (Appendix B)
-Forward substitution
-Backward substitution
-Linear $2^{\text {nd }}$ order with constant coefficients (homogenous and inhomogenous cases)
-Properties of smooth functions
- Typical kinds of recurrence relations
- Master Theorem

Important Recurrence Types

One (constant) operation reduces problem size by one.
$\mathrm{T}(n)=\mathrm{T}(n-1)+c \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=(n-1) c+d \quad$ linear, e.g., factorial
A pass through input reduces problem size by one.
$\mathrm{T}(n)=\mathrm{T}(n-1)+c n \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=[n(n+1) / 2-1] c+d \quad$ quadratic, e.q., insertion sort
One (constant) operation reduces problem size by half.
$\mathrm{T}(n)=\mathrm{T}(n / 2)+c \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=c \log _{2} n+d \quad$ logarithmic, e.g., binary search
A pass through input reduces problem size by half.
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+c n \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=c n \log 2 n+d n \quad \underline{n} \log _{2} n$, e.g., mergesort

Useful Formulas in Appendix A

Make sure to be familiar with them
endInd

$$
\sum_{i=1}^{n}(i)=1+2+\ldots+n=\frac{n(n+1)}{2} \in \Theta\left(n^{2}\right) \quad \sum_{i=1}^{n} i^{k} \in \Theta\left(n^{k+1}\right)
$$

$$
\sum_{\substack{i=1 \\ n}}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}
$$

Prove by Induction
$\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$
Note: this is not a full list in Appendix A! Copy the full list on your cheat sheet!

Three Recurrence Types We know How to Find the Closed-Form Solution

$$
\begin{aligned}
& T(n)=a \cdot T(n-1)+n^{k} \\
& T(n)=a \cdot T(n / b)+n^{k}(a \geq 1, b \geq 2) \Rightarrow \text { Master Theorem } \\
& T(n)=a \cdot T(n-1)+b \cdot T(n-2) \Rightarrow \text { Linear Second Order }
\end{aligned}
$$

Please related them to the following algorithms we learned in the last class

- Recursive algorithm for computing n !
- Recursive algorithm for Tower of Hanoi
- Recursive algorithm for finding the number of digits in the binary representation of a decimal integer
- Recursive algorithm for finding the Fibbonacci numbers

Three Recurrence Types We know How to Find the Closed-Form Solution

$$
\begin{aligned}
& T(n)=a \cdot T(n-1)+n^{k} \\
& T(n)=a \cdot T(n / b)+n^{k}(a \geq 1, b \geq 2) \Rightarrow \text { Master Theorem } \\
& T(n)=a \cdot T(n-1)+b \cdot T(n-2) \Rightarrow \text { Linear Second Order }
\end{aligned}
$$

Forward substitutions (not recommended for complex patterns)
Backward substitutions (a general approach to solve recurrence, but not recommended for linear second order recurrence)

Linear $2^{\text {nd }}$ order recurrences with constant coefficients
The solution to important recurrence type (pay attention to the initial condition)

Master Theorem (recommended for solving general divide-and-conquer recurrence)

