Midterm Exam 1

- Thursday Feb. 10 in class
- Covered material: 1st class → the class on Tuesday Feb. 8th
- Closed-book and closed-notes
- Do not forget to prepare your cheat sheet (a singleside letter-size paper)

What is the algorithm?

• a sequence of unambiguous instructions for solving a problem

Algorithm design process

- Typical problems discussed in this class: sorting, searching, string processing, graph problems, combinatorial problems, geometric problems, and numerical problems
- The same problem can be solved by different algorithms with different efficiency
- Typical data structures array, linked list, stack, queue, graph, (adjacency matrix/linked-list), tree, binary tree and set

Pseudocode

Graph

- Loop v.s. cycle
- Complete graph
- Edges and vertices $0 \le |E| \le |V| (|V|-1)/2$
- Adjacency list and adjacency matrix for directed/undirected graph

Tree

- Connected and acyclic graph
- |*E*|=|*V*|-1
- Height of the tree

$$\left\lfloor \log_2 n \right\rfloor \le h \le n - 1$$

Time efficiency (complexity) of an algorithm

What is the input size and basic operation?

Measured by a function of the input size -- best case, worst case, average case

The order of the growth and how to prove it

- 'Limit' technique
- Definition

Three important symbols – O(n), $\Theta(n)$ and $\Omega(n)$

Typical efficiency (complexity) class –constant, log*n*, linear, nlogn, square, cubic, exponential, factorial,

Polynomial and non-polynomial Complexity

1	constant
log <i>n</i>	logarithmic
n	linear
n log n	n log n
n²	quadratic
n ³	cubic
2 ⁿ	exponential
n!	factorial

Analyze the efficiency of nonrecursive algorithms

- Find all the loops
- The operation in the innermost loop is the basic operation
- Write the complexity in the form of summations
- Simplify the expression using formulas in Appendix A

Analyze the efficiency of recursive algorithms

- Find the recurrence relations and initial conditions
- Find the closed-form solution (Appendix B)
 - -Forward substitution
 - -Backward substitution
 - Linear 2nd order with constant coefficients (homogenous and inhomogenous cases)
 - -Properties of smooth functions
- Typical kinds of recurrence relations
- Master Theorem

Important Recurrence Types

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + cT(1) = dSolution: T(n) = (n-1)c + dInear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = dSolution: T(n) = [n(n+1)/2 - 1] c + d $\underline{quadratic, e.g., insertion \ sort}$

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c T(1) = dSolution: $T(n) = c \log_2 n + d <u>logarithmic, e.g., binary search</u>$

A pass through input reduces problem size by half.

 $T(n) = 2T(n/2) + cn \qquad T(1) = d$ Solution: $T(n) = cn \log_2 n + dn \qquad \underline{n \log_2 n, e.g., mergesort}$

Useful Formulas in Appendix A

Make sure to be familiar with them

$$\sum_{i=startInd}^{endInd} 1 = 1 + 1 + \cdots 1 = endInd - startInd + 1$$

$$\sum_{i=1}^{n} i = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \in \Theta(n^2) \qquad \sum_{i=1}^{n} i^k \in \Theta(n^{k+1})$$

Prove by Induction

Note: this is not a full list in Appendix A! Copy the full list on your cheat sheet!

Three Recurrence Types We know How to Find the Closed-Form Solution

$$T(n) = a \cdot T(n-1) + n^{k}$$

$$T(n) = a \cdot T(n/b) + n^{k} (a \ge 1, b \ge 2) \Rightarrow \text{Master Theorem}$$

$$T(n) = a \cdot T(n-1) + b \cdot T(n-2) \Rightarrow \text{Linear Second Order}$$

Please related them to the following algorithms we learned in the last class

- Recursive algorithm for computing *n*!
- Recursive algorithm for Tower of Hanoi
- Recursive algorithm for finding the number of digits in the binary representation of a decimal integer
- Recursive algorithm for finding the Fibbonacci numbers

Three Recurrence Types We know How to Find the Closed-Form Solution

$$T(n) = a \cdot T(n-1) + n^{k}$$

$$T(n) = a \cdot T(n/b) + n^{k} (a \ge 1, b \ge 2) \Rightarrow \text{Master Theorem}$$

$$T(n) = a \cdot T(n-1) + b \cdot T(n-2) \Rightarrow \text{Linear Second Order}$$

Forward substitutions (not recommended for complex patterns)

Backward substitutions (a general approach to solve recurrence, but not recommended for linear second order recurrence)

Linear 2nd order recurrences with constant coefficients

The solution to important recurrence type (**pay attention to the initial condition**)

Master Theorem (recommended for solving general divide-and-conquer recurrence)