Smooth Functions

> Eventually nondecreasing function:
$f\left(n_{1}\right)<f\left(n_{2}\right)$,
e.g., $n, \log n, n^{2}, 2^{n}$

$$
\text { for } \quad n_{0} \leq n_{1}<n_{2}
$$

Is $\sin (n)$ eventually nondecreasing?
> Smooth function:
$f(n)$ is eventually nondecreasing and $f(2 n) \in \Theta(f(n))$

- $f(n)$ cannot grow too fast, e.g., $n, \log n, n^{2}$
- $\quad 2^{n}, n!$ are not smooth functions

Properties of Smooth Functions

$>$ If $f(n)$ is a smooth function, for any constant integer $b \geq 2$

$$
f(b n) \in \Theta(f(n)) \quad \text { (See Appendix } \mathbf{B} \text { for the proof) }
$$

> Smoothness rule:
$T(n)$ is eventually non decreasing and $f(n)$ is a smooth function
If $\quad T(n) \in \Theta(f(n))$ for $\quad n=b^{k}, b \geq 2$ then $T(n) \in \Theta(f(n))$ for every n

- Analogous results hold for big O and big Ω
(See Appendix B for the proof)

A General Divide-and-Conquer Recurrence: Master Theorem

$T(n)$ is an eventually nondecreasing function

$$
\begin{aligned}
& T(n)=a T\left(\frac{n}{b}\right)+f(n) \text { where } f(n) \in \Theta\left(n^{d}\right), a \geq 1, b \geq 2, c>0, d \geq 0 \\
& T(1)=c \text {-- General Divide-and-Conquer Recurrence }
\end{aligned}
$$

Closed form solution: $\quad T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]$

$$
\begin{array}{ll}
a<b^{d} & T(n) \in \Theta\left(n^{d}\right) \\
a=b^{d} & T(n) \in \Theta\left(n^{d} \log n\right) \\
a>b^{d} & T(n) \in \Theta\left(\boldsymbol{n}^{\log _{b} a}\right)
\end{array}
$$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$$
\begin{aligned}
& T(n)=T(n / 2)+1 \longmapsto a=1, b=2, f(n)=1 \\
& T(1)=2 \\
& T(n)=n^{\log _{2} 1}\left[T(1)+\sum_{j=1}^{\log _{2} n} \frac{1}{1}\right]=n^{0}\left[T(1)+\log _{2} n\right]=2+\log _{2} n \\
& a=1, b=2, d=0, \longmapsto a=b^{d} \longmapsto T(n) \in \Theta(\log n)
\end{aligned}
$$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$$
\begin{aligned}
& T(n)=2 T(n / 2)+3 n \quad a=2, b=2, f(n)=3 n \\
& \mathrm{~T}(1)=2 \\
& T(n)=n^{\log _{2} 2}\left[T(1)+\sum_{j=1}^{\log _{2} n} \frac{3 * 2^{j}}{2^{j}}\right]=n^{1}\left[T(1)+3 \log _{2} n\right]
\end{aligned}
$$

$$
=2 n+3 n \log _{2} n
$$

$$
a=2, b=2, d=1, \longmapsto a=b^{d} \longmapsto T(n) \in \Theta(n \log n)
$$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$T(n)=3 T(n / 2)+n \quad a=3, b=2, f(n)=n$
$T(1)=2$

$$
T(n)=n^{\log _{2} 3}\left[T(1)+\sum_{j=1}^{\log _{2} n} \frac{2^{j}}{3^{j}}\right]=n^{\log _{2} 3}\left[T(1)+\sum_{j=1}^{\log _{2} n}\left(\frac{2}{3}\right)^{j}\right]
$$

How to calculate $\sum_{j=1}^{\log _{2} n}\left(\frac{2}{3}\right)^{j}$?
In Appendix A, $\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}(a \neq 1)$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$T(n)=3 T(n / 2)+n \rightleftarrows a=3, b=2, f(n)=n$
$\mathrm{T}(1)=2$
$T(n)=n^{\log _{2} 3}\left[T(1)+\sum_{j=1}^{\log _{2} n}\left(\frac{2}{3}\right)^{j}\right] \approx 4 n^{\log _{2} 3}$

Order of growth? $\quad \Theta\left(n^{\log _{2} 3}\right)$
$a=3, b=2, d=1, \quad \square a>b^{d}$
$T(n) \in \Theta\left(n^{\log _{2} 3}\right)$

More Example of Using Master Theorem

$$
\begin{array}{rl}
a<b^{d} & T(n) \in \Theta\left(n^{d}\right) \\
a=b^{d} & T(n) \in \Theta\left(n^{d} \log n\right) \\
a>b^{d} & T(n) \in \Theta\left(n^{\log _{b} a}\right) \\
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+1 \longleftrightarrow \mathrm{a}=2, \mathrm{~b}=2, \mathrm{~d}=0, \square \mathrm{a}>\mathrm{b}^{\mathrm{d}} T(n) \in \Theta(n) \\
\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{n} & \longrightarrow \mathrm{a}=1, \mathrm{~b}=2, \mathrm{~d}=1, \stackrel{\mathrm{a}<\mathrm{b}^{\mathrm{d}} \mathrm{~T}}{ } \mathrm{~T}(\mathrm{n}) \in \Theta(\mathrm{n}) \\
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2} \longrightarrow \mathrm{a}=3, \mathrm{~b}=2, \mathrm{~d}=2, \mathrm{a}<\mathrm{b}^{\mathrm{d}} \mathrm{~T}(\mathrm{n}) \in \Theta\left(\mathrm{n}^{2}\right)
\end{array}
$$

Summary: Methods for Solving Recurrence

 RelationsForward substitutions
Backward substitutions
Linear $2^{\text {nd }}$ order recurrences with constant coefficients

Following the solution to important recurrence type if appliable

Master Theorem for general divide-and-conquer recurrence

Reading Assignment

Chapter 3.3 Closest-pair and Convex-Hull Problems by Brute Force

Chapter 3.4 Exhaustive Search

