
Last Class: Solution to Important Recurrence

Types

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c for n>1 T(1) = d

Solution: T(n) = (n-1)c + d linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn for n>1 T(1) = d

Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c for n>1 T(1) = d

Solution: T(n) = c log2 n + d logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn for n>1 T(1) = d

Solution: T(n) = cn log2 n + d n n log2 n, e.g., mergesort

Last Class: Linear second-order recurrences

with constant coefficients

0)()2()1()(=−+−+ anfncxnbxnax

Second-order term

a, b, and c are constant coefficients.

shomogeneou0)(=nf

ousinhomogene0)(nf

A function of n

Last Class: Linear second-order recurrences

with constant coefficients - Homogeneous case

Homogeneous case:

Characteristic equation:

Roots of the characteristic equation determine the general
solution:

00)2()1()(=−+−+ ancxnbxnax

02 =++ cbrar

Rrrrrrrnxcase nn += 212121 ,)(1 

nn nrrnxcase  +=)(2

 

u

v
vujvur

nnnxcase n

arctan

sincos)(3

22

2,1 =+==

+=





Last Class: Linear second-order recurrences with

constant coefficients – Inhomogeneous Case

Inhomogeneous case:

Its general solution is the summation of one of its particular
solution and the general solution of

• Nontrivial problem for an arbitrary

• Can be solved for special , e.g., a constant

0)()2()1()(=−+−+ anfncxnbxnax

0)2()1()(=−+−+ ncxnbxnax
)(nf

)(nf

Example

16)2(25)1(10)(=−+−− nxnxnx

cnx =)(

Step 1: find a particular solution of the inhomogeneous function

1=c

The homogeneous case: 0)2(25)1(10)(=−+−− nxnxnx

Step 2: find the general solution of the homogeneous function

() ()nn
nnx 55)( +=

() () 155)(++=
nn

nnx 

The general solution of inhomogeneous function

Assume

The particular solution can be obtained given the initial condition!

Applications of Linear 2nd Order Recurrences:

Example: Tower of Hanoi

n different-size disks, 3 pegs, move disks from the left peg to
the right one using the middle one as an auxiliary

Rules:

• move one disk each time

• cannot place a larger disk on top of a smaller one

Design an algorithm and analyze its complexity

Algorithm Complexity

Let M(n) be the number of needed moves

Initialization M(1)=1

Recurrence

Solve using backward substitution

1)1(1)1()(−++−= nnMnMnM for

12

1for 1)1(2)(

−=

+−=

n

nnMnM

Move the n-1 disks to

the middle peg

Move the nth disk to

the right peg
Move the n-1 disks to

the right peg

Algorithm Complexity – Solving with Linear

Second Order

1for 1)1(2)(+−= nnMnM

022 =− rr

0)1(2)(=−− nMnMHomogenous

01 =r 22 =rand

Rrrrrrrnxcase nn += 212121 ,)(1 

nnnnM 220)( =+=

Characteristic function: Roots:

𝑀(𝑛) − 2𝑀(𝑛 − 1) = 1

Solve the recurrence relation using linear 2nd

order inhomogenous case

Algorithm Complexity – Solving with Linear

Second Order

1for 1)1(2)(+−= nnMnM

0)1(2)(=−− nMnMHomogenous

𝑀(𝑛) = 𝛽2𝑛

112 −=+= cccAssume cnM =)(is a particular solution

12)(−= nnM 

1112)1(1 ==−= M

12)(−= nnM

General solution:

Particular solution:

General solution of Homogenous:

Summary: Methods for Solving Recurrence

Relations

Forward substitutions

Backward substitutions

Linear 2nd order recurrences with constant
coefficients

Following the solution to important recurrence
type if appliable

Example: Find the Number of Binary

Digits (Recursive Algorithm)

Find the Number of Binary Digits in the Binary Representation
of a Positive Decimal Integer using a recursive algorithm

  1)2(

11

//

)(

+

=

n/BinRec

n

n

nBinRec

 return else

 return if

 tionrepresenta binary s' in //

 digits binary of number The :Output //

n integer decimal positive A :Input

ALGORITHM

 
0)1(

1for,1)2n/()(

=

+=

A

nAnA

Recurrence

However, in general   2/2n/ n

Smooth Functions

➢ Eventually nondecreasing function:

e.g., 𝑛, log 𝑛, 𝑛2, 2𝑛 Is sin(𝑛) eventually nondecreasing?

➢ Smooth function:

𝑓(𝑛) is eventually nondecreasing and

• 𝑓(𝑛) cannot grow too fast, e.g., 𝑛, log 𝑛, 𝑛2

• 2𝑛, 𝑛! are not smooth functions

𝑓(𝑛1) ≤ 𝑓(𝑛2), 210 nnn for

))(()2(nfnf 

Properties of Smooth Functions

2, = bbn k
))(()(nfnT 

))(()(nfnT 

2b

))(()(nfbnf 

then

Example: Find the Number of Binary

Digits (Recursive Algorithm)

Find the Number of Binary Digits in the Binary Representation
of a Positive Decimal Integer using a recursive algorithm

Recurrence

  1)2(

11

//

)(

+

=

n/BinRec

n

n

nBinRec

 return else

 return if

 tionrepresenta binary s' in //

 digits binary of number The :Output //

n integer decimal positive A :Input

ALGORITHM

 

0)1(

1,1)2n/()(

=

+=

A

nAnA for

Example: Find the Number of Binary

Digits (Recursive Algorithm)

Recurrence

Compare to

 

0)1(

1,1)2n/()(

=

+=

A

nAnA for

)(loglog)(2 nnnB =

0)1(

1for,1)2/()(

=

+=

B

nnBnB

)(nA is eventually nondecreasing and

())()()(nBnBnA =

)(log))(()(nnBnA =

when kn 2=

Smoothness rule

A smooth function

A General Divide-and-Conquer Recurrence:

Master Theorem

()








+= 

=

n

j
j

j
a

b

b

a

bf
TnnT

log

1

log
)1()(

Closed form solution:

Example of Using Master Theorem

𝑇(𝑛) = 𝑇(𝑛/2) + 1 𝑎 = 1, 𝑏 = 2, 𝑓 𝑛 = 1

()








+= 

=

n

j
j

j
a

b

b

a

bf
TnnT

log

1

log
)1()(

𝑇 𝑛 = 𝑛log2 1 𝑇 1 + ෍

𝑗=1

log2 𝑛
1

1
= 𝑛0 𝑇 1 + log2 𝑛 = 2 + log2 𝑛

T(1)=2

Example of Using Master Theorem

𝑇(𝑛) = 2𝑇(𝑛/2) + 3𝑛 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 3𝑛

()








+= 

=

n

j
j

j
a

b

b

a

bf
TnnT

log

1

log
)1()(

𝑇 𝑛 = 𝑛log2 2 𝑇 1 + ෍

𝑗=1

log2 𝑛
3 ∗ 2𝑗

2𝑗
= 𝑛1 𝑇 1 + 3 log2 𝑛

= 2𝑛 + 3𝑛 log2 𝑛

T(1)=2

Example of Using Master Theorem

𝑇(𝑛) = 3𝑇(𝑛/2) + 𝑛 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛

()








+= 

=

n

j
j

j
a

b

b

a

bf
TnnT

log

1

log
)1()(

𝑇 𝑛 = 𝑛log2 3 𝑇 1 + ෍

𝑗=1

log2 𝑛
2𝑗

3𝑗
= 𝑛log2 3 𝑇 1 + ෍

𝑗=1

log2 𝑛
2

3

𝑗

T(1)=2

Order of growth? Θ(𝑛log2 3)

Example of Using Master Theorem

T(n) = T(n/2) +1 a=1, b=2, d=0, a=bd T(n) ∈ Θ(logn)

T(n) = T(n/2)+n a=1, b=2, d=1, a<bd T(n) ∈ Θ(n)

T(n) = 2T(n/2)+3n a=2, b=2, d=1, a=bd T(n) ∈ Θ(nlog n)

T(n) = 3 T(n/2)+n a=3, b=2, d=1, a>bd T(n) ∈ Θ(nlog 23)

