Last Class: Solution to Important Recurrence Types

One (constant) operation reduces problem size by one.
$\mathrm{T}(n)=\mathrm{T}(n-1)+c \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=(n-1) c+d \quad$ linear, e.g., factorial
A pass through input reduces problem size by one.
$\mathrm{T}(n)=\mathrm{T}(n-1)+c n \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=[n(n+1) / 2-1] c+d \quad$ quadratic, e.g., insertion sort
One (constant) operation reduces problem size by half.
$\mathrm{T}(n)=\mathrm{T}(n / 2)+c \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=c \log _{2} n+d \quad$ logarithmic, e.g., binary search
Note: you can have similar solution with an arbitrary base b
A pass through input reduces problem size by half.
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+c n \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=c n \log 2 n+d n$
$\underline{n} \log _{2} n$, e.g., mergesort

Last Class: Linear second-order recurrences with constant coefficients

$$
\begin{array}{r}
a x(n)+b x(n-1)+c x(n-2)=f(n) \quad a \neq 0 \\
\text { Second-order term } \quad \text { A function of } n
\end{array}
$$

a, b, and c are constant coefficients.

$$
\begin{gathered}
f(n)=0 \quad \text { homogeneous } \\
f(n) \neq 0 \quad \text { inhomogeneous }
\end{gathered}
$$

Last Class: Linear second-order recurrences with constant coefficients - Homogeneous case

Homogeneous case:

$$
a x(n)+b x(n-1)+c x(n-2)=0 \quad a \neq 0
$$

Characteristic equation:

$$
a r^{2}+b r+c=0
$$

Roots of the characteristic equation determine the general solution:

$$
\begin{array}{rl}
\text { case } 1 & x(n)=\alpha r_{1}^{n}+\beta r_{2}^{n} \quad r_{1} \neq r_{2} \quad r_{1}, r_{2} \in R \\
\text { case } 2 & x(n)=\alpha r^{n}+\beta n r^{n} \\
\text { case3 } & x(n)=\gamma^{n}[\alpha \cos n \theta+\beta \sin n \theta] \\
r_{1,2}= & u \pm j v \quad \gamma=\sqrt{u^{2}+v^{2}} \quad \theta=\arctan \frac{v}{u}
\end{array}
$$

Last Class: Linear second-order recurrences with constant coefficients - Inhomogeneous Case

Inhomogeneous case:

$$
a x(n)+b x(n-1)+c x(n-2)=f(n) \quad a \neq 0
$$

Its general solution is the summation of one of its particular solution and the general solution of

$$
a x(n)+b x(n-1)+c x(n-2)=0
$$

- Nontrivial problem for an arbitrary $f(n)$
- Can be solved for special $f(n)$, e.g., a constant

Example

$$
x(n)-10 x(n-1)+25 x(n-2)=16
$$

The homogeneous case: $x(n)-10 x(n-1)+25 x(n-2)=0$
Step 1: find a particular solution of the inhomogeneous function
Assume $x(n)=c \quad \square c=1$
Step 2: find the general solution of the homogeneous function

$$
x(n)=\alpha(5)^{n}+\beta n(5)^{n}
$$

The general solution of inhomogeneous function

$$
x(n)=\alpha(5)^{n}+\beta n(5)^{n}+1
$$

The particular solution can be obtained given the initial condition!

Applications of Linear $2^{\text {nd }}$ Order Recurrences: Example: Tower of Hanoi

n different-size disks, 3 pegs, move disks from the left peg to the right one using the middle one as an auxiliary

Rules:

- move one disk each time
- cannot place a larger disk on top of a smaller one

Design an algorithm and analyze its complexity

Algorithm Complexity

Let $M(n)$ be the number of needed moves
Initialization $M(1)=1$
Recurrence $M(n)=M(n-1)+1+M(n-1) \quad$ for $n>1$

Move the $n-1$ disks to Move the $n^{\text {th }}$ disk to the middle peg the right peg

Move the $\mathrm{n}-1$ disks to the right peg

Solve using backward substitution

$$
\begin{aligned}
M(n) & =2 M(n-1)+1 \quad \text { for } n>1 \\
& =2^{n}-1
\end{aligned}
$$

Algorithm Complexity - Solving with Linear Second Order

$$
\begin{aligned}
& M(n)=2 M(n-1)+1 \quad \text { for } n>1 \\
& \Rightarrow \quad M(n)-2 M(n-1)=1
\end{aligned}
$$

Solve the recurrence relation using linear $\mathbf{2 n d}^{\text {nd }}$ order inhomogenous case

Homogenous $M(n)-2 M(n-1)=0$
Characteristic function: $r^{2}-2 r=0 \quad$ Roots: $\quad r_{1}=0$ and $r_{2}=2$

$$
\text { case1 } \quad x(n)=\alpha r_{1}^{n}+\beta r_{2}^{n} \quad r_{1} \neq r_{2} \quad r_{1}, r_{2} \in R
$$

$$
M(n)=\alpha 0^{n}+\beta 2^{n}=\beta 2^{n}
$$

Algorithm Complexity - Solving with Linear Second Order

$$
M(n)=2 M(n-1)+1 \quad \text { for } n>1
$$

Homogenous $M(n)-2 M(n-1)=0$
General solution of Homogenous: $M(n)=\beta 2^{n}$

Assume $M(n)=c$ is a particular solution $\longmapsto c=2 c+1 \Rightarrow c=-1$

General solution: $M(n)=\beta 2^{n}-1$

$$
M(1)=\beta 2^{1}-1=1 \Rightarrow \beta=1
$$

Particular solution: $\quad M(n)=2^{n}-1$

Summary: Methods for Solving Recurrence Relations

Forward substitutions
Backward substitutions
Linear $2^{\text {nd }}$ order recurrences with constant coefficients

Following the solution to important recurrence type if appliable

Example: Find the Number of Binary Digits (Recursive Algorithm)

Find the Number of Binary Digits in the Binary Representation of a Positive Decimal Integer using a recursive algorithm

```
ALGORITHM BinRec(n)
// Input : A positive decimal integer n
// Output : The number of binary digits
// in n's binary representation
if }n=1\mathrm{ return 1
else return BinRec(\lfloorn/2\rfloor)+1
```

Recurrence

$$
A(n)=A(\lfloor\mathrm{n} / 2\rfloor)+1, \quad \text { for } n>1 \quad \text { However, }\lfloor\mathrm{n} / 2\rfloor \neq n / 2 \text { in general }
$$

$$
A(1)=0
$$

Smooth Functions

$>$ Eventually nondecreasing function:
$f\left(n_{1}\right) \leq f\left(n_{2}\right)$,
for $n_{0} \leq n_{1}<n_{2}$
e.g., $n, \log n, n^{2}, 2^{n} \quad$ Is $\sin (n)$ eventually nondecreasing?
$>$ Smooth function:
$f(n)$ is eventually nondecreasing and $f(2 n) \in \Theta(f(n))$

- $f(n)$ cannot grow too fast, e.g., $n, \log n, n^{2}$
- $2^{n}, n$! are not smooth functions

Properties of Smooth Functions

$>$ If $f(n)$ is a smooth function, for any constant integer $b \geq 2$

$$
f(b n) \in \Theta(f(n)) \quad \text { (See Appendix } \mathbf{B} \text { for the proof) }
$$

> Smoothness rule:
$T(n)$ is eventually non decreasing and $f(n)$ is a smooth function

If $\quad T(n) \in \Theta(f(n))$ for $\quad n=b^{k}, b \geq 2$ then $T(n) \in \Theta(f(n))$ for every n

- Analogous results hold for big O and big Ω
(See Appendix B for the proof)

Example: Find the Number of Binary Digits (Recursive Algorithm)

Find the Number of Binary Digits in the Binary Representation of a Positive Decimal Integer using a recursive algorithm

```
ALGORITHM BinRec(n)
// Input : A positive decimal integer n
// Output : The number of binary digits
// in n's binary representation
if }n=1\mathrm{ return 1
else return BinRec(\lfloorn/2\rfloor)+1
```

Recurrence

$$
\begin{array}{|l}
\hline A(n)=A(\lfloor\mathrm{n} / 2\rfloor)+1, \text { for } n>1 \\
A(1)=0
\end{array}
$$

Example: Find the Number of Binary Digits (Recursive Algorithm)

Recurrence | $A(n)=A(\lfloor\mathrm{n} / 2\rfloor)+1, \quad$ for $n>1$ |
| :--- |
| $A(1)=0$ |

Compare to $\begin{aligned} & B(n)=B(n / 2)+1, \text { for } n>1 \\ & B(1)=0\end{aligned}$

A smooth function
$B(n)=\log _{2} n \in \Theta(\log n)$

Smoothness rule

A General Divide-and-Conquer Recurrence: Master Theorem

$T(n)$ is an eventually nondecreasing function

$$
\begin{aligned}
& T(n)=a T\left(\frac{n}{b}\right)+f(n) \text { where } f(n) \in \Theta\left(n^{d}\right), a \geq 1, b \geq 2, c>0, d \geq 0 \\
& T(1)=c \text {-- General Divide-and-Conquer Recurrence }
\end{aligned}
$$

Closed form solution: $\quad T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]$

$$
\begin{array}{ll}
a<b^{d} & T(n) \in \Theta\left(n^{d}\right) \\
a=b^{d} & T(n) \in \Theta\left(n^{d} \log n\right) \\
a>b^{d} & T(n) \in \Theta\left(\boldsymbol{n}^{\log _{b} a}\right)
\end{array}
$$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$T(n)=T(n / 2)+1 \quad a=1, b=2, f(n)=1$
$\mathrm{T}(1)=2$

$$
T(n)=n^{\log _{2} 1}\left[T(1)+\sum_{j=1}^{\log _{2} n} \frac{1}{1}\right]=n^{0}\left[T(1)+\log _{2} n\right]=2+\log _{2}
$$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$$
T(n)=2 T(n / 2)+3 n \square \quad a=2, b=2, f(n)=3 n
$$

$$
T(1)=2
$$

$$
T(n)=n^{\log _{2} 2}\left[T(1)+\sum_{j=1}^{\log _{2} n} \frac{3 * 2^{j}}{2^{j}}\right]=n^{1}\left[T(1)+3 \log _{2} n\right]
$$

$$
=2 n+3 n \log _{2} n
$$

Example of Using Master Theorem

$$
T(n)=n^{\log _{b} a}\left[T(1)+\sum_{j=1}^{\log _{b} n} \frac{f\left(b^{j}\right)}{a^{j}}\right]
$$

$$
T(n)=3 T(n / 2)+n \rightleftarrows a=3, b=2, f(n)=n
$$

$$
T(1)=2
$$

$$
T(n)=n^{\log _{2} 3}\left[T(1)+\sum_{j=1}^{\log _{2} n} \frac{2^{j}}{3^{j}}\right]=n^{\log _{2} 3}\left[T(1)+\sum_{j=1}^{\log _{2} n}\left(\frac{2}{3}\right)^{j}\right]
$$

Order of growth? $\Theta\left(n^{\log _{2} 3}\right)$

Example of Using Master Theorem

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+1 \quad \mathrm{a}=1, \mathrm{~b}=2, \mathrm{~d}=0, \mathrm{a}^{2}=\mathrm{b}^{\mathrm{d}} T(n) \in \Theta(\log n) \\
& \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{n} \quad \longrightarrow \mathrm{a}=1, \mathrm{~b}=2, \mathrm{~d}=1, \mathrm{a}<\mathrm{b}^{\mathrm{d}} T(\mathrm{n}) \in \Theta(\mathrm{n}) \\
& \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+3 \mathrm{n} \longrightarrow \mathrm{a}=2, \mathrm{~b}=2, \mathrm{~d}=1, \mathrm{a}^{\mathrm{a}=\mathrm{b}^{\mathrm{d}}} T(n) \in \Theta(n \log n) \\
& \mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \longrightarrow \mathrm{a}=3, \mathrm{~b}=2, \mathrm{~d}=1, \mathrm{a}^{\mathrm{a}} \mathrm{~b}^{\mathrm{d}} T(n) \in \Theta\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

