
Last Class: Solution to Important Recurrence 

Types

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c      for n>1 T(1) = d

Solution: T(n) =  (n-1)c + d                          linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn for n>1 T(1) = d

Solution: T(n) =  [n(n+1)/2 – 1] c + d           quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half. 

T(n) = T(n/2) + c for n>1 T(1) = d

Solution: T(n) =  c log2 n + d                           logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn for n>1 T(1) = d

Solution: T(n) =  cn log2 n + d n                         n log2 n, e.g., mergesort



Last Class: Linear second-order recurrences 

with constant coefficients
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Last Class: Linear second-order recurrences 

with constant coefficients - Homogeneous case

Homogeneous case:

Characteristic equation:

Roots of the characteristic equation determine the general 
solution:
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Last Class: Linear second-order recurrences with 

constant coefficients – Inhomogeneous Case

Inhomogeneous case:

Its general solution is the summation of one of its particular 
solution and the general solution of

• Nontrivial problem for an arbitrary 

• Can be solved for special            , e.g., a constant
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Example
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Step 1: find a particular solution of the inhomogeneous function

1=c

The homogeneous case: 0)2(25)1(10)( =−+−− nxnxnx

Step 2: find the general solution of the homogeneous function
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The general solution of inhomogeneous function

Assume

The particular solution can be obtained given the initial condition!



Applications of Linear 2nd Order Recurrences: 

Example: Tower of Hanoi

n different-size disks, 3 pegs, move disks from the left peg to 
the right one using the middle one as an auxiliary

Rules: 

• move one disk each time 

• cannot place a larger disk on top of a smaller one 

Design an algorithm and analyze its complexity



Algorithm Complexity

Let M(n) be the number of needed moves 

Initialization M(1)=1

Recurrence

Solve using backward substitution 
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Algorithm Complexity – Solving with Linear 

Second Order
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Characteristic function: Roots:

𝑀(𝑛) − 2𝑀(𝑛 − 1) = 1

Solve the recurrence relation using linear 2nd

order inhomogenous case



Algorithm Complexity – Solving with Linear 

Second Order
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𝑀(𝑛) = 𝛽2𝑛
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Summary: Methods for Solving Recurrence 

Relations

Forward substitutions

Backward substitutions

Linear 2nd order recurrences with constant 
coefficients

Following the solution to important recurrence 
type if appliable



Example: Find the Number of Binary 

Digits (Recursive Algorithm)

Find the Number of Binary Digits in the Binary Representation 
of a Positive Decimal Integer using a recursive algorithm
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 digits binary of number The :Output //

n integer decimal positive A :Input 
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However,                  in general       2/2n/ n



Smooth Functions

➢ Eventually nondecreasing function:

e.g., 𝑛, log 𝑛, 𝑛2, 2𝑛 Is sin(𝑛) eventually nondecreasing?

➢ Smooth function:

𝑓(𝑛) is eventually nondecreasing and

• 𝑓(𝑛) cannot grow too fast, e.g., 𝑛, log 𝑛, 𝑛2

• 2𝑛, 𝑛! are not smooth functions
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Properties of Smooth Functions
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Example: Find the Number of Binary 

Digits (Recursive Algorithm)

Find the Number of Binary Digits in the Binary Representation 
of a Positive Decimal Integer using a recursive algorithm

Recurrence
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 digits binary of number The :Output //

n integer decimal positive A :Input 
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Example: Find the Number of Binary 

Digits (Recursive Algorithm)

Recurrence

Compare to 
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A General Divide-and-Conquer Recurrence: 

Master Theorem
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Closed form solution:



Example of Using Master Theorem

𝑇(𝑛) = 𝑇(𝑛/2) + 1 𝑎 = 1, 𝑏 = 2, 𝑓 𝑛 = 1
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Example of Using Master Theorem

𝑇(𝑛) = 2𝑇(𝑛/2) + 3𝑛 𝑎 = 2, 𝑏 = 2, 𝑓 𝑛 = 3𝑛
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Example of Using Master Theorem

𝑇(𝑛) = 3𝑇(𝑛/2) + 𝑛 𝑎 = 3, 𝑏 = 2, 𝑓 𝑛 = 𝑛
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Order of growth? Θ(𝑛log2 3)



Example of Using Master Theorem

T(n) = T(n/2) +1             a=1, b=2, d=0, a=bd T(n) ∈ Θ(logn)

T(n) = T(n/2)+n             a=1, b=2, d=1, a<bd T(n) ∈ Θ(n) 

T(n) = 2T(n/2)+3n           a=2, b=2, d=1, a=bd T(n) ∈ Θ(nlog n )

T(n) = 3 T(n/2)+n          a=3, b=2, d=1, a>bd T(n) ∈ Θ(nlog 23)


