Time Efficiency of Recursive Algorithms

Steps in mathematical analysis of recursive algorithms:

1. Decide on parameter n indicating input size
2. Identify algorithm's basic operation
3. Determine worst, average, and best case for input of size n
4. Set up a recurrence relation and initial condition(s) for $C(n)$ the number of times the basic operation will be executed for an input size n.
5. Solve the recurrence to obtain a closed form or estimate the order of growth of the solution

Last Class: Recursive evaluation of \boldsymbol{n} !

Recursive algorithm for n !
Input size: n
Basic operation: multiplication "*"
Let $C(n)$ be the number of multiplications needed to compute n !, then

ALGORITHM Factorial(n)
if $n=0$
return 1
else
return Factorial($n-1$)* n

$$
\begin{array}{|c}
C(0)=0 \\
C(n)=C(n-1)+1 \text { for } n>0 \\
\text { Recurrence relation }
\end{array}
$$

$$
\sqrt{7}
$$

$$
C(n)=n
$$

Solve the recurrence

Last Class: Sequences and Recurrence Relations

A sequence: an ordered list of numbers.
For example: 0, 2, 4, 6, ... (even integers)
How to represent a sequence: $x(n)$-- General term of the sequence
The index in the sequence

- Explicit mathematic formula: e.g., $x(n)=n+1$ for $n>=0$
- Recurrence relation: e.g., $x(n)=x(n-1)+1$ and $x(0)=1$

Solving the recurrence $\longleftrightarrow \rightarrow$ finding the explicit formula

Last Class: Solutions of Recurrence Relations

$$
C(n)=C(n-1)+1 \text { for } n>0
$$

General solution $C(n)=C(0)+n$ for $n>0$

- A class of solutions ignoring initial condition
- Satisfying the recurrence relation with an arbitrary constant

Particular solution $C(n)=n$ for $n>0, C(0)=0$

- Satisfying the recurrence relation and the particular initial condition

Example 4 - Solving Recurrence Relations Using Backward Substitutions

$$
T(n)=T(n / 2)+2 n \text { for } n>1, \quad T(1)=2
$$

Let $n=2^{k}, \mathrm{k}$ is an integer and $\mathrm{k}>0$

$$
T(n)=T(n / 2)+2 n \rightarrow T\left(2^{k}\right)=T\left(2^{k-1}\right)+2 * 2^{k}
$$

Example 4 - Solving Recurrence Relations Using Backward Substitutions

$$
\begin{aligned}
& \quad T(n)=T(n / 2)+2 n \text { for } n>1, \quad T(1)=2 \\
& T\left(2^{k}\right)=T\left(2^{k-1}\right)+2 * 2^{k}=T\left(2^{k-2}\right)+2 * 2^{k-1}+2 * 2^{k} \\
& =T\left(2^{k-3}\right)+2 * 2^{k-2}+2 * 2^{k-1}+2 * 2^{k} \\
& =T\left(2^{k-k}\right)+2 *\left[2^{k-(k-1)}+\cdots+2^{k-1}+2^{k}\right] \\
& =T(1)+2 * \sum_{i=1}^{k} 2^{i}=T(1)+2 *\left(2^{k+1}-1-1\right) \quad n=2^{k} \\
& =2+2 *(2 n-2)=4 n-2
\end{aligned}
$$

Solution to Important Recurrence Types

One (constant) operation reduces problem size by one.
$\mathrm{T}(n)=\mathrm{T}(n-1)+c \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=(n-1) c+d \quad$ linear, e.g., factorial
A pass through input reduces problem size by one.
$\mathrm{T}(n)=\mathrm{T}(n-1)+c n \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=[n(n+1) / 2-1] c+d \quad$ quadratic, e.g., insertion sort
One (constant) operation reduces problem size by half.
$\mathrm{T}(n)=\mathrm{T}(n / 2)+c \quad$ for $n>1 \quad \mathrm{~T}(1)=d$
Solution: $\mathrm{T}(n)=c \log _{2} n+d \quad$ logarithmic, e.g., binary search
Note: you can have similar solution with an arbitrary base b
A pass through input reduces problem size by half.
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+c n$ for $n>1$
Solution: $\mathrm{T}(n)=c n \log 2 n+d n$

$$
\mathrm{T}(1)=d
$$

$\underline{n} \log _{2} n$, e.g., mergesort

Example 1 - Solving Recurrence Relations Using the Solutions of Important Recurrence Types

One (constant) operation reduces problem size by one.

$$
T(n)=T(n-1)+c \quad \text { for } n>1 \quad T(1)=d
$$

Solution: $T(n)=(n-1) c+d$

Example:

$$
\begin{aligned}
& T(n)= T(n-1)+2 \text { for } n>1, \quad T(1)=2 \\
& c=? \text { and } \quad d=? \\
& c=2 \text { and } d=2 \\
& \rightarrow \mathrm{~T}(n)=2(n-1)+2=2 n
\end{aligned}
$$

Example 2 - Solving Recurrence Relations Using the Solutions of Important Recurrence Types

A pass through input reduces problem size by one.

$$
T(n)=T(n-1)+c n \text { for } n>1 \quad T(1)=d
$$

Solution: $T(n)=[n(n+1) / 2-1] c+d$
Example:

$$
\begin{aligned}
& \quad T(n)=T(n-1)+2 n \text { for } n>0, \quad T(0)=2 \\
& c=? \text { and } d=? \\
& c=2 \text { and } d=2 \rightarrow \mathrm{~T}(n)=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}-1\right] * 2+2=n^{2}+n \\
& \neq n^{2}+n+2 \\
& \quad \text { What's wrong? } \quad \mathrm{T}(1)=d
\end{aligned}
$$

Example 2 - Solving Recurrence Relations Using the Solutions of Important Recurrence Types

A pass through input reduces problem size by one.

$$
T(n)=T(n-1)+c n \text { for } n>1 \quad T(1)=d
$$

Solution: $T(n)=[n(n+1) / 2-1] c+d$
Example:

$$
\begin{aligned}
& T(n)=T(n-1)+2 n \text { for } n>0, \quad T(0)=2 \\
& \quad c=? \text { and } d=?
\end{aligned}
$$

$$
T(1)=T(0)+2=2+2=4 \rightarrow d=4
$$

$c=2$ and $d=4 \rightarrow \mathrm{~T}(n)=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}-1\right] * 2+4=n^{2}+n+2$

Example 3 - Solving Recurrence Relations Using the Solutions of Important Recurrence Types

One (constant) operation reduces problem size by half.

$$
T(n)=T(n / 2)+c \quad \text { for } n>1 \quad T(1)=d
$$

Solution: $T(n)=c \log _{2} n+d$
Example:

$$
\begin{aligned}
& T(n)=T(n / 2)+1 \text { for } n>1, \quad T(1)=2 \\
& c=? \text { and } d=? \\
& c=1 \text { and } d=2 \rightarrow \mathrm{~T}(n)=\log _{2} n+2
\end{aligned}
$$

Example 4 - Solving Recurrence Relations Using the Solutions of Important Recurrence Types

A pass through input reduces problem size by half.

$$
T(n)=2 T(n / 2)+c n \text { for } n>1 \quad T(1)=d
$$

Solution: $T(n)=c n \log _{2} n+d n$

Example:

$$
\begin{gathered}
T(n)=2 T(n / 2)+3 n \text { for } n>1, \quad T(1)=2 \\
c=? \text { and } \quad d=? \\
c=3 \text { and } d=2 \rightarrow \mathrm{~T}(n)=3 n \log _{2} n+2 n
\end{gathered}
$$

Linear second-order recurrences with constant coefficients

$$
\begin{aligned}
& a x(n)+b x(n-1)+c x(n-2) f(n) \\
& \downarrow \\
& \text { Second-order term } a \neq 0 \\
& \text { A function of } n
\end{aligned}
$$

a, b, and c are constant coefficients.

$$
\begin{array}{cc}
f(n)=0 \quad \text { homogeneous } \\
f(n) \neq 0 \quad \text { inhomogeneous }
\end{array}
$$

Linear second-order recurrences with constant coefficients - Homogeneous case

Homogeneous case:

$$
a x(n)+b x(n-1)+c x(n-2)=0 \quad a \neq 0
$$

Characteristic equation:

$$
a r^{2}+b r+c=0
$$

Roots of the characteristic equation:

$$
r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Case 1: Two real number solutions
Case 2: One real number solution
Case 3: Two complex number solutions

Linear second-order recurrences with constant coefficients - Homogeneous case

Homogeneous case:

$$
a x(n)+b x(n-1)+c x(n-2)=0 \quad a \neq 0
$$

Characteristic equation:

$$
a r^{2}+b r+c=0
$$

Roots of the characteristic equation determine the general solution:

$$
\text { casel } \quad x(n)=\alpha r_{1}^{n}+\beta r_{2}^{n} \quad r_{1} \neq r_{2} \quad r_{1}, r_{2} \in R
$$

$$
\text { case } 2 \quad x(n)=\alpha r^{n}+\beta n r^{n}
$$

$$
\text { case } 3 \quad x(n)=\gamma^{n}[\alpha \cos n \theta+\beta \sin n \theta]
$$

$$
r_{1,2}=u \pm j v \quad \gamma=\sqrt{u^{2}+v^{2}} \quad \theta=\arctan \frac{v}{u}
$$

α and β are constants for the general solution

Example - Homogeneous case

Homogeneous case:

$$
x(n)-10 x(n-1)+25 x(n-2)=0
$$

Characteristic equation:

$$
r^{2}-10 r+25=0
$$

Roots of the characteristic equation determine the general solution:

$$
r=5
$$

$$
\text { case } 2 \quad x(n)=\alpha r^{n}+\beta n r^{n}
$$

α and β are arbitrary constants

Example - Homogeneous case

General solution:

$$
x(n)=\alpha(5)^{n}+\beta n(5)^{n}
$$

How to get the particular solution?
Given the initial condition

$$
x(0)=0 \quad x(1)=5
$$

$$
\begin{aligned}
& x(0)=x(n=0)=\alpha(5)^{0}+\beta^{*} 0 *(5)^{0}=\alpha \square \alpha=0 \\
& x(1)=x(n=1)=\alpha(5)^{1}+\beta^{*} 1 *(5)^{1}=5 \beta \Rightarrow \beta=1 \\
& \square x(n)=n(5)^{n}
\end{aligned}
$$

Example2 - Computing Fibonacci Number

$$
F(n)=F(n-1)+F(n-2)
$$

Initial condition: $\quad F(0)=0 \quad F(1)=1$
The Fibonacci sequence:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

How to compute Fibonacci number?

1. Nonrecursive definition-based algorithm
$\Theta(n)$
2. Recursive definition-based algorithm
$\Theta(n)$
Can we give an explicit math function for $F(n)$?

Example2 - Computing Fibonacci Number

$$
F(n)=F(n-1)+F(n-2) \quad \begin{gathered}
\text { 2nd } \text { order linear homogeneous } \\
\text { recurrence relation } \\
\text { with constant coefficients }
\end{gathered}
$$

$$
F(n)-F(n-1)-F(n-2)=0
$$

Example2 - Computing Fibonacci Number

$$
F(n)-F(n-1)-F(n-2)=0
$$

Characteristic function: $\quad r^{2}-r-1=0$

$$
\text { Roots: } \quad r_{1,2}=\frac{1 \pm \sqrt{5}}{2}
$$

case $1 \quad x(n)=\alpha r_{1}^{n}+\beta r_{2}^{n} \quad r_{1} \neq r_{2} \quad r_{1}, r_{2} \in R$
General solution: $\quad F(n)=\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Example2 - Computing Fibonacci Number

$$
F(n)-F(n-1)-F(n-2)=0
$$

Characteristic function: $\quad r^{2}-r-1=0$
General solution: $\quad F(n)=\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
Particular solution:
Since $F(0)=0$ and $F(1)=1$

$$
\begin{aligned}
\alpha & =1 / \sqrt{5} \quad \text { and } \beta=-1 / \sqrt{5} \\
F(n) & =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{aligned}
$$

Linear second-order recurrences with constant coefficients - Inhomogeneous Case

Inhomogeneous case:

$$
a x(n)+b x(n-1)+c x(n-2)=f(n) \quad a \neq 0
$$

Its general solution is the summation of one of its particular solution and the general solution of

$$
a x(n)+b x(n-1)+c x(n-2)=0
$$

- Nontrivial problem for an arbitrary $f(n)$
- Can be solved for special $f(n)$, e.g., a constant

Example

$$
x(n)-10 x(n-1)+25 x(n-2)=16
$$

The homogeneous case: $x(n)-10 x(n-1)+25 x(n-2)=0$
Step 1: find a particular solution of the inhomogeneous function

$$
x(n)=c \quad \square c=1
$$

Step 2: find the general solution of the homogeneous function

$$
x(n)=\alpha(5)^{n}+\beta n(5)^{n}
$$

The general solution of inhomogeneous function

$$
x(n)=\alpha(5)^{n}+\beta n(5)^{n}+1
$$

The particular solution can be obtained given the initial condition!

