Time Efficiency of Recursive Algorithms

Steps in mathematical analysis of recursive algorithms:

- **1.** Decide on parameter *n* indicating *input size*
- 2. Identify algorithm's *basic operation*
- 3. Determine *worst*, *average*, and *best* case for input of size *n*

4. Set up a recurrence relation and initial condition(s) for C(n)the number of times the basic operation will be executed for an input size n.

5. Solve the recurrence to obtain a closed form or estimate the order of growth of the solution

Last Class: Recursive evaluation of *n* !

Last Class: Sequences and Recurrence Relations

A sequence: an ordered list of numbers.

For example: 0, 2, 4, 6, ... (even integers)

How to represent a sequence: x(n) -- General term of the sequence The index in the sequence

- Explicit mathematic formula: e.g., x(n)= n+1 for n>=0
- **Recurrence relation:** e.g., x(n) = x(n-1) + 1 and x(0) = 1

Solving the recurrence $\leftarrow \rightarrow$ finding the explicit formula

Last Class: Solutions of Recurrence Relations

$$C(n) = C(n-1) + 1$$
 for $n > 0$

General solution C(n) = C(0) + n for n > 0

- A class of solutions ignoring initial condition
- Satisfying the recurrence relation with an arbitrary constant

Particular solution

$$C(n) = n \text{ for } n > 0, C(0) = 0$$

Satisfying the recurrence relation and the particular initial condition

Example 4 – Solving Recurrence Relations Using Backward Substitutions

$$T(n) = T(n/2) + 2n$$
 for $n > 1$, $T(1) = 2$

Let $n = 2^k$, k is an integer and k > 0

$$T(n) = T(n/2) + 2n \rightarrow T(2^k) = T(2^{k-1}) + 2 * 2^k$$

Example 4 – Solving Recurrence Relations Using Backward Substitutions

T(n) = T(n/2) + 2n for n > 1, T(1) = 2 $T(n/2) = T(2^{k-1})$ $T(2^{k}) = T(2^{k-1}) + 2 \cdot 2^{k} = T(2^{k-2}) + 2 \cdot 2^{k-1} + 2 \cdot 2^{k}$ $= T(2^{k-3}) + 2 * 2^{k-2} + 2 * 2^{k-1} + 2 * 2^{k}$ $= T(2^{k-k}) + 2 * \left[2^{k-(k-1)} + \dots + 2^{k-1} + 2^k \right]$ $= T(1) + 2 * \sum 2^{i} = T(1) + 2 * (2^{k+1} - 1 - 1) \quad \longleftarrow \quad n = 2^{k}$ = 2 + 2 * (2n - 2) = 4n - 2

Solution to Important Recurrence Types

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + cfor n > 1T(1) = dSolution: T(n) = (n-1)c + dInear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn for n > 1T(1) = dSolution: T(n) = [n(n+1)/2 - 1] c + dquadratic, e.g., insertion sort

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + cfor n > 1T(1) = dSolution: $T(n) = c \log_2 n + d$ Iogarithmic, e.g., binary searchNote: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn for n > 1T(1) = dSolution: $T(n) = cn \log_2 n + dn$ $n \log_2 n, e.g., mergesort$

Example 1 – Solving Recurrence Relations Using the Solutions of Important Recurrence Types

One (constant) operation reduces problem size by one. T(n) = T(n-1) + c for n > 1 T(1) = dSolution: T(n) = (n-1)c + d

Example:

$$T(n) = T(n-1) + 2 \text{ for } n > 1, \qquad T(1) = 2$$

 $c = ? \text{ and } d = ?$
 $c = 2 \text{ and } d = 2$
 $\rightarrow T(n) = 2(n-1) + 2 = 2n$

Example 2 – Solving Recurrence Relations Using the Solutions of Important Recurrence Types

A pass through input reduces problem size by one. T(n) = T(n-1) + cn for n > 1 T(1) = d

Solution:
$$T(n) = [n(n+1)/2 - 1]c + d$$

Example: $T(n) = T(n-1) + 2n \text{ for } n > 0, \quad T(0) = 2$ $c = ? \quad and \quad d = ?$ $c = 2 \text{ and } d = 2 \rightarrow T(n) = \left[\frac{n(n+1)}{2} - 1\right] * 2 + 2 = n^2 + n$ $\neq n^2 + n + 2$ What's wrong? T(1) = d

Example 2 – Solving Recurrence Relations Using the Solutions of Important Recurrence Types

A pass through input reduces problem size by one. T(n) = T(n-1) + cn for n > 1 T(1) = d

Solution:
$$T(n) = [n(n+1)/2 - 1]c + d$$

Example: $T(n) = T(n-1) + 2n \text{ for } n > 0, \quad T(0) = 2$ $c =? \quad and \quad d =?$ $T(1) = T(0) + 2 = 2 + 2 = 4 \rightarrow d = 4$ $c = 2 \text{ and } d = 4 \rightarrow T(n) = \left[\frac{n(n+1)}{2} - 1\right] * 2 + 4 = n^2 + n + 2$

Example 3 – Solving Recurrence Relations Using the Solutions of Important Recurrence Types

One (constant) operation reduces problem size by half. T(n) = T(n/2) + c for n > 1 T(1) = d

Solution: $T(n) = c \log_2 n + d$

Example:

$$T(n) = T(n/2) + 1$$
 for $n > 1$, $T(1) = 2$
 $c = ?$ and $d = ?$

c = 1 and $d = 2 \rightarrow T(n) = \log_2 n + 2$

Example 4 – Solving Recurrence Relations Using the Solutions of Important Recurrence Types

A pass through input reduces problem size by half. T(n) = 2T(n/2) + cn for n > 1 T(1) = d

Solution: $T(n) = cn \log_2 n + d n$

Example:

$$T(n) = 2T(n/2) + 3n$$
 for $n > 1$, $T(1) = 2$
 $c = ?$ and $d = ?$

 $c = 3 \text{ and } d = 2 \rightarrow T(n) = 3n \log_2 n + 2n$

Linear second-order recurrences with constant coefficients

$$ax(n) + bx(n-1) + cx(n-2) = f(n) \quad a \neq 0$$

Second-order term A function of n

a, b, and c are constant coefficients.

- f(n) = 0 homogeneous
- $f(n) \neq 0$ inhomogeneous

Linear second-order recurrences with constant coefficients - Homogeneous case

Homogeneous case:

$$ax(n) + bx(n-1) + cx(n-2) = 0$$
 $a \neq 0$

Characteristic equation:

$$ar^2 + br + c = 0$$

Roots of the characteristic equation:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Case 1: Two real number solutions

Case 2: One real number solution

Case 3: Two complex number solutions

Linear second-order recurrences with constant coefficients - Homogeneous case

Homogeneous case:

$$ax(n) + bx(n-1) + cx(n-2) = 0$$
 $a \neq 0$

Characteristic equation:

$$ar^2 + br + c = 0$$

Roots of the characteristic equation determine the general solution:

case1
$$x(n) = \alpha r_1^n + \beta r_2^n$$
 $r_1 \neq r_2$ $r_1, r_2 \in R$
case2 $x(n) = \alpha r^n + \beta n r^n$
case3 $x(n) = \gamma^n [\alpha \cos n\theta + \beta \sin n\theta]$
 $r_{1,2} = u \pm jv$ $\gamma = \sqrt{u^2 + v^2}$ $\theta = \arctan \frac{v}{u}$
 α and β are constants for the general solution

Example - Homogeneous case

Homogeneous case:

$$x(n) - 10x(n-1) + 25x(n-2) = 0$$

Characteristic equation:

$$r^2 - 10r + 25 = 0$$

Roots of the characteristic equation determine the general solution:

$$r = 5$$

 $case2 \quad x(n) = \alpha r^n + \beta n r^n$
General solution
 $x(n) = \alpha (5)^n + \beta n (5)^n$

 α and β are arbitrary constants

Example - Homogeneous case

General solution:

$$x(n) = \alpha(5)^n + \beta n(5)^n$$

How to get the particular solution?

Given the initial condition

$$x(0) = 0 \qquad x(1) = 5$$

$$x(0) = x(n = 0) = \alpha(5)^{0} + \beta * 0 * (5)^{0} = \alpha \implies \alpha = 0$$

$$x(1) = x(n = 1) = \alpha(5)^{1} + \beta * 1 * (5)^{1} = 5\beta \implies \beta = 1$$

$$x(n) = n(5)^{n}$$

$$F(n) = F(n-1) + F(n-2)$$

Initial condition: F(0) = 0F(1) = 1The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ... How to compute Fibonacci number? $\Theta(n)$ Nonrecursive definition-based algorithm 1. $\Theta(n)$

2. Recursive definition-based algorithm

Can we give an explicit math function for F(n)?

$$F(n) = F(n-1) + F(n-2)$$

2nd order linear homogeneous recurrence relation with constant coefficients

F(n) - F(n-1) - F(n-2) = 0

$$F(n) - F(n-1) - F(n-2) = 0$$

Characteristic function: $r^2 - r - 1 = 0$ Roots: $r_{1,2} = \frac{1 \pm \sqrt{5}}{2}$ case 1 $x(n) = \alpha r_1^n + \beta r_2^n$ $r_1 \neq r_2$ $r_1, r_2 \in R$ General solution: $F(n) = \alpha \left(\frac{1 + \sqrt{5}}{2}\right)^n + \beta \left(\frac{1 - \sqrt{5}}{2}\right)^n$

$$F(n) - F(n-1) - F(n-2) = 0$$

Characteristic function: $r^2 - r - 1 = 0$

General solution:
$$F(n) = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Particular solution:

Since F(0) = 0 and F(1) = 1 $\alpha = 1/\sqrt{5}$ and $\beta = -1/\sqrt{5}$ $F(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$

Linear second-order recurrences with constant coefficients – Inhomogeneous Case

Inhomogeneous case:

 $ax(n) + bx(n-1) + cx(n-2) = f(n) \quad a \neq 0$

Its general solution is the summation of one of its particular solution and the general solution of

$$ax(n) + bx(n-1) + cx(n-2) = 0$$

- Nontrivial problem for an arbitrary f(n)
- Can be solved for special f(n) , e.g., a constant

Example

$$x(n) - 10x(n-1) + 25x(n-2) = 16$$

The homogeneous case: x(n) - 10x(n-1) + 25x(n-2) = 0

Step 1: find a particular solution of the inhomogeneous function

$$x(n) = c$$
 \longrightarrow $c = 1$

Step 2: find the general solution of the homogeneous function $x(n) = \alpha(5)^n + \beta n(5)^n$

The general solution of inhomogeneous function

$$x(n) = \alpha(5)^n + \beta n(5)^n + 1$$

The particular solution can be obtained given the initial condition!