
Time Efficiency of Recursive Algorithms

0for1)1()(

0)0(

+−=

=

nnCnC

C

Last Class: Recursive evaluation of n !

n*nFactorial

n

nFactorial

)1(

1

0

)(

−

=

 return

else

 return

 if

ALGORITHM

Recurrence relation

Initial condition

Solve the recurrence

Last Class: Sequences and Recurrence

Relations

A sequence: an ordered list of numbers.

For example: 0, 2, 4, 6, … (even integers)

How to represent a sequence: x(n) -- General term of the sequence

• Explicit mathematic formula: e.g., x(n)= n+1 for n>=0

• Recurrence relation: e.g., x(n) = x(n-1) +1 and x(0) = 1

Solving the recurrence → finding the explicit formula

The index in the sequence

Last Class: Solutions of Recurrence

Relations

General solution

• A class of solutions ignoring initial condition

• Satisfying the recurrence relation with an arbitrary constant

Particular solution

• Satisfying the recurrence relation and the particular initial
condition

0for1)1()(+−= nnCnC

0for)0()(+= nnCnC

0)0(,0for)(== CnnnC

Example 4 – Solving Recurrence Relations

Using Backward Substitutions

𝑇 𝑛 = 𝑇 𝑛/2 + 2𝑛 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑇 𝑛 = 𝑇 𝑛/2 + 2𝑛 → 𝑇 2𝑘 = 𝑇 2𝑘−1 + 2 ∗ 2𝑘

Let 𝑛 = 2𝑘, k is an integer and k > 0

Example 4 – Solving Recurrence Relations

Using Backward Substitutions

𝑇 𝑛 = 𝑇 𝑛/2 + 2𝑛 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑇 2𝑘 = 𝑇 2𝑘−1 + 2 ∗ 2𝑘 = 𝑇 2𝑘−2 + 2 ∗ 2𝑘−1 + 2 ∗ 2𝑘

= 𝑇 2𝑘−3 + 2 ∗ 2𝑘−2 + 2 ∗ 2𝑘−1 + 2 ∗ 2𝑘

= 𝑇 2𝑘−𝑘 + 2 ∗ 2𝑘− 𝑘−1 +⋯+ 2𝑘−1 + 2𝑘

= 𝑇 1 + 2 ∗

𝑖=1

𝑘

2𝑖 = 𝑇 1 + 2 ∗ 2𝑘+1 − 1 − 1

= 2 + 2 ∗ 2𝑛 − 2 = 4𝑛 − 2

𝑇 𝑛/2 = 𝑇 2𝑘−1

𝑛 = 2𝑘

Solution to Important Recurrence Types

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c for n>1 T(1) = d

Solution: T(n) = (n-1)c + d linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn for n>1 T(1) = d

Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c for n>1 T(1) = d

Solution: T(n) = c log2 n + d logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn for n>1 T(1) = d

Solution: T(n) = cn log2 n + d n n log2 n, e.g., mergesort

Example 1 – Solving Recurrence Relations Using

the Solutions of Important Recurrence Types

One (constant) operation reduces problem size by one.

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑐 for 𝑛 > 1 𝑇(1) = 𝑑

Solution: 𝑇(𝑛) = (𝑛 − 1)𝑐 + 𝑑

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑐 = 2 𝑎𝑛𝑑 𝑑 = 2
→ T(n) = 2(n−1) + 2=2n

𝑐 =? 𝑎𝑛𝑑 𝑑 =?

Example:

Example 2 – Solving Recurrence Relations Using

the Solutions of Important Recurrence Types

A pass through input reduces problem size by one.
𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑐𝑛 for 𝑛 > 1 𝑇(1) = 𝑑

Solution: 𝑇(𝑛) = [𝑛(𝑛 + 1)/2 – 1] 𝑐 + 𝑑

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2𝑛 𝑓𝑜𝑟 𝑛 > 0, 𝑇 0 = 2

𝑐 = 2 𝑎𝑛𝑑 𝑑 = 2 → T(n) =
n(n+1)

2
− 1 ∗2 +2 =𝑛2 + 𝑛

≠ 𝑛2 + 𝑛 + 2

𝑐 =? 𝑎𝑛𝑑 𝑑 =?

What’s wrong? T(1) = d

Example:

Example 2 – Solving Recurrence Relations Using

the Solutions of Important Recurrence Types

A pass through input reduces problem size by one.
𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑐𝑛 for 𝑛 > 1 𝑇(1) = 𝑑

Solution: 𝑇(𝑛) = [𝑛(𝑛 + 1)/2 – 1] 𝑐 + 𝑑

𝑇 1 = 𝑇 0 + 2 = 2 + 2 = 4 → 𝑑 = 4

𝑐 = 2 𝑎𝑛𝑑 𝑑 = 4 → T(n) =
n(n+1)

2
− 1 ∗2 +4 =𝑛2 + 𝑛 + 2

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2𝑛 𝑓𝑜𝑟 𝑛 > 0, 𝑇 0 = 2

𝑐 =? 𝑎𝑛𝑑 𝑑 =?

Example:

Example 3 – Solving Recurrence Relations Using

the Solutions of Important Recurrence Types

One (constant) operation reduces problem size by half.
𝑇(𝑛) = 𝑇(𝑛/2) + 𝑐 for 𝑛 > 1 𝑇(1) = 𝑑

Solution: 𝑇(𝑛) = 𝑐 log2 𝑛 + 𝑑

𝑇 𝑛 = 𝑇 𝑛/2 + 1 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑐 =? 𝑎𝑛𝑑 𝑑 =?

𝑐 = 1 𝑎𝑛𝑑 𝑑 = 2 → T(n) = log2 𝑛 + 2

Example:

Example 4 – Solving Recurrence Relations Using

the Solutions of Important Recurrence Types

A pass through input reduces problem size by half.
𝑇(𝑛) = 2𝑇(𝑛/2) + 𝑐𝑛 for 𝑛 > 1 𝑇(1) = 𝑑

Solution: 𝑇(𝑛) = 𝑐𝑛 log2 𝑛 + 𝑑 𝑛

Example:

𝑇 𝑛 = 2𝑇 𝑛/2 + 3𝑛 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑐 =? 𝑎𝑛𝑑 𝑑 =?

𝑐 = 3 𝑎𝑛𝑑 𝑑 = 2 → T(n) =3𝑛log2 𝑛 + 2𝑛

Linear second-order recurrences with constant

coefficients

𝑎𝑥(𝑛) + 𝑏𝑥(𝑛 − 1) + 𝑐𝑥(𝑛 − 2) = 𝑓(𝑛) 𝑎 ≠ 0

Second-order term

a, b, and c are constant coefficients.

shomogeneou0)(=nf

ousinhomogene0)(nf

A function of n

Linear second-order recurrences with constant

coefficients - Homogeneous case

Homogeneous case:

Characteristic equation:

Roots of the characteristic equation:

00)2()1()(=−+−+ ancxnbxnax

02 =++ cbrar

𝑟1,2 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎
Case 1: Two real number solutions

Case 2: One real number solution

Case 3: Two complex number solutions

Linear second-order recurrences with constant

coefficients - Homogeneous case

Homogeneous case:

Characteristic equation:

Roots of the characteristic equation determine the general solution:

00)2()1()(=−+−+ ancxnbxnax

02 =++ cbrar

Rrrrrrrnxcase nn += 212121 ,)(1

nn nrrnxcase +=)(2

u

v
vujvur

nnnxcase n

arctan

sincos)(3

22

2,1 =+==

+=

𝜶 and 𝜷 are constants for the general solution

Example - Homogeneous case

Homogeneous case:

Characteristic equation:

Roots of the characteristic equation determine the general
solution:

0)2(25)1(10)(=−+−− nxnxnx

025102 =+− rr

nn nrrnxcase +=)(2

5=r
General solution

and are arbitrary constants

() ()nn
nnx 55)(+=

Example - Homogeneous case

General solution:

How to get the particular solution?

Given the initial condition

() ()nn
nnx 55)(+=

5)1(0)0(== xx

()nnnx 5)(=

() () =+===
00

5*0*5)0()0(nxx 0=

() () 55*1*5)1()1(
11
=+=== nxx 1=

Example2 – Computing Fibonacci Number

Initial condition:

1. Nonrecursive definition-based algorithm

2. Recursive definition-based algorithm

How to compute Fibonacci number?

The Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

Example2 – Computing Fibonacci Number

2nd order linear homogeneous

recurrence relation

with constant coefficients

𝐹 𝑛 − 𝐹 𝑛 − 1 − 𝐹 𝑛 − 2 = 0

Example2 – Computing Fibonacci Number

Characteristic function:

Roots:

General solution:

𝑐𝑎𝑠𝑒 1 𝑥(𝑛) = 𝛼𝑟1
𝑛 + 𝛽𝑟2

𝑛 𝑟1 ≠ 𝑟2 𝑟1, 𝑟2 ∈ 𝑅
nn

nF

 −
+

 +
=

2

51

2

51
)(

𝐹 𝑛 − 𝐹 𝑛 − 1 − 𝐹 𝑛 − 2 = 0

Example2 – Computing Fibonacci Number

Characteristic function:

General solution:

nn

nF

 −
+

 +
=

2

51

2

51
)(

Particular solution:

5/15/1 −== and

𝐹 𝑛 − 𝐹 𝑛 − 1 − 𝐹 𝑛 − 2 = 0

Since 𝐹 0 = 0 and 𝐹 1 = 1

𝐹 𝑛 =
1

5

1 + 5

2

𝑛

−
1

5

1 − 5

2

𝑛

Linear second-order recurrences with constant

coefficients – Inhomogeneous Case

Inhomogeneous case:

Its general solution is the summation of one
of its particular solution and the general
solution of

• Nontrivial problem for an arbitrary

• Can be solved for special , e.g., a constant

𝑎𝑥(𝑛) + 𝑏𝑥(𝑛 − 1) + 𝑐𝑥(𝑛 − 2) = 𝑓(𝑛) 𝑎 ≠ 0

𝑎𝑥(𝑛) + 𝑏𝑥(𝑛 − 1) + 𝑐𝑥(𝑛 − 2) = 0

)(nf

)(nf

Example

16)2(25)1(10)(=−+−− nxnxnx

cnx =)(

Step 1: find a particular solution of the inhomogeneous function

1=c

() () 155)(++=
nn

nnx

The general solution of inhomogeneous function

The homogeneous case: 0)2(25)1(10)(=−+−− nxnxnx

Step 2: find the general solution of the homogeneous function

() ()nn
nnx 55)(+=

The particular solution can be obtained given the initial condition!

