
Important Announcements

The exams and the quizzes will be on paper
from now on

Homework assignments should be submitted
online

Please make sure your handwriting is legible for
homework, quizzes, and exams

Announcements

Midterm Exam 1

• Thursday Feb. 10 in class

• Covered material: 1st class → the class on Tuesday Feb. 8th

• Do not forget to prepare your cheat sheet (a single-side
letter-size paper)

Common Issues in Quiz 1

• Simplest g(n)
– ignoring constant coefficients and terms with smaller

order of growth, for example

𝑛, 𝑙𝑜𝑔𝑛, 𝑛𝑙𝑜𝑔𝑛, 𝑛2, 𝑛3, 𝑎𝑛, and product of them

• Prove using definition or limit

• Simplify the ratio before applying L’Hôpital’s
Rule

Analyze the Time Efficiency of An Algorithm

Nonrecursive Algorithm

• Matrix multiplication

• Selection sort

• etc

Recursive Algorithm

• Fibonacci number

• Merge sort

• etc

f

i*ff

ni

f

nFactorial

 return

do to for

ALGORITHM

1

1

)(

n*nFactorial

n

nFactorial

)1(

1

0

)(

−

=

 return

else

 return

 if

ALGORITHM

Last Class: Time efficiency of Nonrecursive

Algorithms

Steps in mathematical analysis of nonrecursive algorithms:

• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best case for input of size n

• Set up summation for t(n) reflecting algorithm’s loop structure

• Simplify summation using standard formulas (see Appendix A)

Last Class: Useful Formulas in Appendix A

...)(

)(
2

)1(
...21

)(

11111

1

1

2

1

111

11

+

=

=

===

==

=

+

=+++=

+=+

=

+−=++=

k
n

i

k

n

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

endInd

startIndi

ni

n
nn

ni

baba

acca

startIndendInd

endInd-startInd+1 times

Analyze the Time Efficiency of A Recursive

Algorithm

n*nFactorial

n

nFactorial

)1(

1

0

)(

−

=

 return

else

 return

 if

ALGORITHM

0for1)1()(

0)0(

+−=

=

nnCnC

C

To compute Factorial(n-1)
To multiply Factorial(n-1) by n

Solve the Recurrence

𝐶(0) = 0
𝐶(𝑛) = 𝐶(𝑛 − 1) + 1 for 𝑛
> 0
⇒ 𝐶(𝑛)

= 𝐶 𝑛 − 1 + 1

= 𝐶 𝑛 − 2 + 1 + 1

= 𝐶 𝑛 − 3 + 1 + 1 + 1

=. . .

= 𝐶(𝑛 − 𝑛) + 𝑛
= C(0)+n

= n

)(n

Time Efficiency of Recursive Algorithms

0for1)1()(

0)0(

+−=

=

nnCnC

C

Example: Recursive evaluation of n !

n*nFactorial

n

nFactorial

)1(

1

0

)(

−

=

 return

else

 return

 if

ALGORITHM

Recurrence relation

Initial condition

Solve the recurrence

Sequences and Recurrence Relations

A sequence: an ordered list of numbers.

For example: 0, 2, 4, 6, … (even integers)

How to represent a sequence: x(n) -- General term of the
sequence

• Explicit mathematic formula: e.g., 𝑥(𝑛) = 𝑛 + 1 for 𝑛 ≥ 0

• Recurrence relation:

e.g., 𝑥(𝑛) = 𝑥(𝑛 − 1) + 1 for 𝑛 > 0

–Initial condition 𝑥(0) = 1

–Initial condition defines the conditions that violate the
recurrence relation with the valid input

• Solving the recurrence → finding the explicit formula

The index in the sequence

Solutions of Recurrence Relations

General solution

• A class of solutions without specifying initial
condition

• Satisfying the recurrence relation with an arbitrary
constant – any specified initial condition

Particular solution

• Satisfying the recurrence relation and the particular
initial condition

0for1)1()(+−= nnCnC
0for)0()(+= nnCnC

0)0(,0for)(== CnnnC

Solving Recurrence Relations: Forward

Substitutions

Solving the recurrence by identifying the pattern of the sequence

Forward substitution is difficult for complex patterns

1)1(

1for1)1(2)(

=

+−=

x

nnxnx

𝑥 𝑛 = 2𝑛 − 1, for n ≥ 1

Prove by induction or substitution

151)3(2)4(

71)2(2)3(

31)1(2)2(1)1(

=+=

=+=

=+==

xx

xx

xxx

Solving Recurrence Relations: Backward

Substitutions

𝑥 𝑛 = 𝑥 𝑛 − 1 + 𝑛 for 𝑛 > 0, 𝑥 0 = 0

𝑥(𝑛) = 𝑥(𝑛 − 2) + 𝑛 − 1 + 𝑛

𝑥 𝑛 = 𝑥 𝑛 − 3 + 𝑛 − 2 + 𝑛 − 1 + 𝑛

𝑥(𝑛) = 𝑥(𝑛 − 𝑖) + (𝑛 − 𝑖 + 1) + (𝑛 − 𝑖 + 2) + ⋯+ 𝑛
𝑥(𝑛) = 𝑥(𝑛 − 𝑛) + (𝑛 − 𝑛 + 1) + (𝑛 − 𝑛 + 2) +⋯+ 𝑛

Solve 𝒙(𝒏) using the initial condition

2

)1(
)2()1()0()(

+
=+++−++−+=

nn
nnnnnxnx

Example: Tower of Hanoi

n different-size disks, 3 pegs, move disks from the left peg to
the right one using the middle one as an auxiliary

Rules:

• move one disk each time

• cannot place a larger disk on top of a smaller one

Design an algorithm and analyze its complexity

Recursive Algorithm

Input size: n (disks)

Basic operation: one move of a disk

Initial condition: n=1 → only one direct move

To build the recurrence: suppose you have a way to
move n-1 disks.

• Then you can move the top n-1 disks from the left peg to
the middle peg using the right peg as an auxiliary.

• Move the bottom disk from the left peg to the right peg.

• Move n-1 disks from the middle peg to the right peg
using the left one as an auxiliary.

Illustration

1

2

3

n-1
n-1 n-1

nth
nth

Algorithm Complexity

Let M(n) be the number of needed moves

Initialization M(1)=1

Recurrence

1)1(1)1()(−++−= nnMnMnM for

Step 1 Step 3

Step 2

Algorithm Complexity

Let M(n) be the number of needed moves

Initialization M(1)=1

Recurrence 1)1(1)1()(−++−= nnMnMnM for

𝑀(𝑛) = 2𝑀(𝑛 − 1) + 1 for 𝑛 > 1

= 2[2𝑀(𝑛 − 2) + 1] + 1 = 22𝑀(𝑛 − 2) + 2 + 1

= 22[2𝑀(𝑛 − 3) + 1] + 2 + 1 = 23𝑀(𝑛 − 3) + 22 + 2 + 1

=. . .

= 2𝑛−2 2𝑀 𝑛 − 𝑛 − 1 + 1 + 2𝑛−3 +⋯+ 2 + 1

= 2𝑛−1𝑀(1) +

𝑖=0

𝑛−2

2𝑖 = 2𝑛−1 + 2𝑛−1 − 1 = 2𝑛 − 1

Example 2 – Solving Recurrence Relations

Using Backward Substitutions

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2

= 𝑇 𝑛 − 2 + 2 + 2
= 𝑇 𝑛 − 3 + 2 + 2 + 2
= ⋯

= 𝑇 𝑛 − 𝑛 − 1 + 2 +⋯+ 2

= 𝑇 1 + 𝑛 − 1 ∗ 2
= 2𝑛

𝑛 − 1 *2

Example 3 – Solving Recurrence Relations

Using Backward Substitutions

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2𝑛 𝑓𝑜𝑟 𝑛 > 0, 𝑇 0 = 2

𝑇 𝑛 = 𝑇 𝑛 − 1 + 2𝑛 = 𝑇 𝑛 − 2 + 2 𝑛 − 1 + 2𝑛
= 𝑇 𝑛 − 3 + 2 𝑛 − 2 + 2 𝑛 − 1 + 2𝑛 = ⋯
= 𝑇 𝑛 − 𝑛 + 2 𝑛 − 𝑛 − 1 +⋯+ 2𝑛

= 𝑇 0 + 2 ∗ 1 + 2 + 3 +⋯+ 𝑛 = 2 + 2 ∗

𝑖=1

𝑛

𝑖 = 2 + 2 ∗
𝑛 𝑛 + 1

2

= 𝑛2 + 𝑛 + 2

𝑇 𝑛 − 1

Example 4 – Solving Recurrence Relations

Using Backward Substitutions

𝑇 𝑛 = 𝑇 𝑛/2 + 2𝑛 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑇 𝑛 = 𝑇 𝑛/2 + 2𝑛 → 𝑇 2𝑘 = 𝑇 2𝑘−1 + 2 ∗ 2𝑘

Let 𝑛 = 2𝑘, k is an integer and k > 0

Example 4 – Solving Recurrence Relations

Using Backward Substitutions

𝑇 𝑛 = 𝑇 𝑛/2 + 2𝑛 𝑓𝑜𝑟 𝑛 > 1, 𝑇 1 = 2

𝑇 2𝑘 = 𝑇 2𝑘−1 + 2 ∗ 2𝑘 = 𝑇 2𝑘−2 + 2 ∗ 2𝑘−1 + 2 ∗ 2𝑘

= 𝑇 2𝑘−3 + 2 ∗ 2𝑘−2 + 2 ∗ 2𝑘−1 + 2 ∗ 2𝑘

= 𝑇 2𝑘−𝑘 + 2 ∗ 2𝑘− 𝑘−1 +⋯+ 2𝑘−1 + 2𝑘

= 𝑇 1 + 2 ∗

𝑖=1

𝑘

2𝑖 = 𝑇 1 + 2 ∗ 2𝑘+1 − 1 − 1

= 2 + 2 ∗ 2𝑛 − 2 = 4𝑛 − 2

𝑇 𝑛/2 = 𝑇 2𝑘−1

𝑛 = 2𝑘

