Important Announcements

The exams and the quizzes will be on paper from now on

Homework assignments should be submitted online

Please make sure your handwriting is legible for homework, quizzes, and exams

Announcements

Midterm Exam 1

- Thursday Feb. 10 in class
-Covered material: $1^{\text {st }}$ class \rightarrow the class on Tuesday Feb. $8^{\text {th }}$
- Do not forget to prepare your cheat sheet (a single-side letter-size paper)

Common Issues in Quiz 1

- Simplest g(n)
- ignoring constant coefficients and terms with smaller order of growth, for example
$n, \log n, n \log n, n^{2}, n^{3}, a^{n}$, and product of them
- Prove using definition or limit
- Simplify the ratio before applying L'Hôpital's Rule

Analyze the Time Efficiency of An Algorithm

Nonrecursive Algorithm

- Matrix multiplication
- Selection sort
- etc

```
ALGORITHM Factorial(n)
f}\leftarrow
for }i\leftarrow1\mp@code{1 to }n\mathrm{ do
    f\leftarrowf*i
return f
```

Recursive Algorithm

- Fibonacci number
- Merge sort
- etc

ALGORITHM Factorial(n)
if $n=0$
return 1
else
return Factorial $(n-1) * n$

Last Class: Time efficiency of Nonrecursive Algorithms

Steps in mathematical analysis of nonrecursive algorithms:

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best case for input of size n
- Set up summation for $t(n)$ reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)

Last Class: Useful Formulas in Appendix A

$$
\begin{aligned}
& \sum_{i=s t a r t I n d}^{\text {endInd }} 1=\underbrace{1+1+\cdots 1}_{\text {endInd-startInd }+1 \text { times }}=\text { endInd }- \text { startInd }+1 \\
& \sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i} \\
& \sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} \\
& \sum_{i=1}^{n} i=1+2+\ldots+n=\frac{n(n+1)}{2} \in \Theta\left(n^{2}\right) \\
& \sum_{i=1}^{n} i^{k} \in \Theta\left(n^{k+1}\right) \ldots
\end{aligned}
$$

Analyze the Time Efficiency of A Recursive Algorithm

Recursive algorithm for n !
Input size: n
Basic operation: multiplication "*"
Let $C(n)$ be the number of multiplications needed to compute n !, then

ALGORITHM Factorial(n)
if $n=0$
return 1
else
return Factorial $(n-1) * n$

$$
\begin{aligned}
& C(0)=0 \\
& C(n)=C(n-1)+1 \text { for } n>0 \\
& \text { To compute Factorial(n-1) To multiply Factorial(n-1) by } n
\end{aligned}
$$

Solve the Recurrence

$$
\begin{aligned}
& C(0)=0 \\
& C(n)=C(n-1)+1 \text { for } n \\
& >0 \\
& \Rightarrow C(n) \\
& \quad=C(n-1)+1 \\
& =C(n-2)+1+1 \\
& =C(n-3)+1+1+1 \\
& =\ldots \\
& =C(n-n)+n \\
& =C(0)+\mathrm{n} \\
& =\mathrm{n}
\end{aligned}
$$

Therefore, the number of multiplications needed to compute n ! in this algorithm is n.
\rightarrow The complexity of this algorithm is
$\Theta(n)$

Time Efficiency of Recursive Algorithms

Steps in mathematical analysis of recursive algorithms:

1. Decide on parameter n indicating input size
2. Identify algorithm's basic operation
3. Determine worst, average, and best case for input of size n
4. Set up a recurrence relation and initial condition(s) for $C(n)$ the number of times the basic operation will be executed for an input size n.
5. Solve the recurrence to obtain a closed form or estimate the order of growth of the solution

Example: Recursive evaluation of \boldsymbol{n} !

Recursive algorithm for n !
Input size: n
Basic operation: multiplication "*"
Let $C(n)$ be the number of multiplications needed to compute n !, then

ALGORITHM Factorial(n)
if $n=0$
return 1
else
return Factorial($n-1$)* n

$$
C(0)=0
$$

$$
7
$$

$$
C(n)=C(n-1)+1 \text { for } n>0 \text { Recurrence relation }
$$

$$
\sqrt{6}
$$

$$
C(n)=n
$$

Solve the recurrence

Sequences and Recurrence Relations

A sequence: an ordered list of numbers.
For example: 0, 2, 4, 6, ... (even integers)
How to represent a sequence: $x(n)$-- General term of the sequence

The index in the sequence

- Explicit mathematic formula: e.g., $x(n)=n+1$ for $n \geq 0$
- Recurrence relation:

$$
\text { e.g., } x(n)=x(n-1)+1 \text { for } n>0
$$

-Initial condition $x(0)=1$
-Initial condition defines the conditions that violate the recurrence relation with the valid input

- Solving the recurrence \rightarrow finding the explicit formula

Solutions of Recurrence Relations

$$
\begin{gathered}
C(n)=C(n-1)+1 \text { for } n>0 \\
C(n)=C(0)+n \text { for } n>0
\end{gathered}
$$

General solution

- A class of solutions without specifying initial condition
- Satisfying the recurrence relation with an arbitrary constant - any specified initial condition

Particular solution

- Satisfying the recurrence relation and the particular initial condition $\quad C(n)=n$ for $n>0, C(0)=0$

Solving Recurrence Relations: Forward Substitutions

Solving the recurrence by identifying the pattern of the sequence

$$
\begin{array}{ll}
x(n)=2 x(n-1)+1 \text { for } n>1 & x(1)=1 \quad x(2)=2 x(1)+1=3 \\
x(1)=1 & x(3)=2 x(2)+1=7 \\
& x(4)=2 x(3)+1=15
\end{array}
$$

$$
x(n)=2^{n}-1, \text { for } \mathrm{n} \geq 1
$$

Prove by induction or substitution
Forward substitution is difficult for complex patterns

Solving Recurrence Relations: Backward Substitutions

$$
\begin{aligned}
x(n) & =x(n-1)+n \text { for } n>0, \quad x(0)=0 \\
x(n) & =[x(n-2)+n-1]+n \\
x(n) & =[x(n-3)+n-2]+n-1+n \\
x(n) & =x(n-i)+(n-i+1)+(n-i+2)+\cdots+n \\
x(n) & =x(n-n)+(n-n+1)+(n-n+2)+\cdots+n
\end{aligned}
$$

Solve $\boldsymbol{x}(\boldsymbol{n})$ using the initial condition

$$
x(n)=x(0)+(n-n+1)+(n-n+2)+\cdots+n=\frac{n(n+1)}{2}
$$

Example: Tower of Hanoi

n different-size disks, 3 pegs, move disks from the left peg to the right one using the middle one as an auxiliary

Rules:

- move one disk each time
- cannot place a larger disk on top of a smaller one

Design an algorithm and analyze its complexity

Recursive Algorithm

Input size: \boldsymbol{n} (disks)
Basic operation: one move of a disk
Initial condition: $\boldsymbol{n = 1} \boldsymbol{\rightarrow}$ only one direct move
To build the recurrence: suppose you have a way to move $\boldsymbol{n - 1}$ disks.

- Then you can move the top $n-1$ disks from the left peg to the middle peg using the right peg as an auxiliary.
- Move the bottom disk from the left peg to the right peg.
- Move $n-1$ disks from the middle peg to the right peg using the left one as an auxiliary.

Illustration

Algorithm Complexity

Let $M(n)$ be the number of needed moves
Initialization $M(1)=1$
Recurrence

Step 2

Algorithm Complexity

Let $M(n)$ be the number of needed moves
Initialization $M(1)=1$
Recurrence $\quad M(n)=M(n-1)+1+M(n-1) \quad$ for $n>1$

$$
\begin{aligned}
M(n) & =2 M(n-1)+1 \quad \text { for } n>1 \\
& =2[2 M(n-2)+1]+1=2^{2} M(n-2)+2+1 \\
& =2^{2}[2 M(n-3)+1]+2+1=2^{3} M(n-3)+2^{2}+2+1 \\
& =\ldots \\
& =2^{n-2}[2 M(n-(n-1))+1]+2^{n-3}+\cdots+2+1 \\
& =2^{n-1} M(1)+\sum_{i=0}^{n-2} 2^{i}=2^{n-1}+2^{n-1}-1=2^{n}-1
\end{aligned}
$$

Example 2 - Solving Recurrence Relations Using Backward Substitutions

$$
T(n)=T(n-1)+2 \text { for } n>1, \quad T(1)=2
$$

$$
\begin{aligned}
T(n) & =T(n-1)+2 \\
& =T(n-2)+2+2 \\
& =T(n-3)+2+2+2 \\
& =\cdots \\
& =T[n-(n-1)]+2+\cdots+2 \\
& =T(1)+(n-1) * 2 \\
& =\quad 2 n
\end{aligned}
$$

Example 3 - Solving Recurrence Relations Using Backward Substitutions

$$
\begin{aligned}
& \quad T(n)=T(n-1)+2 n \text { for } n>0, \quad T(0)=2 \\
& T(n-1) \\
& T(n)=T(n-1)+2 n=T(n-2)+2(n-1)+2 n \\
& =T[n-n)+2(n-2)+2(n-1)+2 n=\cdots \\
& =T(0)+2 *[1+2+3+\cdots+n]=2+2 * \sum_{i=1}^{n} i=2+2 * \frac{n(n+1)}{2} \\
& =n^{2}+n+2
\end{aligned}
$$

Example 4 - Solving Recurrence Relations Using Backward Substitutions

$$
T(n)=T(n / 2)+2 n \text { for } n>1, \quad T(1)=2
$$

Let $n=2^{k}, \mathrm{k}$ is an integer and $\mathrm{k}>0$

$$
T(n)=T(n / 2)+2 n \rightarrow T\left(2^{k}\right)=T\left(2^{k-1}\right)+2 * 2^{k}
$$

Example 4 - Solving Recurrence Relations Using Backward Substitutions

$$
\begin{aligned}
& \quad T(n)=T(n / 2)+2 n \text { for } n>1, \quad T(1)=2 \\
& \quad T\left(2^{k}\right)=T\left(2^{k-1}\right)+2 * 2^{k}=T\left(2^{k-2}\right)+2 * 2^{k-1}+2 * 2^{k} \\
& =T\left(2^{k-3}\right)+2 * 2^{k-2}+2 * 2^{k-1}+2 * 2^{k} \\
& =T\left(2^{k-k}\right)+2 *\left[2^{k-(k-1)}+\cdots+2^{k-1}+2^{k}\right] \\
& =T(1)+2 * \sum_{i=1}^{k} 2^{i}=T(1)+2 *\left(2^{k+1}-1-1\right) \quad n=2^{k} \\
& =2+2 *(2 n-2)=4 n-2
\end{aligned}
$$

