Important Announcements

- The exams and the quizzes will be **on paper** from now on
- Homework assignments should be **submitted online**
- Please make sure your handwriting is legible for homework, quizzes, and exams

Announcements

Midterm Exam 1

- Thursday Feb. 10 in class
- Covered material: 1^{st} class \rightarrow the class on Tuesday Feb. 8^{th}
- Do not forget to prepare your cheat sheet (a single-side letter-size paper)

Common Issues in Quiz 1

- Simplest g(n)
 - ignoring constant coefficients and terms with smaller order of growth, for example

n, *logn*, *nlogn*, n^2 , n^3 , a^n , and **product** of them

- Prove using definition or limit
- Simplify the ratio before applying L'Hôpital's Rule

Analyze the Time Efficiency of An Algorithm

Nonrecursive Algorithm

- Matrix multiplication
- Selection sort
- etc

```
ALGORITHM Factorial(n)

f \leftarrow 1

for i \leftarrow 1 to n do

f \leftarrow f^*i

return f
```

Recursive Algorithm

- Fibonacci number
- Merge sort
- etc

ALGORITHM Factorial(n) if n = 0 return 1 else return Factorial(n-1)*n

Last Class: Time efficiency of Nonrecursive Algorithms

Steps in mathematical analysis of nonrecursive algorithms:

- Decide on parameter *n* indicating *input size*
- Identify algorithm's *basic operation*
- Determine *worst*, *average*, and *best* case for input of size *n*
- Set up summation for *t*(*n*) reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)

Last Class: Useful Formulas in Appendix A

$$\sum_{i=startInd}^{endInd} = 1 + 1 + \dots = endInd - startInd + 1$$

endInd-startInd+1 times
$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \in \Theta(n^2)$$

$$\sum_{i=1}^{n} i^k \in \Theta(n^{k+1}) \dots$$

i=1

Analyze the Time Efficiency of A Recursive Algorithm

Recursive algorithm for <i>n</i> !	ALGORITHM <i>Factorial</i> (<i>n</i>)
Input size: n	$\mathbf{if} \ n = 0$
Basic operation: multiplication "*"	return 1
Let <i>C</i> (<i>n</i>) be the number of multiplications needed to compute	else return <i>Factorial</i> (<i>n</i> -1)* <i>n</i>
n!, then	

C(0) = 0 C(n) = C(n-1) + 1 for n > 0To compute Factorial(n-1) To multiply Factorial(n-1) by n

Solve the Recurrence

$$C(0) = 0$$

$$C(n) = C(n - 1) + 1 \text{ for } n$$

$$> 0$$

$$\Rightarrow C(n)$$

$$= C(n - 1) + 1$$

$$= C(n - 2) + 1 + 1$$

$$= C(n - 3) + 1 + 1 + 1$$

$$= ...$$

$$= C(n - n) + n$$

$$= C(0) + n$$

= n

Therefore, the number of multiplications needed to compute n! in this algorithm is n.

→ The complexity of this algorithm is $\Theta(n)$

Time Efficiency of Recursive Algorithms

Steps in mathematical analysis of recursive algorithms:

- **1.** Decide on parameter *n* indicating *input size*
- 2. Identify algorithm's *basic operation*
- 3. Determine *worst*, *average*, and *best* case for input of size *n*

4. Set up a recurrence relation and initial condition(s) for C(n)the number of times the basic operation will be executed for an input size n.

5. Solve the recurrence to obtain a closed form or estimate the order of growth of the solution

Example: Recursive evaluation of *n* **!**

Sequences and Recurrence Relations

A sequence: an ordered list of numbers.

For example: 0, 2, 4, 6, ... (even integers)

How to represent a sequence: x(n) -- General term of the sequence

- Explicit mathematic formula: e.g., x(n) = n + 1 for $n \ge 0$
- Recurrence relation:

e.g., x(n) = x(n-1) + 1 for n > 0

-Initial condition x(0) = 1

-Initial condition defines the conditions that violate the recurrence relation with the valid input

• Solving the recurrence \rightarrow finding the explicit formula

Solutions of Recurrence Relations

$$C(n) = C(n-1) + 1 \text{ for } n > 0$$

$$C(n) = C(0) + n \text{ for } n > 0$$

General solution

- A class of solutions without specifying initial condition
- Satisfying the recurrence relation with an arbitrary constant – any specified initial condition

Particular solution

• Satisfying the recurrence relation and the particular initial condition C(n) = n for n > 0, C(0) = 0

Solving Recurrence Relations: Forward Substitutions

Solving the recurrence by identifying the pattern of the sequence

 $x(n) = 2x(n-1) + 1 \text{ for } n > 1 \qquad x(1) = 1 \qquad x(2) = 2x(1) + 1 = 3$ $x(1) = 1 \qquad x(3) = 2x(2) + 1 = 7$ x(4) = 2x(3) + 1 = 15

$$x(n) = 2^n - 1$$
, for $n \ge 1$

Prove by induction or substitution

Forward substitution is difficult for complex patterns

Solving Recurrence Relations: Backward Substitutions

$$x(n) = x(n-1) + n \text{ for } n > 0, \quad x(0) = 0$$

$$x(n) = [x(n-2) + n - 1] + n$$

$$x(n) = [x(n-3) + n - 2] + n - 1 + n$$

$$x(n) = x(n-i) + (n - i + 1) + (n - i + 2) + \dots + n$$

$$x(n) = x(n - n) + (n - n + 1) + (n - n + 2) + \dots + n$$

Solve x(n) using the initial condition

$$x(n) = x(0) + (n - n + 1) + (n - n + 2) + \dots + n = \frac{n(n + 1)}{2}$$

Example: Tower of Hanoi

n different-size disks, 3 pegs, move disks from the left peg to the right one using the middle one as an auxiliary

Rules:

- move one disk each time
- cannot place a larger disk on top of a smaller one

Design an algorithm and analyze its complexity

Recursive Algorithm

Input size: n (disks)

Basic operation: one move of a disk

Initial condition: $n=1 \rightarrow$ only one direct move

To build the recurrence: suppose you have a way to move *n*-1 disks.

- Then you can move the top *n*-1 disks from the left peg to the middle peg using the right peg as an auxiliary.
- Move the bottom disk from the left peg to the right peg.
- Move *n*-1 disks from the middle peg to the right peg using the left one as an auxiliary.

Illustration

Algorithm Complexity

Let *M*(*n*) be the number of needed moves

Initialization M(1)=1

Recurrence

Algorithm Complexity

Let *M*(*n*) be the number of needed moves

Initialization M(1)=1

Recurrence M(n) = M(n-1) + 1 + M(n-1) for n > 1

$$\begin{split} M(n) &= 2M(n-1) + 1 \quad \text{for } n > 1 \\ &= 2[2M(n-2)+1] + 1 = 2^2M(n-2) + 2 + 1 \\ &= 2^2[2M(n-3)+1] + 2 + 1 = 2^3M(n-3) + 2^2 + 2 + 1 \\ &= \dots \\ &= 2^{n-2} \Big[2M\big(n - (n-1)\big) + 1 \Big] + 2^{n-3} + \dots + 2 + 1 \\ &= 2^{n-1}M(1) + \sum_{i=0}^{n-2} 2^i = 2^{n-1} + 2^{n-1} - 1 = 2^n - 1 \end{split}$$

Example 2 – Solving Recurrence Relations Using Backward Substitutions

$$T(n) = T(n-1) + 2 \text{ for } n > 1, \qquad T(1) = 2$$

$$T(n) = T(n-1) + 2$$

= $T(n-2) + 2 + 2$
= $T(n-3) + 2 + 2 + 2$
= \cdots $(n-1)^{*2}$
= $T[n - (n-1)] + 2 + \cdots + 2$
= $T(1) + (n-1) + 2$
= $2n$

Example 3 – Solving Recurrence Relations Using Backward Substitutions

$$T(n) = T(n-1) + 2n \text{ for } n > 0, \qquad T(0) = 2$$

$$T(n-1)$$

$$T(n) = T(n-1) + 2n = T(n-2) + 2(n-1) + 2n$$

$$= T(n-3) + 2(n-2) + 2(n-1) + 2n = \cdots$$

$$= T[n-n] + 2[n-(n-1)] + \cdots + 2n$$

$$= T(0) + 2 * [1+2+3+\cdots + n] = 2 + 2 * \sum_{i=1}^{n} i = 2 + 2 * \frac{n(n+1)}{2}$$

$$= n^{2} + n + 2$$

Example 4 – Solving Recurrence Relations Using Backward Substitutions

$$T(n) = T(n/2) + 2n$$
 for $n > 1$, $T(1) = 2$

Let $n = 2^k$, k is an integer and k > 0

$$T(n) = T(n/2) + 2n \rightarrow T(2^k) = T(2^{k-1}) + 2 * 2^k$$

Example 4 – Solving Recurrence Relations Using Backward Substitutions

 $T(n) = T(n/2) + 2n \text{ for } n > 1, \qquad T(1) = 2$

$$T(n/2) = T(2^{k-1})$$

$$T(2^{k}) = T(2^{k-1}) + 2 * 2^{k} = T(2^{k-2}) + 2 * 2^{k-1} + 2 * 2^{k}$$

$$= T(2^{k-3}) + 2 * 2^{k-2} + 2 * 2^{k-1} + 2 * 2^{k}$$

$$= T(2^{k-k}) + 2 * [2^{k-(k-1)} + \dots + 2^{k-1} + 2^{k}]$$

$$= T(1) + 2 * \sum_{i=1}^{k} 2^{i} = T(1) + 2 * (2^{k+1} - 1 - 1) \quad \bigstar \quad n = 2^{k}$$

$$= 2 + 2 * (2n - 2) = 4n - 2$$