Announcement

Reminder:
Homework 1: (Due on Jan 20, Thursday)

Last Class: Theoretical Analysis of Time Efficiency

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most towards the running time of the algorithm.

- \boldsymbol{n} is a natural number (nonnegative integer)
- Sometimes, we can have multiple numbers.

How to Choose Basic Operations

Basic operation should be simple and cannot be represented by other operations in the same algorithm

$$
T(n)=T_{1}(n)+\cdots+T_{M}(n)=c_{o p, 1} t_{1}(n)+\cdots+c_{o p, M} t_{M}(n)
$$

If $t_{1}(n) \approx t_{2}(n), c_{o p, 1} \gg c_{o p, 2} \longrightarrow$ Operation 1 is the basic operation

If $t_{1}(n) \ll t_{2}(n), c_{o p, 1} \approx c_{o p, 2} \longmapsto$ Operation 2 is the basic operation

Examples of Order of Growth

$c(n)$							
n	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	n^{3}	2^{n}	$n!$
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^{6}$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^{2}$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^{4}$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^{5}$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^{6}$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^{7}$	10^{12}	10^{18}		

Time complexity increases!

Sample Run Time - Importance of Algorithm Design

n	ALPHA 21164A, C, Cubic Alg. $\left(\mathrm{n}^{3}\right)$	TRS-80, BASIC, Linear Alg. (n)
10	0.6 microsecs	200 millisecs
100	0.6 millisecs	2.0 secs
1000	0.6 secs	20 secs
10,000	10 mins	3.2 mins
100,000	7 days	32 mins
$1,000,000$	19 yrs	5.4 hrs

Order of Growth

- The number of basic operations grows with an increase of the input size
- Order of growth determines the growth rate as the input size goes to infinite

Question: given two functions, how to compare the order of growth?

Asymptotic Growth Rate

A way of comparing functions that ignores constant factors and small input sizes:

- Compare the functions when \boldsymbol{n} becomes sufficient large
- Constant factor will not affect asymptotic growth rate

Example:
Which function grows faster?

$$
\frac{1}{4} n^{2} \text { or } 16 n
$$

Objective: given a simple function $g(n)$ with known running time, establish the relationship between a function $t(n)$ and $g(n)$ in terms of the order of growth

$$
\text { e.g., } g(n)=1, \text { or } n, \text { or } n^{2} \text {, etc. }
$$

Asymptotic Growth Rate

$t(n)$ is an algorithm's running time
$g(n)$ is a simple function of the running time

$$
c_{1} * t(n)+c_{2}
$$

- $O(g(n))$: class of functions $t(n)$ that grow no faster than $\boldsymbol{g}(\boldsymbol{n})$

$$
\text { -e.g., } 500 \in O(n), n+100 \in O(n) \text {, and } 500 n \in O(n)
$$

- $\Theta(\boldsymbol{g}(\boldsymbol{n}))$: class of functions $t(n)$ that grow at same rate as $\boldsymbol{g}(\boldsymbol{n})$

$$
\text { -e.g., } n+100 \in \Theta(n) \text {, and } 500 n \in \Theta(n)
$$

- $\Omega(g(n))$: class of functions $t(n)$ that grow at least as fast as $\boldsymbol{g}(\boldsymbol{n})$

$$
\text { -e.g., } 0.001 n^{2} \in \Omega(n), n+100 \in \Omega(n) \text {, and } 500 n \in \Omega(n)
$$

Big-0 - O($\mathbf{g}(n)$)

$\mathrm{O}(g(n))$: class of functions $t(n)$ that grow no faster than $g(n)$

Big-omega- $\mathbf{\Omega (\boldsymbol { g } (\boldsymbol { n }))}$

$\Omega(g(n))$: class of functions $t(n)$ that grow at least as fast as $g(n)$

Big-theta - 0 ($(\mathbf{g}(\mathbf{n})$)

$\Theta(g(n))$: class of functions $t(n)$ that grow at same rate as $g(n)$

$$
\begin{gathered}
t(n) \in \Theta(g(n)) \\
c_{1} g(n) \leq t(n) \leq c_{2} g(n) \quad n \geq n_{0}
\end{gathered}
$$

Example:

$$
n+1 \in \Theta(n)
$$

$t(n) \in \Theta(g(n)) \longmapsto t(n) \in O(g(n))$ and $\quad t(n) \in \Omega(g(n))$

Relationships among Big-O, Big-omega, and Big-theta

1. If $t(n) \in O(g(n))$, then $g(n) \in \Omega(t(n))$
E.g, $n \in O\left(n^{2}\right)$ and $n^{2} \in \Omega(n)$
2. If $t(n) \in \Theta(g(n))$,
then $\quad t(n) \in O(g(n)) \quad$ and $\quad t(n) \in \Omega(g(n))$
E.g, $n+1 \in \Theta(n)$, then $n+1 \in O(n)$ and $n+1 \in \Omega(n)$

Common Properties of Big O, Big-omega and Big-theta

1. If $t(n) \in O(g(n))$, then $\quad c t(n) \in O(g(n))$

Example: $c n \in O(n)$
2. If $t_{1}(n) \in O\left(g_{1}(n)\right)$ and $t_{2}(n) \in O\left(g_{2}(n)\right)$
then $t_{1}(n) t_{2}(n) \in O\left(g_{1}(n) g_{2}(n)\right)$
Example: $n^{2} * n \in O\left(n^{5}\right)$
3. If $t(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $t(n) \in O(h(n))$
Example: $n^{2} \in O\left(n^{5}\right)$ and $n^{5} \in O\left(n^{6}\right) \Longrightarrow n^{2} \in O\left(n^{6}\right)$
Same property works for both Big-omega and Big-theta!

Properties of Big 0 and Big-Theta

$$
\text { If } t_{1}(n) \in O\left(g_{1}(n)\right) \text { and } t_{2}(n) \in O\left(g_{2}(n)\right)
$$

then $t_{1}(n)+t_{2}(n) \in O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)$
Example: $n^{2}+n \in O\left(n^{2}\right)$

Same property works for Big-theta!

Properties of Big-omega

> If $t_{1}(n) \in \Omega\left(g_{1}(n)\right)$ and $t_{2}(n) \in \Omega\left(g_{2}(n)\right)$
> $t_{1}(n)+t_{2}(n) \in \Omega\left(\min \left(g_{1}(n), g_{2}(n)\right)\right)$

Example: $\quad n^{2}+n \in \Omega(n)$

How to Establish Order of Growth

Based on the properties, we need to find an appropriate simple function $g(n)$ given a $t(n)$.

For example, can you find the simplest $g(n)$ for the functions below?

$$
\begin{gathered}
5 n+20 \in O(?) \\
0.5 n+100 \log n \in O(?) \\
2^{n}+n^{2} \in O(?)
\end{gathered}
$$

Establishing order of growth

Once you find $\boldsymbol{g}(\boldsymbol{n})$

How can we prove our assertion $t(n) \in \boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$?

- Method 1: using definition
- Method 2: computing $\quad \lim _{n \rightarrow \infty} t(n) / g(n)$

Prove the order of growth: Method 1 - using definition

$t(n) \in O(g(n)) \quad$ if order of growth of $f(n) \leq$ order of growth of $g(n)$ (within constant multiple)

There exists a positive constant c and non-negative integer n_{0} such that

$$
t(n) \leq c g(n) \quad n \geq n_{0} \Longrightarrow \text { Find a constant } \mathrm{c} \text { and } n_{0}
$$

Examples:

$$
\begin{aligned}
& 10 n \in O\left(2 n^{2}\right) \\
& 5 n+20 \in O(10 n)
\end{aligned}
$$

Prove the order of growth: Method 1 - using definition

More examples:

$$
\begin{array}{cc}
4 n^{2} \in O\left(2 n^{2}\right) ? & \text { Yes } \\
0.0000000 n^{2} \in O(n) ? & \text { No } \\
n \in O\left(n^{2}-n\right) ? & \text { Yes }
\end{array}
$$

Prove the order of growth: Method 2
 - using limits

Prove the order of growth: Method 2
 - using limits

$\lim _{n \rightarrow \infty} \boldsymbol{T}(\boldsymbol{n}) / \boldsymbol{g}(\boldsymbol{n})= \begin{cases}0 & \text { order of growth of } T(n) \leq \text { order of growth of } g(n) \\ \boldsymbol{c}>0 & \text { order of growth of } T(n) \geq \text { order of growth of } g(n) \\ \infty & \text { order of growth of } T(n) \geq \text { order of growth of } g(n)\end{cases}$

$$
t(n) \in O(g(n)) \quad \Omega(g(n)) \quad \Theta(g(n)) \quad ?
$$

Prove the order of growth: Method 2
 - using limits

$\lim _{n \rightarrow \infty} \boldsymbol{T}(n) / \boldsymbol{g}(n)= \begin{cases}0 & t(n) \in O(g(n)) \\ \boldsymbol{c}>0 & t(n) \in \Theta(g(n)) \\ \infty & t(n) \in \Omega(g(n))\end{cases}$

Examples:

- $10 n$ vs. $2 n^{2}$
- $n(n+1) / 2 \quad$ vs. n^{2}
$\cdot \log _{b} n \quad$ vs. $\quad \log _{c} n \quad(b>c>1)$

L'Hôpital's Rule

If $\quad \lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and
The derivatives $f^{\prime}(n)$ and $g^{\prime}(n)$ exist,
Then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Example: $\frac{\log n}{\sqrt{n}}$

$$
\frac{n!}{2^{n}} \quad n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

(Stirling's formula)

Basic Asymptotic Efficiency Classes

Examples

Compare the functions

$$
\begin{array}{llc}
n! & \text { vs. } & 2^{n} \\
3^{n} & \text { vs. } & 2^{n} \\
n & \text { vs. } & \ln ^{2} n \\
\log _{2} n & \text { vs. } & \sqrt{n}
\end{array}
$$

A useful formula: Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Some Important Properties of Order of Growth

- All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base $a>1$ is
- All polynomials of the same degree k belong to the same class:

$$
a_{k} n^{k}+a_{k_{-1}} n^{k-1}+\ldots+a_{0} \in \Theta\left(n^{k}\right)
$$

- Exponential functions a^{n} have different orders of growth for different a 's
- order $\log n<\operatorname{order} n^{\alpha}(\alpha>0)<\operatorname{order} a^{n}<\operatorname{order} n!<$ order n^{n}

Reading Assignments
Review how to calculate the derivative for simple functions from your Calculus classes

Chapter 2.2-2.3 and Appendix A

Announcement

We will have an in-class quiz (Quiz \#1) on Thursday, Jan 20. It is closed-book, but open-notes.

You will be given a function $t(n)$. You should find a simple function $g(n)$ such that $t(n) \in O(g(n))$. You also need to prove your assertion either use the definition or the limit.

Please make sure you bring your laptop to class.
Please let me know if you prefer a hard copy of the quiz.

