
Review For the Final Exam

An algorithm is a sequence of unambiguous instructions for 
solving a problem, i.e., for obtaining a required output for any 
legitimate input in a finite amount of time.

“computer”

problem

algorithm

input output



Some Important Points

Each step of an algorithm is unambiguous

The range of inputs has to be specified carefully

The same algorithm can be represented in different ways

The same problem may be solved by different algorithms

Different algorithms may take different time to solve the same 
problem – we may prefer one to the other



Some Well-known Computational Problems

Sorting

Searching

String matching

Shortest paths in a graph

Minimum spanning tree

Traveling salesman problem

Knapsack problem

Assignment problem

Towers of Hanoi …

Polynomial time



Algorithm Design Strategies

Brute force: bubble sort, selection sort

Divide and conquer: mergesort, quicksort

Decrease and conquer: insertion sort, DFS traversal, and topological order

Transform and conquer: presorting, balanced binary search tree, and heap

Greedy approach: Prim’s algorithm for minimum spanning tree and 
Dijkstra’s algorithm for single-source shortest paths

Dynamic programming: Warshall’s Algorithm for transitive closure and 
Floyd’s algorithm for all-pairs shortest paths

Backtracking and branch and bound: n-queen problem, assignment 
problem, and traveling salesman problem

Space and time tradeoffs: hashing and shift table for string matching



Analysis of Algorithms

How good is the algorithm?

• Correctness

• Time efficiency

• Space efficiency

Does there exist a better algorithm?

• Lower bounds

– Trivial lower bound

– Information-theoretic lower bound



Data Structures

Array, linked list, stack (DFS traversal), queue (BFS traversal), 
priority queue (heap, greedy approaches), tree (heap, binary 
search tree, AVL tree), undirected/directed graph, set

Graph Representation: adjacency matrix / adjacency linked list
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1 1 0 0 1 0
1 0 0 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0
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Binary Tree and Binary Search Tree

Tree

• Connected and acyclic graph

• |E|=|V|-1

Binary tree – each vertex has no more than two children

Binary search tree – the number associated with the parent is 
larger than its left subtree and smaller than its right subtree.

The height of a binary tree (the length of the longest path from 
the root to the leaf) is

  1log2 − VhV



Theoretical Analysis of Time Efficiency

Time efficiency is analyzed by determining the number of 
repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most towards the 
running time of the algorithm.

T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times 

basic operation is 

executed

input size



Best-case, Average-case, Worst-case

For some algorithms efficiency depends on type of input:

Worst case: W(n) – maximum over inputs of size n

Best case:        B(n) – minimum over inputs of size n

Average case: A(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical  
input

• NOT the average of worst and best case

• Expected number of basic operations repetitions considered as a 
random variable under some assumption about the probability 
distribution of all possible inputs of size n



Order of growth 

Order of growth as 𝑛→ ∞

Asymptotic Growth Rate: A way of comparing functions that 
ignores constant factors and small input sizes

• O(g(n)): class of functions f(n) that grow no faster than g(n)

• Θ (g(n)): class of functions f(n) that grow at same rate as g(n)

• Ω(g(n)): class of functions f(n) that grow at least as fast as  g(n)



Establishing rate of growth – using limits

limn→∞ T(n)/g(n) = 

0     order of growth of T(n)  <  order of growth of g(n)

c>0     order of growth of T(n) =   order of growth of g(n) 

∞ order of growth of T(n) >  order of growth of g(n) 
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Basic Asymptotic Efficiency Classes

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorial



Analyze the Time Efficiency of An Algorithm

Nonrecursive Algorithm

Recursive Algorithm
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Time efficiency of Nonrecursive Algorithms

Steps in mathematical analysis of nonrecursive algorithms:

• Decide on parameter n indicating input size

• Determine worst, average, and best case for input of size n

• Find all the loops

• The operation in the innermost loop is the basic operation

• Write the complexity in the form of summations

• Simplify the expression using formulas in Appendix A 



Useful Formulas in Appendix A
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Time Efficiency of Recursive Algorithms

• Find the recurrence relations and initial conditions

• Find the closed-form solution (Appendix B)
–Forward substitution

–Backward substitution

–Linear 2nd order with constant coefficients (homogenous 
and inhomogenous cases)

–Properties of smooth functions

• f(2n) ∈ Θ(f(n))

–Master Theorem

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)
a < bk T(n) ∈ Θ(nk)

a = bk T(n) ∈ Θ(nk log n )

a > bk T(n) ∈ Θ(nlog b a)



Important Recurrence Types:

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) =  (n-1)c + d                          linear

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) =  [n(n+1)/2 – 1] c + d           quadratic

One (constant) operation reduces problem size by half. 

T(n) = T(n/2) + c T(1) = d

Solution: T(n) =  c log2 n + d                           logarithmic

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn                    T(1) = d

Solution: T(n) =  cn log2 n + d n                         n log2 n



Design Strategy 1: Brute-Force

How to develop brute-force algorithms for these problems?

Bubble sort, sequential search, brute-force string matching, 
exhaustive search for TSP, knapsack, and assignment 
problem
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Design Strategy 2: Decrease and Conquer

problem of size    n

subproblem

of size n-1

solution to

the subproblem

solution to

the original problem

problem          of size n

subproblem

of size n/2

solution to

the subproblem

solution to

the original problem

Decrease by one
Decrease by a constant factor



Insertion Sort

This is a typical decrease-by-one technique

Assume A[0..i-1] has been sorted, how to achieve the sorted 
A[0..i]?

Solution: insert the last element A[i] to the right position

Algorithm complexity:

A[0] A[j] A[i-1] A[n-1]. . . . . .. . .
smaller than or equal to  A[i]

A[j+1] A[i]

greater than  A[i]

)()(),()( 2 nnTnnT bestworst 



DFS Traversal: DFS Forest and Stack
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Topological Sorting

DFS-based algorithm:

DFS traversal: note the order with 

which the vertices are popped off 

stack (dead end)

Reverse order solves topological 

sorting

Back edges encountered?→ NOT a 

DAG!

Note: problem is solvable iff 

graph is DAG

Double check if a node is 

present earlier than its parent 

in your solution!

C1

C2 C5

C4

C3



Variable-size decrease

Binary search tree

• Searching and insertion

Selection by partition

• Find the median from a list



Design Strategy 3: Divide and Conquer

subproblem 2 

of size n/2

subproblem 1 

of size n/2

a solution to 

subproblem 1

a solution to

the original problem

a solution to 

subproblem 2

a problem of size n



Mergesort

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9

Recurrence 

C(n)=2C(n/2)+Cmerge(n) for 
n>1,   C(1)=0

Basic operation is a 
comparison and we have 

Cmerge(n)=n-1 (worst case)

Using the Master Theorem, 
the complexity of mergesort 
algorithm is

Θ(n log n) 

It is more efficient than 
SelectionSort, BubbleSort 
and InsertionSort, where the 
time complexity is Θ(n2) 



Quicksort

Basic operation: key comparison

Best case: split in the middle — Θ( n log n) 

Worst case: sorted array! — Θ( n2) 

Average case: random arrays — Θ( n log n)

p     all are ≤ p             ≥ p     . . .              ≤ p        all are ≥ p 

→ i j ←

p             all are ≤ p              ≤ p       ≥ p              all are ≥ p 

→ ij ←

p             all are ≤ p           = p                  all are ≥ p 

→ i= j ←



Quicksort Example

5   3   1   9   8   2   4   7 

l=3, r=3

l=5, r=7

s=6

(b)

l=2, r=1

l=2, r=3

s=2

l=0, r=0

l=0, r=3

s=1

l=0, r=7

s=4

l=7, r=7l=5, r=5



Other Divide-and-Conquer Applications

Binary-tree traversal

• Perform a preorder, inorder, and postorder traversal

How to develop divide-and-conquer algorithms for a given 
problem? 

• Large integer multiplication 



Design Strategy 4: Transform-and Conquer

Solve problem by transforming into:

a more convenient instance of the same problem (instance 
simplification)

• Presorting

– Searching, computing the mode, finding repeated elements, etc

– Computing the median (selection problem)

a different representation of the same instance (representation 
change)

• balanced search trees

• heaps and heapsort

a different problem altogether (problem reduction)

• reductions to graph problems, e.g., Hamiltonian Circuit to 
decision version TSP



Balanced Trees: AVL trees

For every node, difference in height between left and  right 
subtree is at most 1
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The number shown above the node is its balance factor, the 

difference between the heights of the node’s left and right 

subtrees.



Maintain the Balance of An AVL Tree

Insert a new node to a AVL binary search tree may make it 
unbalanced. The new node is always inserted as a leaf

We transform it into a balanced one by rotation operations



Heap and Heapsort

Definition:

A heap is a binary tree with the following conditions:

(1) it is essentially complete: all its levels are full except 
possibly the last level, where only some rightmost leaves may 
be missing

(2) The key at each node is ≥ keys at its children



Heap Implementation

A heap can be implemented as an array H[1..n] by recording 
its elements in the top-down left-to-right fashion. 

Leave H[0] empty

First            elements are parental node keys and the last 
elements are leaf keys

i-th element’s children are located in positions 2i and 2i+1
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Heap Construction -- Bottom-up Approach
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Insert a new key 10 into the heap with 6 keys [9 6 8 2 5 7]

9

6
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Heapsort

Two-Stage algorithm to sort a list of n keys 

First, heap construction 

Second, sequential root deletion (the largest is deleted first, 
and the second largest one is deleted second, etc …)

Therefore, the time efficiency of heapsort is                       in the 
worst case, which is the same as mergesort

Note: Average case efficiency is also
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Design Strategy 5: Space-Time Tradeoffs

For many problems some extra space really pays off: 

extra space in tables

• hashing

input enhancement

• auxiliary tables (shift tables for pattern matching)

tables of information that do all the work

• dynamic programming 



Horspool’s Algorithm

Shift Table for the pattern “BARBER”
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Example

See Section 7.2 for the pseudocode of the shift-table 
construction algorithm and Horspool’s algorithm

Example: find the pattern BARBER from the following text

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O

B A R B E R

B A R B E R

B A R B E R

B A R B E R

B A R B E R

B A R B E R



Open Hashing

Store student record into 10 bucket using hashing function

h(SSN)=SSN mod 10

xxx-xx-6453

xxx-xx-2038

xxx-xx-0913

xxx-xx-4382

xxx-xx-9084

xxx-xx-2498

0 1 2 3 4 5 6 7 8 9

6453

0913

4382 9084

2038

2498

Average comparisons: 1/6+1/6+2*1/6+1/6+1/6+2*1/6=4/3

Largest comparisons: 2



Closed Hashing (Linear Probing)

xxx-xx-6453

xxx-xx-2038

xxx-xx-0913

xxx-xx-4382

xxx-xx-9084

xxx-xx-2498

4382 6453 0913 9084 2038 2498

0 1 2 3 4 5 6 7 8 9



Design Strategy 6: Dynamic Programming

Dynamic Programming  is  a general algorithm design 
technique

“Programming” here means “planning”

Main idea: 

• solve several smaller (overlapping) subproblems

• record solutions in a table so that each subproblem is only 
solved once

• final state of the table will be (or contain) solution



Warshall’s  Algorithm: Transitive Closure

• Computes the transitive closure of a graph

• (Alternatively: all paths in a directed graph)

• Example of transitive closure:
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1  0  0  1

0  0  0  0

0  1  0  0

0  0  1  0

1  1  1 1

0  0  0  0

1 1  1  1

3

4
2

1



Warshall’s  Algorithm

In the kth stage  determine if a path exists between two vertices i, j 

using just vertices among 1,…,k 

R(k-1)[i,j]                            (path using just 1 ,…,k-1)

R(k)[i,j] =            or 

(R(k-1)[i,k]   AND R(k-1)[k,j]){ (path from i to k and from 

k to i using just 1 ,…,k-1)



Floyd’s  Algorithm: All pairs shortest paths

In a weighted graph, find shortest paths 

between every pair of vertices

Same idea: construct solution through series 

of matrices D(0), D(1), … using an initial subset 

of the vertices as intermediaries.
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Similar to Warshall’s Algorithm

in          is equal to the length of shortest path among all 
paths from the ith vertex to jth vertex with each intermediate 
vertex, if any, numbered not higher than k
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Design Strategy 7: Greedy algorithms

The greedy approach constructs a solution through a 
sequence of steps until a complete solution is reached, On 
each step, the choice made must be

• Feasible: Satisfy the problem’s constraints

• locally optimal: the best choice

• Irrevocable: Once made, it cannot be changed later

Optimal solutions:

• Minimum Spanning Tree (MST)

• Single-source shortest paths 

• Huffman codes

Approximations:

• Traveling Salesman Problem (TSP)

• Knapsack problem

• other combinatorial optimization problems



Prim’s MST algorithm

Start with tree consisting of one vertex

“grow” tree one vertex/edge at a time to produce MST

• Construct a series of expanding subtrees T1, T2, …

at each stage construct Ti+1 from Ti: add minimum weight edge 
connecting a vertex in tree (Ti) to one not yet in tree

• choose from “fringe” edges  

• (this is the “greedy” step!)

algorithm stops when all vertices are included



Step 4:

b
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Add the minimum-weight fringe edge f(b,4) into T

Priority queue: d(f,5), e(f,2)



Single-Source Shortest Path: Dijkstra’s 

Algorithm

Similar to Prim’s MST algorithm, with the following difference:

• Start with tree consisting of one vertex

• “grow” tree one vertex/edge at a time to produce spanning tree

– Construct a series of expanding subtrees T1, T2, …

• Keep track of shortest path from source to each of the vertices 
in Ti

• at each stage construct Ti+1 from Ti: add minimum weight edge 
connecting a vertex in tree (Ti) to one not yet in tree

– choose from “fringe” edges  

– (this is the “greedy” step!)

• algorithm stops when all vertices are included

edge (v,w) with lowest d(s,v) + d(v,w)



Step 3:

Tree vertices: a(-,0), b(a,3), d(b,5)

Priority queue: c(b,3+4), e (-,∞)→e(d,5+4)

b

eda

c

3

4

62 5

7 4



Huffman Coding Algorithm

Step 1: Initialize n one node trees and label them with the 
characters of the alphabet. Record the frequency of each 
character in its tree’s root to indicate the tree’s weight 

Step 2: Repeat the following operation until a single tree is 
obtained. Find two trees with the smallest weights. Make them 
the left and right subtrees of a new tree and record the sum of 
their weights in the root of the new tree as its weight 

Example: alphabet {A, B, C, D, _} with frequency

character A B C D _

probability 0.35 0.1 0.2 0.2 0.15
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Limitations of Algorithm Power: Information-

Theoretic Arguments

The number of leaves: L

Information-theoretic lower bound: worst case log𝟐 𝑳

a < b

a <  c b < c
yes

yes no

noyesno

b <  c b < a
yes no

b < aa <  c
yes no

a < b < c a < c < b c < a < b b < a < c b < c < a c < b < a

no yes

abc

abc abc

cbabaccbaabc

Example: 

Selection Sort



P, NP, and NP-Complete Problems

As we discussed, problems that can be solved in polynomial 
time are usually called tractable and the problems that 
cannot be solved in polynomial time are called intractable, 
now

Is there a polynomial-time algorithm that solves the problem?

P: the class of decision problems that are solvable in O(p(n)), 
where p(n) is a polynomial on n

NP: the class of decision problems that are solvable in 
polynomial time on a nondeterministic machine

A decision problem D is NP-complete (NPC) iff

1. D ∈ NP

2. every problem in NP is polynomial-time reducible to D



Design Strategies for NP-hard Problems

exhaustive search (brute force)

• useful only for small instances

backtracking

• eliminates some cases from consideration

branch-and-bound

• An enhancement of backtracking.

• Applicable to optimization problems

• Uses a lower bound for the value of the objective function for 
each node (partial solution) so as to:

– guide the search through state-space

– rule out certain branches as “unpromising”



Traveling salesman example:



Thank you!

Good luck in your final exam!

Don’t forget to bring your cheat sheet!


