
Review For the Final Exam

An algorithm is a sequence of unambiguous instructions for
solving a problem, i.e., for obtaining a required output for any
legitimate input in a finite amount of time.

“computer”

problem

algorithm

input output

Some Important Points

Each step of an algorithm is unambiguous

The range of inputs has to be specified carefully

The same algorithm can be represented in different ways

The same problem may be solved by different algorithms

Different algorithms may take different time to solve the same
problem – we may prefer one to the other

Some Well-known Computational Problems

Sorting

Searching

String matching

Shortest paths in a graph

Minimum spanning tree

Traveling salesman problem

Knapsack problem

Assignment problem

Towers of Hanoi …

Polynomial time

Algorithm Design Strategies

Brute force: bubble sort, selection sort

Divide and conquer: mergesort, quicksort

Decrease and conquer: insertion sort, DFS traversal, and topological order

Transform and conquer: presorting, balanced binary search tree, and heap

Greedy approach: Prim’s algorithm for minimum spanning tree and
Dijkstra’s algorithm for single-source shortest paths

Dynamic programming: Warshall’s Algorithm for transitive closure and
Floyd’s algorithm for all-pairs shortest paths

Backtracking and branch and bound: n-queen problem, assignment
problem, and traveling salesman problem

Space and time tradeoffs: hashing and shift table for string matching

Analysis of Algorithms

How good is the algorithm?

• Correctness

• Time efficiency

• Space efficiency

Does there exist a better algorithm?

• Lower bounds

– Trivial lower bound

– Information-theoretic lower bound

Data Structures

Array, linked list, stack (DFS traversal), queue (BFS traversal),
priority queue (heap, greedy approaches), tree (heap, binary
search tree, AVL tree), undirected/directed graph, set

Graph Representation: adjacency matrix / adjacency linked list

0 0 1 1 0 0
0 0 1 0 0 1
1 1 0 0 1 0
1 0 0 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0

a

b

c

d

e

f

c d

c f

b ea

ea

d fc

eb

Binary Tree and Binary Search Tree

Tree

• Connected and acyclic graph

• |E|=|V|-1

Binary tree – each vertex has no more than two children

Binary search tree – the number associated with the parent is
larger than its left subtree and smaller than its right subtree.

The height of a binary tree (the length of the longest path from
the root to the leaf) is

  1log2 − VhV

Theoretical Analysis of Time Efficiency

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most towards the
running time of the algorithm.

T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times

basic operation is

executed

input size

Best-case, Average-case, Worst-case

For some algorithms efficiency depends on type of input:

Worst case: W(n) – maximum over inputs of size n

Best case: B(n) – minimum over inputs of size n

Average case: A(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical
input

• NOT the average of worst and best case

• Expected number of basic operations repetitions considered as a
random variable under some assumption about the probability
distribution of all possible inputs of size n

Order of growth

Order of growth as 𝑛→ ∞

Asymptotic Growth Rate: A way of comparing functions that
ignores constant factors and small input sizes

• O(g(n)): class of functions f(n) that grow no faster than g(n)

• Θ (g(n)): class of functions f(n) that grow at same rate as g(n)

• Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

Establishing rate of growth – using limits

limn→∞ T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c>0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

)('

)('
lim

)(

)(
lim

ng

nf

ng

nf

nn →→
=

L’Hôpital’s Rule

Basic Asymptotic Efficiency Classes

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorial

Analyze the Time Efficiency of An Algorithm

Nonrecursive Algorithm

Recursive Algorithm
f

i*ff

ni

f

nFactorial

 return

do to for

ALGORITHM







1

1

)(

n*nFactorial

n

nFactorial

)1(

1

0

)(

−

=

 return

else

 return

 if

ALGORITHM

Time efficiency of Nonrecursive Algorithms

Steps in mathematical analysis of nonrecursive algorithms:

• Decide on parameter n indicating input size

• Determine worst, average, and best case for input of size n

• Find all the loops

• The operation in the innermost loop is the basic operation

• Write the complexity in the form of summations

• Simplify the expression using formulas in Appendix A

Useful Formulas in Appendix A

...)(

)(
2

)1(
...21

)(

1

1

2

1

111

11

+

=

=

===

==

=

=
+

=+++=

+=+

=









k
n

i

k

n

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

ni

n
nn

ni

baba

acca

Make sure to be familiar with them

Time Efficiency of Recursive Algorithms

• Find the recurrence relations and initial conditions

• Find the closed-form solution (Appendix B)
–Forward substitution

–Backward substitution

–Linear 2nd order with constant coefficients (homogenous
and inhomogenous cases)

–Properties of smooth functions

• f(2n) ∈ Θ(f(n))

–Master Theorem

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)
a < bk T(n) ∈ Θ(nk)

a = bk T(n) ∈ Θ(nk log n)

a > bk T(n) ∈ Θ(nlog b a)

Important Recurrence Types:

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) = (n-1)c + d linear

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c T(1) = d

Solution: T(n) = c log2 n + d logarithmic

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn T(1) = d

Solution: T(n) = cn log2 n + d n n log2 n

Design Strategy 1: Brute-Force

How to develop brute-force algorithms for these problems?

Bubble sort, sequential search, brute-force string matching,
exhaustive search for TSP, knapsack, and assignment
problem

90

 ?

 ?

 ? ?

 ?

 ?

173429896845

17903429896845

17349029896845

17342990896845

17342990688945

17342990684589

Design Strategy 2: Decrease and Conquer

problem of size n

subproblem

of size n-1

solution to

the subproblem

solution to

the original problem

problem of size n

subproblem

of size n/2

solution to

the subproblem

solution to

the original problem

Decrease by one
Decrease by a constant factor

Insertion Sort

This is a typical decrease-by-one technique

Assume A[0..i-1] has been sorted, how to achieve the sorted
A[0..i]?

Solution: insert the last element A[i] to the right position

Algorithm complexity:

A[0] A[j] A[i-1] A[n-1].
smaller than or equal to A[i]

A[j+1] A[i]

greater than A[i]

)()(),()(2 nnTnnT bestworst 

DFS Traversal: DFS Forest and Stack

a c

h

g

e

f

b d

8,76,1

7,85,64,2

3,41,3

2,5

ca

deb

gf

h

Stack push/pop

a b

e f

c d

g h

Tree edges, backward edges, forward

edges (directed graph), and cross edges

(directed graph),

Topological Sorting

DFS-based algorithm:

DFS traversal: note the order with

which the vertices are popped off

stack (dead end)

Reverse order solves topological

sorting

Back edges encountered?→ NOT a

DAG!

Note: problem is solvable iff

graph is DAG

Double check if a node is

present earlier than its parent

in your solution!

C1

C2 C5

C4

C3

Variable-size decrease

Binary search tree

• Searching and insertion

Selection by partition

• Find the median from a list

Design Strategy 3: Divide and Conquer

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

Mergesort

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

Recurrence

C(n)=2C(n/2)+Cmerge(n) for
n>1, C(1)=0

Basic operation is a
comparison and we have

Cmerge(n)=n-1 (worst case)

Using the Master Theorem,
the complexity of mergesort
algorithm is

Θ(n log n)

It is more efficient than
SelectionSort, BubbleSort
and InsertionSort, where the
time complexity is Θ(n2)

Quicksort

Basic operation: key comparison

Best case: split in the middle — Θ(n log n)

Worst case: sorted array! — Θ(n2)

Average case: random arrays — Θ(n log n)

p all are ≤ p ≥ p . . . ≤ p all are ≥ p

→ i j ←

p all are ≤ p ≤ p ≥ p all are ≥ p

→ ij ←

p all are ≤ p = p all are ≥ p

→ i= j ←

Quicksort Example

5 3 1 9 8 2 4 7

l=3, r=3

l=5, r=7

s=6

(b)

l=2, r=1

l=2, r=3

s=2

l=0, r=0

l=0, r=3

s=1

l=0, r=7

s=4

l=7, r=7l=5, r=5

Other Divide-and-Conquer Applications

Binary-tree traversal

• Perform a preorder, inorder, and postorder traversal

How to develop divide-and-conquer algorithms for a given
problem?

• Large integer multiplication

Design Strategy 4: Transform-and Conquer

Solve problem by transforming into:

a more convenient instance of the same problem (instance
simplification)

• Presorting

– Searching, computing the mode, finding repeated elements, etc

– Computing the median (selection problem)

a different representation of the same instance (representation
change)

• balanced search trees

• heaps and heapsort

a different problem altogether (problem reduction)

• reductions to graph problems, e.g., Hamiltonian Circuit to
decision version TSP

Balanced Trees: AVL trees

For every node, difference in height between left and right
subtree is at most 1

5 20

124 7

2

(a)

10

1

8

10

1

0

-1

0

0

5 20

4 7

2

(b)

10

2

8

00

1

0

-1

0

An AVL tree Not an AVL tree

The number shown above the node is its balance factor, the

difference between the heights of the node’s left and right

subtrees.

Maintain the Balance of An AVL Tree

Insert a new node to a AVL binary search tree may make it
unbalanced. The new node is always inserted as a leaf

We transform it into a balanced one by rotation operations

Heap and Heapsort

Definition:

A heap is a binary tree with the following conditions:

(1) it is essentially complete: all its levels are full except
possibly the last level, where only some rightmost leaves may
be missing

(2) The key at each node is ≥ keys at its children

Heap Implementation

A heap can be implemented as an array H[1..n] by recording
its elements in the top-down left-to-right fashion.

Leave H[0] empty

First elements are parental node keys and the last
elements are leaf keys

i-th element’s children are located in positions 2i and 2i+1

10

5

4 2

7

1

10 5 7 4 2 1

0 1 2 3 4 5 6Index

value

 2/n  2/n

Heap Construction -- Bottom-up Approach

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

)()(nnBUworst 

Insert a new key 10 into the heap with 6 keys [9 6 8 2 5 7]

9

6

2 5

8

7 10

9

6

2 5

10

7 8

> >

10

6

2 5

9

7 8

Heap Construction – Top-down Approach

)log(log
1

nniTD
n

i

worst =
=

Heapsort

Two-Stage algorithm to sort a list of n keys

First, heap construction

Second, sequential root deletion (the largest is deleted first,
and the second largest one is deleted second, etc …)

Therefore, the time efficiency of heapsort is in the
worst case, which is the same as mergesort

Note: Average case efficiency is also

)(n

)log(log2)(
1

1

2 nninC
n

i

 
−

=

)log(nn

)log(nn

Design Strategy 5: Space-Time Tradeoffs

For many problems some extra space really pays off:

extra space in tables

• hashing

input enhancement

• auxiliary tables (shift tables for pattern matching)

tables of information that do all the work

• dynamic programming

Horspool’s Algorithm

Shift Table for the pattern “BARBER”













=

otherwise character, last its to pattern the of characters

 1- first the among rightmost the from distance the

pattern the of characters 1- first the among not is if

, length spattern' the

mc

mc

m

ct)(

c A B C D E F … R … Z _

t(c) 4 2 6 6 1 6 6 3 6 6 6

Example

See Section 7.2 for the pseudocode of the shift-table
construction algorithm and Horspool’s algorithm

Example: find the pattern BARBER from the following text

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O

B A R B E R

B A R B E R

B A R B E R

B A R B E R

B A R B E R

B A R B E R

Open Hashing

Store student record into 10 bucket using hashing function

h(SSN)=SSN mod 10

xxx-xx-6453

xxx-xx-2038

xxx-xx-0913

xxx-xx-4382

xxx-xx-9084

xxx-xx-2498

0 1 2 3 4 5 6 7 8 9

6453

0913

4382 9084

2038

2498

Average comparisons: 1/6+1/6+2*1/6+1/6+1/6+2*1/6=4/3

Largest comparisons: 2

Closed Hashing (Linear Probing)

xxx-xx-6453

xxx-xx-2038

xxx-xx-0913

xxx-xx-4382

xxx-xx-9084

xxx-xx-2498

4382 6453 0913 9084 2038 2498

0 1 2 3 4 5 6 7 8 9

Design Strategy 6: Dynamic Programming

Dynamic Programming is a general algorithm design
technique

“Programming” here means “planning”

Main idea:

• solve several smaller (overlapping) subproblems

• record solutions in a table so that each subproblem is only
solved once

• final state of the table will be (or contain) solution

Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a graph

• (Alternatively: all paths in a directed graph)

• Example of transitive closure:

3

4
2

1

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1

0 0 0 0

1 1 1 1

3

4
2

1

Warshall’s Algorithm

In the kth stage determine if a path exists between two vertices i, j

using just vertices among 1,…,k

R(k-1)[i,j] (path using just 1 ,…,k-1)

R(k)[i,j] = or

(R(k-1)[i,k] AND R(k-1)[k,j]){ (path from i to k and from

k to i using just 1 ,…,k-1)

Floyd’s Algorithm: All pairs shortest paths

In a weighted graph, find shortest paths

between every pair of vertices

Same idea: construct solution through series

of matrices D(0), D(1), … using an initial subset

of the vertices as intermediaries.

2

4
3

1

2

3 6

7

1
064

1073

022

301

4321









091664

10773

65022

431001

4321

Similar to Warshall’s Algorithm

in is equal to the length of shortest path among all
paths from the ith vertex to jth vertex with each intermediate
vertex, if any, numbered not higher than k

)(k

ijd)(kD

v i v j

v k

d
i k

(k-1)
d

k j

(k-1)

d
i j

(k-1)

ijij

k

kj

k

ik

k

ij

k

ij wdkdddd =+= −−−)0()1()1()1()(,1},min{ for

Design Strategy 7: Greedy algorithms

The greedy approach constructs a solution through a
sequence of steps until a complete solution is reached, On
each step, the choice made must be

• Feasible: Satisfy the problem’s constraints

• locally optimal: the best choice

• Irrevocable: Once made, it cannot be changed later

Optimal solutions:

• Minimum Spanning Tree (MST)

• Single-source shortest paths

• Huffman codes

Approximations:

• Traveling Salesman Problem (TSP)

• Knapsack problem

• other combinatorial optimization problems

Prim’s MST algorithm

Start with tree consisting of one vertex

“grow” tree one vertex/edge at a time to produce MST

• Construct a series of expanding subtrees T1, T2, …

at each stage construct Ti+1 from Ti: add minimum weight edge
connecting a vertex in tree (Ti) to one not yet in tree

• choose from “fringe” edges

• (this is the “greedy” step!)

algorithm stops when all vertices are included

Step 4:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Add the minimum-weight fringe edge f(b,4) into T

Priority queue: d(f,5), e(f,2)

Single-Source Shortest Path: Dijkstra’s

Algorithm

Similar to Prim’s MST algorithm, with the following difference:

• Start with tree consisting of one vertex

• “grow” tree one vertex/edge at a time to produce spanning tree

– Construct a series of expanding subtrees T1, T2, …

• Keep track of shortest path from source to each of the vertices
in Ti

• at each stage construct Ti+1 from Ti: add minimum weight edge
connecting a vertex in tree (Ti) to one not yet in tree

– choose from “fringe” edges

– (this is the “greedy” step!)

• algorithm stops when all vertices are included

edge (v,w) with lowest d(s,v) + d(v,w)

Step 3:

Tree vertices: a(-,0), b(a,3), d(b,5)

Priority queue: c(b,3+4), e (-,∞)→e(d,5+4)

b

eda

c

3

4

62 5

7 4

Huffman Coding Algorithm

Step 1: Initialize n one node trees and label them with the
characters of the alphabet. Record the frequency of each
character in its tree’s root to indicate the tree’s weight

Step 2: Repeat the following operation until a single tree is
obtained. Find two trees with the smallest weights. Make them
the left and right subtrees of a new tree and record the sum of
their weights in the root of the new tree as its weight

Example: alphabet {A, B, C, D, _} with frequency

character A B C D _

probability 0.35 0.1 0.2 0.2 0.15

0.25

0.1

B

0.15

_

0.2

C

0.2

D

0.35

A

0.2

C

0.2

D

0.35

A

0.1

B

0.15

_

0.4

0.2

C

0.2

D

0.6

0.25

0.1

B

0.15

_

0.6

1.0

0 1

0.4

0.2

C

0.2

D
0.25

0.1

B

0.15

_

0 1 0

0

1

1

0.25

0.1

B

0.15

_

0.35

A

0.4

0.2

C

0.2

D

0.35

A

0.35

A

0.25

0.1

B

0.15

_

0.2

C

0.2

D

0.35

A

0.2

C

0.2

D

0.35

A

0.1

B

0.15

_

0.4

0.2

C

0.2

D

0.6

0.25

0.1

B

0.15

_

0.6

1.0

0 1

0.4

0.2

C

0.2

D
0.25

0.1

B

0.15

_

0 1 0

0

1

1

0.25

0.1

B

0.15

_

0.35

A

0.4

0.2

C

0.2

D

0.35

A

0.35

A

Limitations of Algorithm Power: Information-

Theoretic Arguments

The number of leaves: L

Information-theoretic lower bound: worst case log𝟐 𝑳

a < b

a < c b < c
yes

yes no

noyesno

b < c b < a
yes no

b < aa < c
yes no

a < b < c a < c < b c < a < b b < a < c b < c < a c < b < a

no yes

abc

abc abc

cbabaccbaabc

Example:

Selection Sort

P, NP, and NP-Complete Problems

As we discussed, problems that can be solved in polynomial
time are usually called tractable and the problems that
cannot be solved in polynomial time are called intractable,
now

Is there a polynomial-time algorithm that solves the problem?

P: the class of decision problems that are solvable in O(p(n)),
where p(n) is a polynomial on n

NP: the class of decision problems that are solvable in
polynomial time on a nondeterministic machine

A decision problem D is NP-complete (NPC) iff

1. D ∈ NP

2. every problem in NP is polynomial-time reducible to D

Design Strategies for NP-hard Problems

exhaustive search (brute force)

• useful only for small instances

backtracking

• eliminates some cases from consideration

branch-and-bound

• An enhancement of backtracking.

• Applicable to optimization problems

• Uses a lower bound for the value of the objective function for
each node (partial solution) so as to:

– guide the search through state-space

– rule out certain branches as “unpromising”

Traveling salesman example:

Thank you!

Good luck in your final exam!

Don’t forget to bring your cheat sheet!

