Chapter 12: Coping with the Limitations of
Algorithm Power

There are two principal approaches to tackling NP-hard
problems or other “intractable” problems:

*Use a strategy that guarantees solving the problem exactly but
doesn’t guarantee to find a solution in polynomial time

*Use an approximation algorithm that can find an approximate
(sub-optimal) solution in polynomial time



Exact solutions

The exact solution approach includes the strategies:

 Exhaustive search (brute force)
« useful only for small instances

 Dynamic programming

» Applicable for some problems, e.g., knapsack problem,
TSP

 Backtracking —
* eliminates some cases from consideration

* yields solutions in reasonable time for many instances but | Need a state-space tree
worst case is still exponential

« Branch-and-bound

>_
» Only applicable for optimization problems Nodes: partial solutions
» further cuts down on the search Edges: choices in
» fast solutions for most instances completing solutions

» worst case is still exponential




Backtracking

Construct the state-space tree:
* nodes: partial solutions
* edges: choices in completing solutions

Explore the state space tree using depth-first search (DFS)

“Prune” non-promising subtrees

* DFS stops exploring subtree rooted at nodes leading to no
solutions and

* “backtracks” to its parent node



Branch and Bound

An enhancement of backtracking.
Applicable to optimization problems

Uses a lower bound for the value of the objective function for
each node (partial solution) to:

* no solution can beat the lower bound
 guide the search through state-space

* rule out certain branches as “unpromising” — do not explore
these subtrees

« using a “best-first” rule



Example: The assignment problem

For example:
Job1l Job2 Job3 Job4

Person a 9 2 7 8 Cost matrix
Person b 6 4 3 7 /

Person c 5 8 1 o]

Person d 7 6 9 4

Select one element in each row of the cost matrix C so that:
* no two selected elements are in the same column; and
 the sum is minimized

If using exhaustive search, the permutation of n persons™ 0(n!)



Example: The assignment problem

Jobl Job2 Job3 Job4

Person a 9 2 7 S
Person b 6 4 3 7
Person c 5 8 1 8
Person d 7 6 9 4

Lower bound: Any solution to this problem will have

total cost of at least: The summation of the smallest elements in each row
No solution can beat the lower bound!




Assignment problem: lower bounds

0

Start

b = 2+3+1+4=10

R

a—-—1

a—s3 2

R P

a—>3 a—r 4

b = 9+3+1+4=17

b = 243+1+4=10

b =7+4+5+4=20 b = 8+3+1+6=18

9 | |
3

1

(2] |
3

1

4
|

Most promising so far

EEEE BEEED
4 3

5 1



State-space levels 0, 1, 2

1/ 2

a—s1

b =17

/

0

Start

b =10

a— 2

b =10

o Tl
bh—1

b =13

bh—3

b =14

4

3] \Z

\3

a—3

b =20

a—4

bh—4

b =17

14

HEEE BEIEE
HEEE EEEL
5 1

b =18




Complete state-space

a—:73

b = 20

a—1 a—?2
b =17 b =10
X / \
5 6 7
b—s1 h—3 h—s4d
b = b =14 b = 17
X X

o— 3 c—> 4
d— 4 d— 3
cosf= 13 cosf= 25

solution inferior salution




Traveling salesman example:

-

-7 min, e,

How to find the lower bound for each step?

N
b = Z:(min1 e, +min,e;)/2
i=1

for N nodes

Constraints:

* start from a

* b should be visited before c

* After visiting n-1 vertices, the last vertex must
be visited and go back to a




Traveling salesman example:

[[1+3)+(B+6)+(1+2)+(B+4)+(2+3)]/2]
a (Ib=14)

a 0 3 1 5 8
b 3 0 6 7 9
c 1 6 0 4 2
d 5 7 4 0 3
e 8 9 2 3 0



Traveling salesman example:

® o O T 9

0

c O —- W

© N OO0 O W

1

N A O O

a-b

5

w o b~

S W N O 0

a-b D-a

T(1+3) 43+ 6)+(1+2)+ B+4)+(2+3))/2]

a (Ib=14)

/

a-b (1b=14)




Traveling salesman example:

a 0 3 1 5 8 o (=17

b 3 0 6 7 9 o
c 1.6 0 4 2 a-b (Ib=14) a-c
d 5 7 4 0 3

e 8 9 2 3 0

Does not satisfy the constraint b
should be visited before c



Traveling salesman example:

® o O T 9

0

c O - W

© N O O W

1

N A O O

a-d

W O h~ N O

S W N O 0

d-a

|_[(1++(3+6)+(1+2)+(3++(2+3)]/2—|

a (Ib=14)
a-b (Ib=14) a-c a-d (Ib=16)
Not promising!




Traveling salesman example:

a-e ),
-Enunu |_[(1++(3+6)+(1+2)+(3+4)+(2+]/2—|

a 0 3 1 5 8 4 (1b=14)
b 30 6 7 9 =
c 1.6 0 4 2 [ ypab=14) |[ ac a-d (Ib=16) a-e (Ib=19)
S O Emost promising;! Not promising! Not promising!
e 8 9 2 3 | l

a-e

a-b is the most
promising, explore it




Traveling salesman example:

® o O T 9

0

c O —- W

© N OO O W

1
6
0
4
2

a-b-c

5

w o b~

OO W N ©

a-b b-a b-c c-b
+(146)+(B+4)+(2+3)]/2]

|_[(1+ + + 6

a (Ib=14)

- N

a-b (Ib=14)

/

a-c

a-d (Ib=16)

a-e (Ib=19)

a-b-c (Ib=16)




Traveling salesman example:

® o O T 9

0O 3 1
3 0 6
1 6 0
5 7 4
8 9 2

a-b-c-d-e-a

5

w O b~ N

OO W N ©

a (Ib=14)
/\\
a-b (Ib=14) a-d (Ib=16) a-e (Ib=19)
a-b-c (Ib=16)
N
a-b-c-d-e-a

=3+6+4+3+8=24




Traveling salesman example:

16

14

ol

2/
a, o

a b
Ih =14
it
\h‘b is not before ¢
5 5] \?
a b c a, b, d a b, e
h =16 th =18 th =18
it
h=1 of
nodea 11
=] g 10 11
a b, cd, ab o e a b d e a b, d, e,
(e, a) (d, a) (2, a) {, a)
=24 =14 =24 =16

first tour

hatter tour

inferior tour

optimal tour

a d

fh =16

=149

*
== of
node 11

x
=1 oof
hoade 11




Discussion on TSP using Branch-Bound

For every node except the n-1t" vertex, we need to compute its
corresponding lower bound.

For the n-1t" vertex, we need to compute the total length
What operations we need?

* Find the minimum cost of each row
* Calculate the summations
* Compare with the best partial solution so far

Can we improve the efficiency?
Yes. Just update the cost involving the change.



