Chapter 12: Coping with the Limitations of Algorithm Power

There are two principal approaches to tackling NP-hard problems or other "intractable" problems:
-Use a strategy that guarantees solving the problem exactly but doesn't guarantee to find a solution in polynomial time
-Use an approximation algorithm that can find an approximate (sub-optimal) solution in polynomial time

Exact solutions

The exact solution approach includes the strategies:

- Exhaustive search (brute force)
- useful only for small instances
- Dynamic programming
- Applicable for some problems, e.g., knapsack problem, TSP
- Backtracking
- eliminates some cases from consideration
- yields solutions in reasonable time for many instances but worst case is still exponential
- Branch-and-bound
- Only applicable for optimization problems
- further cuts down on the search
- fast solutions for most instances

Need a state-space tree

- worst case is still exponential

Backtracking

Construct the state-space tree:

- nodes: partial solutions
- edges: choices in completing solutions

Explore the state space tree using depth-first search (DFS)
"Prune" non-promising subtrees

- DFS stops exploring subtree rooted at nodes leading to no solutions and
- "backtracks" to its parent node

Branch and Bound

An enhancement of backtracking.

Applicable to optimization problems

Uses a lower bound for the value of the objective function for each node (partial solution) to:

- no solution can beat the lower bound
- guide the search through state-space
- rule out certain branches as "unpromising" - do not explore these subtrees
- using a "best-first" rule

Example: The assignment problem

For example:

Job 1	Job 2	Job 3	Job 4
9	2	7	8
6	4	3	7
5	8	1	8
7	6	9	4

Select one element in each row of the cost matrix C so that:

- no two selected elements are in the same column; and
- the sum is minimized

If using exhaustive search, the permutation of n persons $\Rightarrow \Theta(n!)$

Example: The assignment problem

	Job 1	Job 2	Job 3	Job 4
Person a	9	2	7	8
Person b	6	4	3	7
Person c	5	8	1	8
Person d	7	6	9	4

Lower bound: Any solution to this problem will have total cost of at least: The summation of the smallest elements in each row No solution can beat the lower bound!

Assignment problem: lower bounds

State-space levels 0, 1, 2

Complete state-space

Traveling salesman example:

Traveling salesman example:

$\lceil(1+3)+(3+6)+(1+2)+(3+4)+(2+3)] / 2\rceil$

$$
a(l b=14)
$$

Traveling salesman example:

	a	b	c	d	e
a	0	3	1	5	8
b	3	0	6	7	9
c	1	6	0	4	2
d	5	7	4	0	3
e	8	9	2	3	0
$\boldsymbol{a}-\boldsymbol{b}$					

$$
\begin{gathered}
\begin{array}{c}
\boldsymbol{a}-\boldsymbol{b} \boldsymbol{b}-\boldsymbol{a} \\
\lceil[(1+3)+(3+6)+(1+2)+(3+4)+(2+3)] / 2\rceil \\
\boldsymbol{a}(\mathbf{l b}=14)
\end{array}
\end{gathered}
$$

Traveling salesman example:

	a	b	c	d	e
a	0	3	1	5	8
b	3	0	6	7	9
c	1	6	0	4	2
d	5	7	4	0	3
e	8	9	2	3	0

Does not satisfy the constraint b should be visited before c

Traveling salesman example:

	a	b	c	d	e
a	0	3	1	5	8
b	3	0	6	7	9
c	1	6	0	4	2
d	5	7	4	0	3
e	8	9	2	3	0
$\boldsymbol{a}-\boldsymbol{d}$					

$$
\frac{\boldsymbol{a}-\boldsymbol{d}}{[(1+5)+(3+6)+(1+2)+(3+5)+(2+3)] / 2\rceil}
$$

Not promising!

Traveling salesman example:

Traveling salesman example:

Traveling salesman example:

Traveling salesman example:

Discussion on TSP using Branch-Bound

For every node except the $\mathrm{n}-1^{\text {th }}$ vertex, we need to compute its corresponding lower bound.

For the $\mathbf{n}-1^{\text {th }}$ vertex, we need to compute the total length
What operations we need?

- Find the minimum cost of each row
- Calculate the summations
- Compare with the best partial solution so far

Can we improve the efficiency?
Yes. Just update the cost involving the change.

