
Chapter 12: Coping with the Limitations of

Algorithm Power

There are two principal approaches to tackling NP-hard
problems or other “intractable” problems:

•Use a strategy that guarantees solving the problem exactly but
doesn’t guarantee to find a solution in polynomial time

•Use an approximation algorithm that can find an approximate
(sub-optimal) solution in polynomial time

Exact solutions

The exact solution approach includes the strategies:

• Exhaustive search (brute force)

• useful only for small instances

• Dynamic programming

• Applicable for some problems, e.g., knapsack problem,
TSP

• Backtracking

• eliminates some cases from consideration

• yields solutions in reasonable time for many instances but
worst case is still exponential

• Branch-and-bound

• Only applicable for optimization problems

• further cuts down on the search

• fast solutions for most instances

• worst case is still exponential

Need a state-space tree

Nodes: partial solutions

Edges: choices in

completing solutions

Backtracking

Construct the state-space tree:

• nodes: partial solutions

• edges: choices in completing solutions

Explore the state space tree using depth-first search (DFS)

“Prune” non-promising subtrees

• DFS stops exploring subtree rooted at nodes leading to no
solutions and

• “backtracks” to its parent node

Branch and Bound

An enhancement of backtracking.

Applicable to optimization problems

Uses a lower bound for the value of the objective function for
each node (partial solution) to:

• no solution can beat the lower bound

• guide the search through state-space

• rule out certain branches as “unpromising” – do not explore
these subtrees

• using a “best-first” rule

For example:

Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8

Person b 6 4 3 7

Person c 5 8 1 8

Person d 7 6 9 4

Select one element in each row of the cost matrix C so that:

• no two selected elements are in the same column; and

• the sum is minimized

If using exhaustive search, the permutation of n persons Θ(𝑛!)

Example: The assignment problem

Cost matrix

Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8

Person b 6 4 3 7

Person c 5 8 1 8

Person d 7 6 9 4

Lower bound: Any solution to this problem will have

total cost of at least:

No solution can beat the lower bound!

Example: The assignment problem

The summation of the smallest elements in each row

Assignment problem: lower bounds

Most promising so far

9

3

1

4

2

3

1

4

7

4

5

4

8

3

1

6

State-space levels 0, 1, 2

2

6

1

4

2

3

5

4

2

7

1

7

Complete state-space

Traveling salesman example:

How to find the lower bound for each step?

for N nodes

Constraints:

• start from a

• b should be visited before c

• After visiting n-1 vertices, the last vertex must

be visited and go back to a









+= 

=

N

i

ii eelb
1

21 2/)min(min

ie1min

ie2min

Traveling salesman example:

  2/3)(24)(32)(16)(33)(1 +++++++++

a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0

a (lb=14)

a

a b

c d

e

3

1
5

7

4

32

6

8
9

a b

c d

e

3

1
5

7

4

32

6

8
9

Traveling salesman example:

  2/3)(24)(32)(16)(33)(1 +++++++++a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0

a-b (lb=14)

a-b
a b

c d

e

3

1
5

7

4

32

6

8
9

a-b b-a

a (lb=14)

Traveling salesman example:

a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0

a-c

Does not satisfy the constraint b

should be visited before c

a-b (lb=14)

a (lb=14)

Traveling salesman example:

  2/3)(25)(32)(16)(35)(1 +++++++++a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0

a-d (lb=16)

a-d
a b

c d

e

3

1
5

7

4

32

6

8
9

Not promising!

a-d d-a

a-ca-b (lb=14)

a (lb=14)

Traveling salesman example:

  2/8)(24)(32)(16)(38)(1 +++++++++a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0

a-e (lb=19)

a-e
a b

c d

e

3

1
5

7

4

32

6

8
9

Not promising!

a-e e-a

a-d (lb=16)

Not promising!

a-ca-b (lb=14)

a (lb=14)

most promising!

a-b is the most

promising, explore it

Traveling salesman example:

  2/3)(24)(36)(16)(33)(1 +++++++++a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0 a-b-c (lb=16)

a-b-c
a b

c d

e

3

1
5

7

4

32

6

8
9

a-b b-a b-c c-b

a-e (lb=19)a-d (lb=16)a-ca-b (lb=14)

a (lb=14)

Traveling salesman example:

a b c d e

a 0 3 1 5 8

b 3 0 6 7 9

c 1 6 0 4 2

d 5 7 4 0 3

e 8 9 2 3 0 a-b-c-d-e-a

=3+6+4+3+8=24
a-b-c-d-e-a

a b

c d

e

3

1
5

7

4

32

6

8
9

a-b-c (lb=16)

a-e (lb=19)a-d (lb=16)a-ca-b (lb=14)

a (lb=14)

Traveling salesman example:

Discussion on TSP using Branch-Bound

For every node except the n-1th vertex, we need to compute its
corresponding lower bound.

For the n-1th vertex, we need to compute the total length

What operations we need?

Can we improve the efficiency?

• Find the minimum cost of each row

• Calculate the summations

• Compare with the best partial solution so far

Yes. Just update the cost involving the change.

