Chapter 12: Coping with the Limitations of
Algorithm Power

There are two principal approaches to tackling NP-hard
problems or other “intractable” problems:

*Use a strategy that guarantees solving the problem exactly but
doesn’t guarantee to find a solution in polynomial time

*Use an approximation algorithm that can find an approximate
(sub-optimal) solution in polynomial time



Exact solutions

The exact solution approach includes the strategies:

 Exhaustive search (brute force)
« useful only for small instances

 Dynamic programming

» Applicable for some problems, e.g., knapsack problem,
TSP

 Backtracking —
* eliminates some cases from consideration

* yields solutions in reasonable time for many instances but | Need a state-space tree
worst case is still exponential

« Branch-and-bound

>_
» Only applicable for optimization problems Nodes: partial solutions
» further cuts down on the search Edges: choices in
» fast solutions for most instances completing solutions

» worst case is still exponential




Backtracking

Construct the state-space tree:
* nodes: partial solutions
* edges: choices in completing solutions

Explore the state space tree using depth-first search (DFS)

“Prune” non-promising subtrees

* DFS stops exploring subtree rooted at nodes leading to no
solutions and

* “backtracks” to its parent node



Branch and Bound

An enhancement of backtracking.
Applicable to optimization problems

Uses a lower bound for the value of the objective function for
each node (partial solution) to:

* no solution can beat the lower bound
 guide the search through state-space

* rule out certain branches as “unpromising” — do not explore
these subtrees

« using a “best-first” rule



Example: The assignment problem

For example:
Job1l Job2 Job3 Job4

Person a 9 2 7 8 Cost matrix
Person b 6 4 3 7 /

Person c 5 8 1 o]

Person d 7 6 9 4

Select one element in each row of the cost matrix C so that:
* no two selected elements are in the same column; and
 the sum is minimized

If using exhaustive search, the permutation of n persons™ 0(n!)



Example: The assignment problem

Jobl Job2 Job3 Job4

Person a 9 2 7 S
Person b 6 4 3 7
Person c 5 8 1 8
Person d 7 6 9 4

Lower bound: Any solution to this problem will have

total cost of at least: The summation of the smallest elements in each row
No solution can beat the lower bound!




Assignment problem: lower bounds
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State-space levels 0, 1, 2
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Complete state-space
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Traveling salesman example:

-

-7 min, e,

How to find the lower bound for each step?

N
b = Z:(min1 e, +min,e;)/2
i=1

for N nodes

Constraints:

* start from a

* b should be visited before c

* After visiting n-1 vertices, the last vertex must
be visited and go back to a




Traveling salesman example:

[[1+3)+(B+6)+(1+2)+(B+4)+(2+3)]/2]
a (Ib=14)

a 0 3 1 5 8
b 3 0 6 7 9
c 1 6 0 4 2
d 5 7 4 0 3
e 8 9 2 3 0



Traveling salesman example:
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Traveling salesman example:

a 0 3 1 5 8 o (=17

b 3 0 6 7 9 o
c 1.6 0 4 2 a-b (Ib=14) a-c
d 5 7 4 0 3

e 8 9 2 3 0

Does not satisfy the constraint b
should be visited before c



Traveling salesman example:
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Traveling salesman example:
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Traveling salesman example:
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Traveling salesman example:
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Traveling salesman example:
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Discussion on TSP using Branch-Bound

For every node except the n-1t" vertex, we need to compute its
corresponding lower bound.

For the n-1t" vertex, we need to compute the total length
What operations we need?

* Find the minimum cost of each row
* Calculate the summations
* Compare with the best partial solution so far

Can we improve the efficiency?
Yes. Just update the cost involving the change.



