Chapter 12: Coping with the Limitations of Algorithm Power

There are two principal approaches to tackling NP-hard problems or other "intractable" problems:

•Use a strategy that guarantees solving the problem exactly but doesn't guarantee to find a solution in polynomial time

•Use an approximation algorithm that can find an approximate (sub-optimal) solution in polynomial time

Exact solutions

The exact solution approach includes the strategies:

- Exhaustive search (brute force)
 - useful only for small instances
- Dynamic programming
 - Applicable for some problems, e.g., knapsack problem, TSP

•	 Backtracking eliminates some cases from consideration 	
	 yields solutions in reasonable time for many instances but worst case is still exponential 	Need a state-space tree
•	Branch-and-bound	
	 Only applicable for optimization problems 	Nodes: partial solutions
	 further cuts down on the search 	Edges: choices in
	 fast solutions for most instances 	completing solutions
	 worst case is still exponential 	
		J

Backtracking

Construct the *state-space tree*:

- nodes: partial solutions
- edges: choices in completing solutions

Explore the state space tree using depth-first search (DFS)

"Prune" non-promising subtrees

- DFS stops exploring subtree rooted at nodes leading to no solutions and
- "backtracks" to its parent node

Branch and Bound

An enhancement of backtracking.

Applicable to optimization problems

Uses a lower bound for the value of the objective function for each node (partial solution) to:

- no solution can beat the lower bound
- guide the search through state-space
- rule out certain branches as "unpromising" do not explore these subtrees
- using a "best-first" rule

Example: The assignment problem

For example:

Select one element in each row of the cost matrix C so that:

- no two selected elements are in the same column; and
- the sum is minimized

If using exhaustive search, the permutation of n persons $\Rightarrow \Theta(n!)$

Example: The assignment problem

	Job 1	Job 2	Job 3	Job 4
Person a	9	2	7	8
Person b	6	4	3	7
Person c	5	8	1	8
Person d	7	6	9	4

<u>Lower bound</u>: Any solution to this problem will have total cost of <u>at least</u>: The summation of the smallest elements in each row No solution can beat the lower bound!

Assignment problem: lower bounds

State-space levels 0, 1, 2

Complete state-space

How to find the lower bound for each step?

$$lb = \left[\sum_{i=1}^{N} (\min_{i} e_{i} + \min_{2} e_{i})/2\right]$$
for N nodes

Constraints:

- start from *a*
- **b** should be visited before **c**
- After visiting *n*-1 vertices, the last vertex must be visited and go back to *a*

a

	а	b	С	d	е
а	0	3	1	5	8
b	3	0	6	7	9
С	1	6	0	4	2
d	5	7	4	0	3
е	8	9	2	3	0
a-b					

Does not satisfy the constraint **b** should be visited before **c**

	а	b	С	d	е
а	0	3	1	5	8
b	3	0	6	7	9
С	1	6	0	4	2
d	5	7	4	0	3
е	8	9	2	3	0
a-d					

Not promising!

Discussion on TSP using Branch-Bound

For every node except the n-1th vertex, we need to compute its corresponding lower bound.

For the n-1th vertex, we need to compute the total length

What operations we need?

- Find the minimum cost of each row
- Calculate the summations
- Compare with the best partial solution so far

Can we improve the efficiency? Yes. Just update the cost involving the change.