
Lower Bound

For each problem, we want to know the lower bound: the best
possible algorithm’s efficiency for a problem → Ω(.)

Tight lower bound: we have found an algorithm in the this lower-
bound efficiency class 𝚯(.).

Trivial lower bound: the problem’s input/output size

• Too low

• Too high

Information-Theoretic Arguments

This approach seeks to establish a lower bound based on the
amount of information it has to produce – an information-theoretic
lower bound

Recall the problem of guess the number from 1...n by asking
‘yes/no’ questions

Fundamentally, it is a coding problem. If the input number can be
encoded into m bits, each ‘yes/no’ question just resolve one bits
and therefore, the lower bound is m

We know that m=log2n

Solution: a decision tree. We will apply the decision tree to find the
lower bound for several problems

Complexity for the worst case: the height of this decision tree

Given L leaves, the height of the binary tree is at least  L2log

of leaves for n elements→ n+n+1

➔lower bound for the worst case:

→ Ω(logn)

Decision Tree for Searching a Sorted Array

Decision tree for binary search in a four-element array

(A[0], A[1])

A[1]

A[3]< A[0] A[0]

(A[2], A[3]) A[3] > A[3]

A[0] A[1]

A[2]

A[2]

<
= >

< = > < = >

< >=

(A[1], A[2])

  39log)12(log 33 ==+n

Failed Failed Failed

Failed Failed
Failed cases

< A[0] (A[0], A[1])

> A[3]

(A[1], A[2])

< >

< > < >

< >

A[1]

A[0] A[2]

A[3]

(A[2], A[3])

Failed Failed Failed

Failed Failed

Binary Search → Binary Decision Tree

Lower bound is then A tight lower bound

Leaves → unsuccessful search

Parent nodes → successful search

 )1(log2 +n

P, NP, and NP-Complete Problems

As we discussed, problems that can be solved in polynomial time
are usually called tractable and the problems that cannot be
solved in polynomial time are called intractable, now

Is there a polynomial-time algorithm that solves the problem?

Possible answers:

• yes

• no
– because it can be proved that all algorithms take exponential time

– because it can be proved that no algorithm exists at all to solve
this problem

• don’t know

• don’t know, but if such algorithm were to be found, then it would
provide a means of solving many other problems in polynomial
time

Types of Problems

Two types of problems:

• Optimization problem: construct a solution that maximizes or
minimizes some objective function

• MST, all shortest paths, single source shortest paths, …

• Decision problem: answer yes/no to a question

• Selection, searching, …

Many problems have BOTH decision and optimization versions.

Eg: Traveling Salesman Problem

• optimization: find Hamiltonian cycle of minimum weight

• decision: Is there a Hamiltonian cycle of weight < k

Hamiltonian Circuit: a closed path in a graph that

visits every node in the graph exactly once

Deterministic VS Nondeterministic Algorithm

A deterministic algorithm is the algorithm we discussed before

• E.g., a math function: given a specific input, generate the
same and unique output in different runs

A nondeterministic algorithm is the counterpart

• May have different outputs in different runs

• It is a two-stage process:

– Guessing stage: generate a random string S as a candidate
solution

– Verification stage: using a deterministic algorithm which
takes the original input I and S as input and determine if S is a
solution to I

Why becomes nondeterministic?

• System noise

• random number generator

Deterministic VS Nondeterministic Algorithm

A problem can have BOTH deterministic and nondeterministic
algorithms

Example:

Shortest path problem: find the shortest path from a to b in a
weighted graph

• Deterministic algorithm: searching the shortest path (e.g.,
brute force enumerating)

• Nondeterministic algorithm: generate a path P and decide
whether P is a simple path (all vertices on the path are distinct)
from a to b of length<= Threshold.

The Class P & NP

Example: Conjunctive Normal Form (CNF)

Satisfiability

Problem: Is a Boolean expression in its conjunctive normal form (CNF), i.e.,
are there “true” or “false” assignments of these variables that makes the
Boolean expression true?

This problem is in NP.

Nondeterministic algorithm:

• Guess truth assignment

• Check assignment to see if it satisfies CNF formula

Example: (Boolean operation)

Truth assignments:

Checking phase: Θ(n)

)()()(cbabacba 

true

falsectruebtruea

=

===

expression entire the

,,

⋁ is logic “or”

∧ is logic “and” or “logical

conjunction”

NP-Complete problems

A decision problem D is NP-complete iff

1. D ∈ NP

2. every problem in NP is polynomial-time reducible to D

The class of NP-complete problems is denoted NPC

NP-complete

problem

NP problems

Polynomial Reductions

A decision problem D1 is said to be polynomial reducible to a
decision problem D2 if there exists a function f that transforms
instances of D1 to instances of D2 such that

1. f maps all “yes” instances of D1 to “yes” instances of D2 and all
“no” instances of D1 to “no” instances of D2

2. f is computable by a polynomial-time algorithm

If D2 can be solved in polynomial time → D1 can be solved in
polynomial time

Polynomial Reductions

Example: Polynomial-time reduction of Hamiltonian Circuit to
decision version of Traveling Salesman Problem (Is there a solution
of TSP with total distance no larger than k=n?) given integer
distance

Hamiltonian Circuit: a closed path in a graph that visits every
node in the graph exactly once

Traveling Salesman: find the shortest path that visits every city
exact once and returns to the origin

To Prove a Decision Problem is in NPC

1. Prove it is in NP (verification takes polynomial
time)

2. Prove that all problems in NP is reducible to
this problem

3. Or Prove that a known NPC problem is
reducible to this problem

NP-complete

problem

NP problems

know n

NP-complete

problem

NP problems

candidate

 for NP -

completeness

BIG problem: If we can prove any given NPC problem can
be solve in polynomial time → P=NP

Chapter 12: Coping with the Limitations of

Algorithm Power

There are two principal approaches to tackling NP-hard
problems or other “intractable” problems:

•Use a strategy that guarantees solving the problem exactly but
doesn’t guarantee to find a solution in polynomial time

•Use an approximation algorithm that can find an approximate
(sub-optimal) solution in polynomial time

Exact solutions

The exact solution approach includes the strategies:

• Exhaustive search (brute force)

• useful only for small instances

• Dynamic programming

• Applicable for some problems, e.g., knapsack problem,
TSP

• Backtracking

• eliminates some cases from consideration

• yields solutions in reasonable time for many instances but
worst case is still exponential

• Branch-and-bound

• Only applicable for optimization problems

• further cuts down on the search

• fast solutions for most instances

• worst case is still exponential

Need a state-space tree

Nodes: partial solutions

Edges: choices in

completing solutions

Backtracking

Construct the state-space tree:

• nodes: partial solutions

• edges: choices in completing solutions

Explore the state space tree using depth-first search (DFS)

“Prune” non-promising subtrees

• DFS stops exploring subtree rooted at nodes leading to no
solutions and

• “backtracks” to its parent node

The Most Popular Example: The n-Queen

problem

Place n queens on an n-by-n chess board so that no two of them are
in the same row, column, or diagonal. Solution exists for all natural
numbers except n=2 and n=3.

Brute force algorithm: only allow one queen at each row 𝚯(𝒏𝒏)

1 2 3 4

1

2

3

4

queen 1

queen 2

queen 3

queen 4

State-space of the four-queens problem

1st row

2nd row

3rd row

4th row

Example: Hamiltonian Circuit Problem

d

a b

e

c f

c

d

e

f

dead end

e

d f

b

a

f

e

c

d

solution

dead end dead end

0

1

2

3

4

5

6

7 8

9

10

11

12

a

Subset-Sum Problem

Find a subset of a given set S={s1,s2,…,sn} of n positive
integers whose sum is equal to a given positive integer d

For example: S={3,5,6,7} and d=15 → solutions {3,5,7}

0

0

05

11 5

3

38

3

with 3

with 5

with 6

w/o 3

w/o 5

w/o 6 with 6 w/o 6

w/o 5 with 5

X X X X

X

14+7>15 3+7<15 11+7>14 5+7<15

0+13<15
with 6

X

9+7>15

14 98

8

w/o 7

w/o 6

X
8<15

solution

with 7

15

Branch and Bound

An enhancement of backtracking.

Applicable to optimization problems

Uses a lower bound for the value of the objective function for
each node (partial solution) to:

• no solution can beat the lower bound

• guide the search through state-space

• rule out certain branches as “unpromising” – do not explore
these subtrees

• using a “best-first” rule

For example:

Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8

Person b 6 4 3 7

Person c 5 8 1 8

Person d 7 6 9 4

Select one element in each row of the cost matrix C so that:

• no two selected elements are in the same column; and

• the sum is minimized

If using exhaustive search, the permutation of n persons Θ(𝑛!)

Example: The assignment problem

Cost matrix

Job 1 Job 2 Job 3 Job 4

Person a 9 2 7 8

Person b 6 4 3 7

Person c 5 8 1 8

Person d 7 6 9 4

Lower bound: Any solution to this problem will have

total cost of at least:

No solution can beat the lower bound!

Example: The assignment problem

The summation of the smallest elements in each row

Assignment problem: lower bounds

Most promising so far

9

3

1

4

2

3

1

4

7

4

5

4

8

3

1

6

State-space levels 0, 1, 2

2

6

1

4

2

3

5

4

2

7

1

7

Complete state-space

