
Announcement

Programming assignment #4 has been posted in Blackboard and
course website

Due at 11:59pm, Sunday, April 24th

Announcement

According to the UofSC final exam schedule Final Exam
Schedule Spring 2022 - University Registrar | University of
South Carolina

Final exam: May 3, Tuesday, 9:00am – 11:30 am

Cover all materials in our lectures

Closed-book and closed-notes.

A double-sided letter-size cheat sheet is allowed

https://www.sc.edu/about/offices_and_divisions/registrar/final_exams/final-exams-spring-2022.php

Huffman Coding Example

Character A B C D E F G H _

Probability 0.2 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05

C

(0.05)

F

(0.05)

G

(0.1)

_

(0.05)

D

(0.1)

CF

(0.1)

DG

(0.2)

CF_

(0.15)

A

(0.2)

ADG

(0.4)

H

(0.15)

B

(0.15)

E

(0.15)

CFH

(0.3)

BE

(0.3)

BCEFH_

(0.6)

10

0

1

0
0

0

0

0

0

1

11

1

1

1

1

Character A B C D E F G H _

Probability 0.2 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05

Codeword 11 010 00100 100 011 00101 101 000 0011

Code
length

2 3 5 3 3 5 3 3 4

Average number of bits per character (code length):
0.2 ∗ 2 + 0.15 ∗ 3 + 0.05 ∗ 5 + 0.1 ∗ 3 + 0.15 ∗ 3 + 0.05 ∗ 5 + 0.1 ∗ 3 + 0.15 ∗ 3 + 0.05 ∗
4 = 3.05

Note:

The resulting Huffman tree varies

according to your choices, e.g.,

assigning 0/1 to left/right

But the average code length is

the same

Reading Assignments

Read Chapter 10. Iterative Improvement

Chapter 11: Limitations of Algorithm Power

n=10 n=100

1 constant constant constant

log n logarithmic 1 (with base 10) 2 (with base 10)

n linear 10 100

n log n n log n 10 (with base 10) 200 (with base 10)

n2 quadratic 100 10,000

n3 cubic 1000 1,000,000

2n exponential 1024 ~1.26*1030

n! factorial 3,628,800 ~9.33*10157

Basic Asymptotic Efficiency Classes (big O, big Θ, and big Ω)

Polynomial-Time Complexity

Polynomial-time complexity: the complexity of an algorithm is

with a fixed degree b>0. Usually b<=3

If a problem can be solved in polynomial time, it is usually
considered to be theoretically tractable in current computers.

When an algorithm’s complexity is larger than polynomial, i.e.,
exponential, theoretically it is considered to be too expensive
to be useful – intractable

)(... 0

1

1

1

1

bb

b

b

b nananana ++++ −

−

Polynomial-Time Complexity

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorial

Polynomial time

complexity

List of Problems

Sorting 𝑂(𝑛𝑙𝑜𝑔𝑛)

Searching 𝑂(𝑛)

All shortest paths in a graph 𝑂(|𝑉|𝟑)

Minimum spanning tree 𝑂(|𝐸|log |𝑉|)

Assignment problem 𝑂(𝑛!)~𝑂(𝒏𝟑)

Towers of Hanoi 𝑂(2𝑛)

Knapsack problem 𝑂(2𝑛)

Traveling salesman problem 𝑶(𝑛!)~𝑂 𝒏𝟐2𝑛 – Current record
85,900 cities (Applegate et al. 2006)
http://en.wikipedia.org/wiki/Travelling_salesman_problem#Computational_complexity

…

http://en.wikipedia.org/wiki/Travelling_salesman_problem#Computational_complexity

Lower Bound

Problem A can be solved by algorithms a1, a2,…, ap

Problem B can be solved by algorithms b1, b2,…, bq

We may ask

• Which algorithm is more efficient? This makes more sense when
the compared algorithms solve the same problem

– It’s not fair to compare selection sorting with Warshall’s algorithm

• Which problem is more complex? We may compare the
complexity of the best algorithm for A and the best algorithm for B

For each problem, we want to know the lower bound: the best
possible algorithm’s efficiency for a problem → Ω(.)

Tight lower bound: we have found an algorithm in the this lower-
bound efficiency class 𝚯(.). The constant factor makes the
difference.

Trivial Lower Bound

Many problems need to ‘read’ all the necessary items and
write the ‘output’

→ Their sizes provide a trivial lower bound

Example:

1. Generate all permutations of 𝑛 distinct items → Ω(𝑛!)

Why?

Is this a tight lower bound?

2. Evaluate the polynomial at a given x

→ Ω(n), Is this tight?

01

1

1 ... axaxaxa n

n

n

n ++++ −

−

Yes.

Yes.

Notes on Trivial Lower Bound

Multiplying two nxn matrices → Ω(n2)

• because we need to process 2n2 elements and output n2

elements

• We do not know whether this is tight – a lower bound of
Ω 𝑛2𝑙𝑜𝑔𝑛 has been proven Raz 2002

Many trivial lower bounds are too low to be useful

• TSP → Ω(n2) because its input is n(n-1)/2 intercity distance
and output is n+1 city in sequence

• There is no known polynomial-time algorithm to solve it

Trivial lower bound sometime have problems

• We do not need to process all the input elements

• For example: searching an element in a sorted array. What is
its complexity?

Lower Bound

For each problem, we want to know the lower bound: the best
possible algorithm’s efficiency for a problem → Ω(.)

Tight lower bound: we have found an algorithm in the this lower-
bound efficiency class 𝚯(.).

Trivial lower bound: the problem’s input/output size

• Too low

• Too high

Information-Theoretic Arguments

This approach seeks to establish a lower bound based on the
amount of information it has to produce – an information-theoretic
lower bound

Recall the problem of guess the number from 1...n by asking
‘yes/no’ questions

Fundamentally, it is a coding problem. If the input number can be
encoded into m bits, each ‘yes/no’ question just resolve one bits
and therefore, the lower bound is m

We know that m=log2n

Solution: a decision tree. We will apply the decision tree to find the
lower bound for several problems

Find the Smallest from three numbers using

comparison

Leaves in the decision tree is the possible output. The output size
is at least 3 (maybe larger than 3) here

Complexity for the worst case: the height of this decision tree

Given L leaves, the height of the binary tree is at least

a < b

a

a < c b < c

c b c

yes

yes no

noyesno

 L2log

Decision Tree for Sorting Algorithms

The number of leaves: n!

The lower bound for worst case:

Is this tight?

a < b

a < c b < c
yes

yes no

noyesno

b < c b < a
yes no

b < aa < c
yes no

a < b < c a < c < b c < a < b b < a < c b < c < a c < b < a

no yes

abc

abc abc

cbabaccbaabc

Selection Sort

  nnennn n

222 log)/(2log!log  

Stirling’s

Average number of comparisons: (3+3+3+3+3+3)/6 = 𝟑 = log𝟐 𝟔

Example: Decision Tree for Insertion Sort

a < b

b < c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb

yes

a < c < b c < b < a

no

Average number of comparisons: (2+3+3+2+3+3)/6 ≈ 2.666> log𝟐 𝟔

log𝟐 𝟔Worst case: 3 comparisons =

of leaves for n elements→ n+n+1

➔lower bound for the worst case:

→ Ω(logn)

Decision Tree for Searching a Sorted Array

Decision tree for binary search in a four-element array

(A[0], A[1])

A[1]

A[3]< A[0] A[0]

(A[2], A[3]) A[3] > A[3]

A[0] A[1]

A[2]

A[2]

<
= >

< = > < = >

< >=

(A[1], A[2])

  39log)12(log 33 ==+n

Failed Failed Failed

Failed Failed
Failed cases

< A[0] (A[0], A[1])

> A[3]

(A[1], A[2])

< >

< > < >

< >

A[1]

A[0] A[2]

A[3]

(A[2], A[3])

Failed Failed Failed

Failed Failed

Binary Search → Binary Decision Tree

Lower bound is then A tight lower bound

Leaves → unsuccessful search

Parent nodes → successful search

 )1(log2 +n

P, NP, and NP-Complete Problems

As we discussed, problems that can be solved in polynomial time
are usually called tractable and the problems that cannot be
solved in polynomial time are called intractable, now

Is there a polynomial-time algorithm that solves the problem?

Possible answers:

• yes

• no
– because it can be proved that all algorithms take exponential time

– because it can be proved that no algorithm exists at all to solve
this problem

• don’t know

• don’t know, but if such algorithm were to be found, then it would
provide a means of solving many other problems in polynomial
time

Types of Problems

Two types of problems:

• Optimization problem: construct a solution that maximizes or
minimizes some objective function

• MST, all shortest paths, single source shortest paths, …

• Decision problem: answer yes/no to a question

• Selection, searching, …

Many problems have BOTH decision and optimization versions.

Eg: Traveling Salesman Problem

• optimization: find Hamiltonian cycle of minimum weight

• decision: Is there a Hamiltonian cycle of weight < k

Hamiltonian Circuit: a closed path in a graph that

visits every node in the graph exactly once

Deterministic VS Nondeterministic Algorithm

A deterministic algorithm is the algorithm we discussed before

• A math function: given a specific input, generate the same and
unique output in different runs

A nondeterministic algorithm is the counterpart

• May have different outputs in different runs

• It is a two-stage process:

– Guessing stage: generate a random string S as a candidate
solution

– Verification stage: using a deterministic algorithm which
takes the original input I and S as input and determine if S is a
solution to I

Why becomes nondeterministic?

• System noise

• random number generator

Example: Conjunctive Normal Form (CNF)

Satisfiability

Problem: Is a Boolean expression in its conjunctive normal form (CNF), i.e.,
are there “true” or “false” assignments of these variables that makes the
Boolean expression true?

This problem is in NP.

Nondeterministic algorithm:

• Guess truth assignment

• Check assignment to see if it satisfies CNF formula

Example: (Boolean operation)

Truth assignments:

Checking phase: Θ(n)

CNF-sat has been proven in NPC by Cook in 1971.

)()()(cbabacba 

true

falsectruebtruea

=

===

expression entire the

,,

⋁ is logic “or”

∧ is logic “and” or “logical

conjunction”

Deterministic VS Nondeterministic Algorithm

A problem can have BOTH deterministic and nondeterministic
algorithms

Example:

Shortest path problem: find the shortest path from a to b in a
weighted graph

• Deterministic algorithm: searching the shortest path (brute
force enumerating)

• Nondeterministic algorithm: generate a path P and decide
whether P is a simple path (all vertices on the path are distinct)
from a to b of length<= Threshold.

The Class P & NP

NP-Complete problems

A decision problem D is NP-complete iff

1. D ∈ NP

2. every problem in NP is polynomial-time reducible to D

The class of NP-complete problems is denoted NPC

NP-complete

problem

NP problems

Polynomial Reductions

A decision problem D1 is said to be polynomial reducible to a
decision problem D2 if there exists a function f that transforms
instances of D1 to instances of D2 such that

1. f maps all “yes” instances of D1 to “yes” instances of D2 and all
“no” instances of D1 to “no” instances of D2

2. f is computable by a polynomial-time algorithm

If D2 can be solved in polynomial time → D1 can be solved in
polynomial time

Polynomial Reductions

Example: Polynomial-time reduction of Hamiltonian Circuit to
decision version of Traveling Salesman Problem (Is there a solution
of TSP with total distance no larger than k=n?) given integer
distance

Hamiltonian Circuit: a closed path in a graph that visits every
node in the graph exactly once

Traveling Salesman: find the shortest path that visits every city
exact once and returns to the origin

Polynomial Reductions

G G’

• If G has a Hamiltonian cycle, G’ has a cycle w/ weight n

What does this prove?

• If HC is NPC → TSP(D) is NPC? or

• If TSP(D) is NPC→ HC is NPC?

y

vu

x
y

vu

x
1

2

1

1
1

2

To Prove a Decision Problem is in NPC

1. Prove it is in NP (verification takes polynomial
time)

2. Prove that all problems in NP is reducible to
this problem

3. Or Prove that a known NPC problem is
reducible to this problem

NP-complete

problem

NP problems

known

NP-complete

problem

NP problems

candidate

 for NP -

completeness

BIG problem: If we can prove any given NPC problem can
be solve in polynomial time → P=NP

