
Announcement

We’ll have a quiz on Tuesday, April. 12th on Huffman Coding



Announcement

Homework #6 has been posted in Blackboard and course 
website

Due: 10:05 am EST, Thursday, April 21



Dijkstra’s Algorithm on Undirected Graph

Similar to Prim’s MST algorithm, with the following difference:

• Start with tree consisting of one vertex – source

• “grow” tree one vertex/edge, which has minimum length of 
path, at a time to produce spanning tree

– Construct a series of expanding subtrees T1, T2, …

• Keep track of shortest path from source to each of the vertices 
in Ti

• at each stage construct Ti+1 from Ti: add minimum weight edge 
connecting a vertex in tree (Ti) to one not yet in tree

– choose from “fringe” nodes  

– (this is the “greedy” step!)

• algorithm stops when all vertices are included

edge (v,w) with lowest d(s,v) + d(v,w)

source destination



Pseudo Code

source



Example

b(a,3), d(a,7), c(-,∞), e (-,∞)

d5

c7e∞

d(b,3+2), c(-,∞)→c(b,3+4), e (-,∞)

c7

e9

c(b,7), e (-,∞)→e(d,5+4)

b

eda

c

3

4

62 5

7 4

Delete b

Dis(b)

Delete d

b

eda

c
3

4

62 5

7 4

Dis(d)

c(d,5+5)

<

b3

c∞

e ∞

d7

d(a,7)

<

Delete c

e9

e(d,9)

e(c,13)

<



An Example

Tree 

vertices

Priority queue for the fringe vertices and unseen vertices

a(-,0) b(a,3), d(a,4), c(a,5), e(-,∞), f(-,∞), g(-,∞), h(-,∞), i(-,∞), j(-,∞), k(-,∞), 

l(-,∞)

b(a,3) d(a,4), c(a,5), e(b,3+3), f(b,3+6), g(-,∞), h(-,∞), i(-,∞), j(-,∞), k(-,∞), 

l(-,∞)

d(a,4) c(a,5), e(d,4+1), f(b,9), h(d,4+5), g(-,∞), i(-,∞), j(-,∞), k(-,∞), l(-,∞)

c(a,5) e(d,5), f(b,9), h(d,4+5), g(c,5+4), i(-,∞), j(-,∞), k(-,∞), l(-,∞)

e(d,5) f(e,5+2), h(d,9), g(c,9), i(e,5+4), j(-,∞), k(-,∞), l(-,∞)

f(e,7) h(d,9), g(c,9), i(e,9), j(f,7+5), k(-,∞), l(-,∞)

h(d,9) g(c,9), i(e,9), j(f,12), k(h,9+7), l(-,∞)

g(c,9) i(e,9), j(f,12), k(g,9+6), l(-,∞)

i(e,9) j(f,12) , l(i,9+5), k(g,9+6)

j(f,12) l(i,14), k(g,15)

l(i,14) k(g,15)

k(g,15)



Notes on Dijkstra’s algorithm

Applicable to both undirected and directed graphs

Doesn’t work with  negative weights

Efficiency: 

• O(|E| log |V|) when the graph is represented by adjacency 
linked list and priority queue is implemented by a min-heap. 

• Reason: the whole process is almost the same as Prim’s 
algorithm. Following the same analysis in Prim’s algorithm, we 
can see that it has the same complexity as Prim’s algorithm.

a

bc

24

-10

b(a,2), c(a,4)

c(a,4)

a->c->b = -6 Shorter than the existing path!



Huffman Trees – Coding Problem

Text consists of characters from some n-character alphabet

In communication, we need to code each character by a 
sequence of bits – codeword

Fixed-length encoding: code for each character has m bits

• Standard seven-bit ASCII code does this

Variable-length encoding: using shorter codeword for more 
frequent characters and longer codeword for less frequent ones

• For example, in Morse telegraph code, a(.-), e(.), q(--.-), z(--..)

• How many bits represent the characters? 

• Two important questions:

– What is the lower bound of average number of bits?

– How to avoid confusion in code decoding?



Basic Concept of Information and Coding

You have m message, 1, 2, …,m to transfer, with probability p1, 
p2, … pm, using digital communication, how many bits is 
needed for coding?

Example: you have two messages; you only need 1 bit to 
code: 0 represents message “1” and 1 represents message 
“2”.

Shannon Theorem: let 

If B is the average # bits per message for the best code, then

−=
i

ii ppH 2log

1+ HBH



Huffman Tree – From coding to a binary tree

To avoid confusion, here we consider prefix codes, where no 
codeword is a prefix of a codeword of another character

This way, we can scan the bit string constructed from a text from 
left to right until get the first group of bits that is a valid codeword
for some character. For example, “1” for “A” and “01” for “B”.

Solution:

Associate the characters with leaves of a binary tree in which all 
the left edges are labeled by 0 and all the right edges are labeled 
by 1 (or vice versa)

The codeword of a character (leaf) is a sequence of labels along 
the path from the root to this leaf

Huffman tree can reduce the total bit string by assigning 
shorter codeword (higher level in the tree) to frequent 
character and longer codeword (lower level) to less frequent 
ones.  



Huffman Coding Algorithm

Step 1: Initialize n one-node trees and label them with the 
characters in a dictionary. Record the frequency of each 
character in its tree’s root to indicate the tree’s weight

Step 2: Repeat the following operation until a single tree is 
obtained. 

• Find two trees with the smallest weights. 

• Make them the left and right subtrees of a new tree

• record the sum of their weights in the root of the new tree as its 
weight 

Example: alphabet {A, B, C, D, _} with frequency

character A B C D _

probability 0.35 0.1 0.2 0.2 0.15



0.25

0.1

B

0.15

_

0.2

C

0.2

D

0.35

A

0.2

C

0.2

D

0.35

A

0.1

B

0.15

_

0.4

0.2

C

0.2

D

0.6

0.25

0.1

B

0.15

_

0.6

1.0

0 1

0.4

0.2

C

0.2

D
0.25

0.1

B

0.15

_

0 1 0

0

1

1

0.25

0.1

B

0.15

_

0.35

A

0.4

0.2

C

0.2

D

0.35

A

0.35

A

Repeat:

Step1: Order the nodes based 

on frequency

Step2: Merge the two nodes 

with smallest probabilities

Until one node left



0.25

0.1

B

0.15

_

0.2

C

0.2

D

0.35

A

0.2

C

0.2

D

0.35

A

0.1

B

0.15

_

0.4

0.2

C

0.2

D

0.6

0.25

0.1

B

0.15

_

0.6

1.0

0 1

0.4

0.2

C

0.2

D
0.25

0.1

B

0.15

_

0 1 0

0

1

1

0.25

0.1

B

0.15

_

0.35

A

0.4

0.2

C

0.2

D

0.35

A

0.35

A



The Huffman Code is

Average # of bits per character (average code length)=

෍

𝒊=𝟏

𝟓

𝒑𝒊 ∗ 𝒍𝒊 = 𝟎. 𝟑𝟓 ∗ 𝟐 + 𝟎. 𝟏 ∗ 𝟑 + 𝟎. 𝟐 ∗ 𝟐 + 𝟎. 𝟐 ∗ 𝟐 + 𝟎. 𝟏𝟓 ∗ 𝟑 = 𝟐. 𝟐𝟓

Therefore, BAD is encoded as 1001101 and 100110110111010 is 
decoded as BAD_AD

Character A B C D _

Probability 0.35 0.1 0.2 0.2 0.15

Codeword 11 100 00 01 101

Code length 2 3 2 2 3

Probability of a character Code length of a character



Notes on Huffman Tree (Coding)

The expected average number of bits per character is 2.25

Fixed-length encoding needs at 3 bits for each character

This is an important technique for file (data) compression

Huffman tree/coding has more general applications:

• Assign n positive numbers w1, w2, …, wn to the n leaves of a binary 
tree

• We want to minimize weighted path length               with li be the 
depth of the leaf I

• This has particular applications in making decisions – decision trees


=

n

i

iiwl
1



Another example

Character A B C D E F G H _

Probability 0.2 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05



C

(0.05)

F

(0.05)

G

(0.1)

_

(0.05)

D

(0.1)

CF

(0.1)

DG

(0.2)

CF_

(0.15)

A

(0.2)

ADG

(0.4)

H

(0.15)

B

(0.15)

E

(0.15)

CFH

(0.3)

BE

(0.3)

BCEFH_

(0.6)

10

0

1

0
0

0

0

0

0

1

11

1

1

1

1



Character A B C D E F G H _

Probability 0.2 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05

Codeword 11 010 00100 100 011 00101 101 000 0011

Code 
length

2 3 5 3 3 5 3 3 4

Average number of bits per character (code length):
0.2 ∗ 2 + 0.15 ∗ 3 + 0.05 ∗ 5 + 0.1 ∗ 3 + 0.15 ∗ 3 + 0.05 ∗ 5 + 0.1 ∗ 3 + 0.15 ∗ 3 + 0.05 ∗
4 = 3.05



Reading Assignments

Read Chapter 10. Iterative Improvement



Chapter 11: Limitations of Algorithm Power

n=10 n=100

1 constant constant constant

log n logarithmic 1 (with base 10) 2 (with base 10)

n linear 10 100

n log n n log n 10 (with base 10) 200 (with base 10)

n2 quadratic 100 10,000

n3 cubic 1000 1,000,000

2n exponential 1024 ~1.26*1030

n! factorial 3,628,800 ~9.33*10157

Basic Asymptotic Efficiency Classes (big O, big Θ, and big Ω)



Polynomial-Time Complexity

Polynomial-time complexity: the complexity of an algorithm is

with a fixed degree b>0. Usually b<=3

If a problem can be solved in polynomial time, it is usually 
considered to be theoretically tractable in current computers. 

When an algorithm’s complexity is larger than polynomial, i.e.,  
exponential, theoretically it is considered to be too expensive 
to be useful – intractable 

)(... 0

1

1

1

1

bb

b

b

b nananana ++++ −

−



Polynomial-Time Complexity

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorial

Polynomial time 

complexity



List of Problems

Sorting 𝑂(𝑛𝑙𝑜𝑔𝑛)

Searching 𝑂(𝑛)

All shortest paths in a graph 𝑂(|𝑉|𝟑)

Minimum spanning tree 𝑂(|𝐸|log |𝑉|)

Assignment problem 𝑂(𝑛!)~𝑂(𝒏𝟑)

Towers of Hanoi 𝑂(2𝑛)

Knapsack problem 𝑂(2𝑛)

Traveling salesman problem 𝑶(𝑛!)~𝑂 𝒏𝟐2𝑛 – Current record 
85,900 cities (Applegate et al. 2006)
http://en.wikipedia.org/wiki/Travelling_salesman_problem#Computational_complexity

…

http://en.wikipedia.org/wiki/Travelling_salesman_problem#Computational_complexity


Lower Bound

Problem A can be solved by algorithms a1, a2,…, ap

Problem B can be solved by algorithms b1, b2,…, bq

We may ask 

• Which algorithm is more efficient? This makes more sense when 
the compared algorithms solve the same problem

– It’s not fair to compare selection sorting with Warshall’s algorithm

• Which problem is more complex? We may compare the 
complexity of the best algorithm for A and the best algorithm for B

For each problem, we want to know the lower bound: the best 
possible algorithm’s efficiency for a problem → Ω(.)

Tight lower bound: we have found an algorithm in the this lower-
bound efficiency class 𝚯(. ). The constant factor makes the 
difference.



Trivial Lower Bound

Many problems need to ‘read’ all the necessary items and 
write the ‘output’

→ Their sizes provide a trivial lower bound

Example: 

1. Generate all permutations of 𝑛 distinct items → Ω(𝑛!)

Why?

Is this a tight lower bound?

2. Evaluate the polynomial at a given x

→ Ω(n), Is this tight?

01

1

1 ... axaxaxa n

n

n

n ++++ −

−

Yes.

Yes.



Notes on Trivial Lower Bound

Multiplying two nxn matrices → Ω(n2)

• because we need to process 2n2 elements and output n2

elements 

• We do not know whether this is tight – a lower bound of 
Ω 𝑛2𝑙𝑜𝑔𝑛 has been proven Raz 2002

Many trivial lower bounds are too low to be useful

• TSP → Ω(n2) because its input is n(n-1)/2 intercity distance 
and output is n+1 city in sequence

• There is no known polynomial-time algorithm to solve it

Trivial lower bound sometime have problems

• We do not need to process all the input elements

• For example: searching an element in a sorted array. What is 
its complexity?



Information-Theoretic Arguments

This approach seeks to establish a lower bound based on the 
amount of information, which has to produce – an information-
theoretic lower bound

Recall the problem of guess the number from 1...n by asking 
‘yes/no’ questions

Fundamentally, it is a coding problem. If the input number can be 
encoded into m bits, each ‘yes/no’ question just resolve one bits 
and therefore, the lower bound is m

We know that m=log2n

Solution: a decision tree. We will apply the decision tree to find the 
lower bound for several problems 



Find the Smallest from three numbers using 

comparison

Leaves in the decision tree is the possible output. The output size 
is at least 3 (maybe larger than 3) here

Complexity for the worst case: the height of this decision tree

Given L leaves, the height of the binary tree is at least 

a < b

a

a <  c b < c

c b c

yes

yes no

noyesno

 L2log


