## Recall: Floyd's Algorithm: All pairs shortest paths

In a weighted graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}, D^{(1)}, \ldots$ using an initial subset of the vertices as intermediaries.


|  | 1 | 2 | 3 | 4 |  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | $\infty$ | 3 | $\infty$ | 1 | 0 | 10 |  | 4 |
| 2 | 2 | 0 | $\infty$ | $\infty$ | 2 | 2 | 0 | 5 | 6 |
| 3 | $\infty$ | 7 | 0 | 1 | 3 | 7 | 7 |  | 1 |
| 4 | 6 | $\infty$ | $\infty$ | 0 | 4 | 6 | 16 |  | 0 |
| Weight matrix |  |  |  |  |  |  |  |  |  |

## Similar to Warshall's Algorithm

$d_{i j}^{(k)}$ in $D^{(k)}$ is equal to the length of shortest path among all paths from the ith vertex to jth vertex with each intermediate vertex, if any, numbered not higher than $k$


$$
d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{l j}^{(k-1)}\right\} \text { for } k \geq 1, d_{i j}^{(0)}=w_{i j}
$$

## Pseudocode of Floyd's Algorithm

The next matrix in sequence can be written over its predecessor

```
ALGORITHM Floyd(W[1..n,1..n])
\(D \leftarrow W\)
for \(k \leftarrow 1\) to \(n\) do
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
            \(D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}\)
return \(D\)
```


## Chapter 9: Greedy algorithms

Change-making problem

- Coin-system in US: 25(quarter), 10 (dime), 5(nickel), 1 (penny)
- If you need to give a change of 48 cents using coins,
- 48 cents $=1$ quarter +2 dimes +3 pennies
- This is a greedy algorithm: reduce the amount in the fastest way

The greedy approach constructs a solution through a sequence of steps until a complete solution is reached, On each step, the choice made must be

- Feasible: Satisfy the problem's constraints
- locally optimal: the best choice
- Irrevocable: Once made, it cannot be changed later


## Minimum Spanning Tree (MST)

Motivation: Planning the layout of cables or water pipes with the minimum length to cover all houses in a community
$\rightarrow$ a tree structure (a connected acyclic graph)
Spanning tree of a connected graph $G$

- A connected acyclic subgraph of $G$ that includes all of $G$ 's vertices.
- At least one spanning tree exists for $G$.

Minimum Spanning Tree of a weighted, connected graph $G$ :

- a spanning tree of $G$ of minimum total weight.



## Prim's MST algorithm

Start with tree consisting of one vertex
"Grow" tree one vertex/edge at a time to produce MST

- Construct a series of expanding subtrees $T_{1}, T_{2}, \ldots$

Greedy step: at each stage construct $T_{i+1}$ from $T_{i}$ : add an edge with minimum weight connecting a vertex in tree ( $\mathrm{T}_{\mathrm{i}}$ ) to one not yet in tree

For all vertices that are not yet in the tree, we have two groups

- Fringe nodes: has an edge to at least one node in current tree $T_{i}$
- unseen nodes: no edge to any node in $T_{i}$

A priority queue is used

- The node with highest priority will be select
- The priority queue will be updated every time when a new vertex is added

Algorithm stops when all vertices are included

## Prim's MST algorithm

## ALGORITHM $\operatorname{Prim}(G)$

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G=\langle V, E\rangle$
//Output: $E_{T}$, the set of edges composing a minimum spanning tree of $G$ $V_{T} \leftarrow\left\{v_{0}\right\} \quad$ //the set of tree vertices can be initialized with any vertex $E_{T} \leftarrow \emptyset$
for $i \leftarrow 1$ to $|V|-1$ do
find a minimum-weight edge $e^{*}=\left(v^{*}, u^{*}\right)$ among all the edges $(v, u)$
such that $v$ is in $V_{T}$ and $u$ is in $V-V_{T}$

$$
\begin{aligned}
& V_{T} \leftarrow V_{T} \cup\left\{u^{*}\right\} \\
& E_{T} \leftarrow E_{T} \cup\left\{e^{*}\right\}
\end{aligned}
$$

return $E_{T}$

## An Example:

Finding the MST of the following graph using Prim's algorithm


## Step 1:

Start from empty tree $T$, pick one vertex, a(-,-) and add it to $T$ Priority queue: $b(a, 3), f(a, 5), e(a, 6), c(-, \infty), d(-, \infty)$


## Step 2:

Add the minimum-weight fringe edge $b(a, 3)$ into $T$
Priority queue: $\mathbf{c}(\mathrm{b}, 1), \mathrm{f}(\mathrm{b}, 4), \mathrm{e}(\mathrm{a}, 6), \mathrm{d}(-, \infty)$


## Step 3:

Add the minimum-weight fringe edge $\mathbf{c}(\mathrm{b}, 1)$ into $T$
Priority queue: $f(b, 4), d(c, 6), e(a, 6)$


## Step 4:

Add the minimum-weight fringe edge $f(b, 4)$ into $T$
Priority queue: e(f,2), d(f,5)


## Step 5:

Add the minimum-weight fringe edge $e(f, 2)$ into $T$
Priority queue: $d(f, 5)$


## Step 6:

Add the minimum-weight fringe edge $d(f, 5)$ into $T$
No remaining vertices and the algorithm is done!


## An Example



| Tree vertices | Priority queue for the fringe vertices |
| :---: | :---: |
| a(-,-) | $\begin{aligned} & b(a, 3), d(a, 4), c(a, 5), e(-, \infty), f(-, \infty), g(-, \infty), h(-, \infty), i(-, \infty), j(-, \infty), k(-, \infty), \\ & l(-, \infty) \end{aligned}$ |
| b(a,3) | $\mathrm{e}(\mathrm{b}, 3), \mathrm{d}(\mathrm{a}, 4), \mathrm{c}(\mathrm{a}, 5), \mathrm{f}(\mathrm{b}, 6), \mathrm{g}(-, \infty), \mathrm{h}(-, \infty), \mathrm{i}(-, \infty), \mathrm{j}(-, \infty), \mathrm{k}(-, \infty), \mathrm{l}(-, \infty)$ |
| e(b,3) | $\mathrm{d}(\mathrm{e}, 1), \mathrm{f}(\mathrm{e}, 2), \mathrm{i}(\mathrm{e}, 4), \mathrm{c}(\mathrm{a}, 5), \mathrm{g}(-, \infty), \mathrm{h}(-, \infty), \mathrm{j}(-, \infty), \mathrm{k}(-, \infty), \mathrm{l}(-, \infty)$ |
| d(e,1) | $\mathrm{c}(\mathrm{d}, 2), \mathrm{f}(\mathrm{e}, 2), \mathrm{i}(\mathrm{e}, 4), \mathrm{h}(\mathrm{d}, 5), \mathrm{g}(-, \infty), \mathrm{j}(-, \infty), \mathrm{k}(-, \infty), \mathrm{l}(-, \infty)$ |
| c(d,2) | $\mathrm{f}(\mathrm{e}, 2), \mathrm{g}(\mathrm{c}, 4), \mathrm{i}(\mathrm{e}, 4), \mathrm{h}(\mathrm{d}, 5), \mathrm{j}(-, \infty), \mathrm{k}(-, \infty), \mathrm{l}(-, \infty)$ |
| f(e,2) | $\mathrm{g}(\mathrm{c}, 4), \mathrm{i}(\mathrm{e}, 4), \mathrm{h}(\mathrm{d}, 5), \mathrm{j}(\mathrm{f}, 5), \mathrm{k}(-, \infty), \mathrm{l}(-, \infty)$ |
| g(c,4) | $\mathrm{h}(\mathrm{g}, 3), \mathrm{i}(\mathrm{e}, 4), \mathrm{j}(\mathrm{f}, 5), \mathrm{k}(\mathrm{g}, 6), \mathrm{l}(-, \infty)$ |
| h(g, 3) | $\mathrm{i}(\mathrm{e}, 4), \mathrm{j}(\mathrm{f}, 5), \mathrm{k}(\mathrm{g}, 6), \mathrm{l}(-, \infty)$ |
| i(e,4) | $\mathrm{j}(\mathrm{i}, 3), \mathrm{l}(\mathrm{i}, 5), \mathrm{k}(\mathrm{g}, 6)$ |
| j(i,3) | $\mathrm{l}(\mathrm{i}, 5), \mathrm{k}(\mathrm{g}, 6)$ |
| 1(i,5) | $\mathrm{k}(\mathrm{g}, 6)$ |
| k(g,6) |  |

An Example


The MST consists of the edges $a b, b e, e d, d c, e f, c g, g h, e i, i j, i l$, and $g k$

## Does Prim's Algorithm Really Produce MST?

Lemma: Let $T_{i-1}$ be part of the minimum spanning tree $T$, which contains a subset of the vertices of $G(X)$. Let edge $e$ be the smallest-weight edge connecting $X$ (tree $T_{i-1}$ ) to $G-X$ (remaining vertices). Then $e$ (minimum-weight fringe edge) is part of the MST

Proof: Using contradiction, suppose $e=(u, v)$ is not part of MST. Then there is another edge $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ between $X$ and $G-X$ and belongs to MST. Replace $e^{\prime}$ by $e$ will result in a spanning tree with smaller total weight than MST. Contradiction!


## Notes on Prim's algorithm

To locate the minimum-weight fringe edge, we can use the heap structure. But here we use the min-heap, where the root has a key smaller than both children

- Construct the min-heap -- $\mathrm{O}(|\mathrm{V}|)$
- Delete the min - $O(\log |V|)$, it can be performed $|V|-1$ times
- Verify minimum weight from any remaining vertex to the tree this may be performed $|E|$ times. Each verification may result in a key priority change in the heap, which takes $O(\log |V|)$.
- Therefore, the total complexity is
$\mathrm{O}\left[|V|+(|V|-1+|E|)^{*} \log |V|\right]=\mathrm{O}(|E| \log |V|)$


## MinHeap and Prim's Algorithm



$$
f(b, 4), d(c, 6), e(a, 6)
$$



## Dijkstra's Algorithm - Single-Source Shortest Paths

Single-source short paths problem - find the shortest path starting from a given vertex to any other vertex

Example: hub airports for airplane planning
Using greedy strategy to find the single-source shortest paths

- In Floyd's algorithm, we find the all-pair shortest paths, which may not be necessary in many applications
- Certainly, all-pair shortest paths contain the single-source shortest paths. But Floyd's algorithm has $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$ complexity!

There are many algorithms that can solve this problem, here we introduce the Dijkstra's algorithm

Note: Dijkstra's algorithm only works when all the edge-weight are nonnegative.

## Dijkstra's Algorithm on Undirected Graph

Similar to Prim's MST algorithm, with the following difference:

- Start with tree consisting of one vertex - source
- "grow" tree one vertex/edge, which has minimum length of path, at a time to produce spanning tree
-Construct a series of expanding subtrees $T_{1}, T_{2}, \ldots$
- Keep track of shortest path from source to each of the vertices in $\mathrm{T}_{\mathrm{i}}$
- at each stage construct $T_{i+1}$ from $T_{i}$ : add minimum wint edge connecting a vertex in tree ( $\mathrm{T}_{\mathrm{i}}$ ) to one not yet in tree
-choose from "fringe" nodes edge ( $v, w)$ with lowest $d(s, v)+d(v, w)$
-(this is the "greedy" step!)
source
destination
- algorithm stops when all vertices are included


## Example:

Find the shortest paths starting from vertex a


## Step 1:

Tree vertices: a(-,0)
Priority queue: $b(a, 3), d(a, 7), c(-, \infty), e(-, \infty)$


## Step 2:

Tree vertices: $a(-, 0), b(a, 3)$,
Priority queue: $d(a, 7) \rightarrow d(b, 3+2), c(-, \infty) \rightarrow c(b, 3+4), e(-, \infty)$


## Step 3:

Tree vertices: $a(-, 0), b(a, 3), d(b, 5)$
Priority queue: $c(b, 3+4), e(-, \infty) \rightarrow e(d, 5+4)$


## Step 4:

Tree vertices: $a(-, 0), b(a, 3), d(b, 5), c(b, 7)$
Priority queue: $e(d, 9)$


## Step 5:

Tree vertices: $a(-, 0), b(a, 3), d(b, 5), c(b, 7), e(d, 9)$
Remaining vertices: none $\rightarrow$ the algorithm is done!


## Output the Single-Source Shortest Paths

Tree vertices: $a(-, 0), b(a, 3), d(b, 5), c(b, 7), e(d, 9)$


| from a to $b:$ | a-b | of length 3 |
| :--- | :--- | :--- |
| from a to $d:$ | a-b-d | of length 5 |
| from a to $c:$ | a-b-c | of length 7 |
| from a to e: | a-b-d-e | of length 9 |

