Recall: Floyd's Algorithm: All pairs shortest paths

In a weighted graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, $D^{(1)}$, ... using an initial subset of the vertices as intermediaries.

Similar to Warshall's Algorithm

 $d_{ij}^{(k)}$ in $D^{(k)}$ is equal to the length of shortest path among all paths from the *i*th vertex to *j*th vertex with each intermediate vertex, if any, numbered not higher than *k*

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \text{ for } k \ge 1, d_{ij}^{(0)} = w_{ij}$$

Pseudocode of Floyd's Algorithm

The next matrix in sequence can be written over its predecessor

ALGORITHM Floyd(W[1..n,1..n]) $D \leftarrow W$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}$ return D

Chapter 9: Greedy algorithms

Change-making problem

- Coin-system in US: 25(quarter), 10 (dime), 5(nickel), 1(penny)
- If you need to give a change of 48 cents using coins,
- 48 cents = 1 quarter + 2 dimes + 3 pennies
- This is a greedy algorithm: reduce the amount in the fastest way

The greedy approach constructs a solution through a sequence of steps until a complete solution is reached, On each step, the choice made must be

- Feasible: Satisfy the problem's constraints
- *locally optimal:* the best choice
- Irrevocable: Once made, it cannot be changed later

Minimum Spanning Tree (MST)

Motivation: Planning the layout of cables or water pipes with the minimum length to cover all houses in a community

 \rightarrow a tree structure (a connected acyclic graph)

Spanning tree of a connected graph G

- A connected acyclic subgraph of *G* that includes all of *G*'s vertices.
- At least one spanning tree exists for *G*.

Minimum Spanning Tree of a weighted, connected graph G:

• a spanning tree of G of minimum total weight.

Prim's MST algorithm

Start with tree consisting of one vertex

"Grow" tree one vertex/edge at a time to produce MST

• Construct a series of expanding subtrees T₁, T₂, ...

Greedy step: at each stage construct T_{i+1} from T_i : add an edge with minimum weight connecting a vertex in tree (T_i) to one not yet in tree

For all vertices that are not yet in the tree, we have two groups

- Fringe nodes: has an edge to at least one node in current tree T_i
- unseen nodes: no edge to any node in T_i

A priority queue is used

- The node with highest priority will be select
- The priority queue will be updated every time when a new vertex is added

Algorithm stops when all vertices are included

Prim's MST algorithm

ALGORITHM *Prim*(*G*)

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G = \langle V, E \rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \emptyset$

for $i \leftarrow 1$ to |V| - 1 do

find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u) such that v is in V_T and u is in $V - V_T$

$$V_T \leftarrow V_T \cup \{u^*\}$$

 $E_T \leftarrow E_T \cup \{e^*\}$

return E_T

An Example:

Finding the MST of the following graph using Prim's algorithm

Step 1:

Start from empty tree *T*, pick one vertex, a(-,-) and add it to *T* Priority queue: b(a,3), f(a,5), e(a,6), c(-, ∞), d(-, ∞)

Step 2:

Add the minimum-weight fringe edge b(a,3) into T

Priority queue: c(b,1), f(b,4), e(a,6), $d(-,\infty)$

Step 3:

Add the minimum-weight fringe edge c(b,1) into T

Priority queue: f(b,4), d(c,6), e(a,6)

Step 4:

Add the minimum-weight fringe edge f(b,4) into T

Priority queue: e(f,2), d(f,5)

Step 5:

Add the minimum-weight fringe edge e(f,2) into T

Priority queue: d(f,5)

Step 6:

Add the minimum-weight fringe edge d(f,5) into T

No remaining vertices and the algorithm is done!

An Example

Tree	Priority queue for the fringe vertices	
vertices		
a(-,-)	b(a,3), d(a,4), c(a,5), e(-,∞), f(-,∞), g(-,∞), h(-,∞), i(-,∞), j(-,∞), k(-,∞),	
	l(-,∞)	
b(a,3)	e(b,3), d(a,4), c(a,5), f(b,6), g(-,∞), h(-,∞), i(-,∞), j(-,∞), k(-,∞), l(-,∞)	
e(b,3)	d(e,1) , f(e,2), i(e,4), c(a,5), g(-,∞), h(-,∞),j(-,∞), k(-,∞), l(-,∞)	
d(e,1)	c(d,2), f(e,2), i(e,4), h(d,5), g(-,∞), j(-,∞), k(-,∞), l(-,∞)	
c(d,2)	f(e,2), g(c,4), i(e,4), h(d,5), j(-,∞), k(-,∞), l(-,∞)	
f(e,2)	g(c,4), i(e,4), h(d,5), j(f,5), k(-,∞), l(-,∞)	
g(c,4)	h(g,3), i(e,4), j(f,5) , k(g,6), l(-,∞)	
h(g,3)	i(e,4), j(f,5), k(g,6), l(-,∞)	
i(e,4)	j(i,3), l(i,5), k(g,6)	
j(i,3)	l(i,5), k(g,6)	
l(i,5)	k(g,6)	
k(g,6)		

An Example

The MST consists of the edges ab, be, ed, dc, ef, cg, gh, ei, ij, il, and gk

Does Prim's Algorithm Really Produce MST?

<u>Lemma</u>: Let T_{i-1} be part of the minimum spanning tree T, which contains a subset of the vertices of G(X). Let edge e be the smallest-weight edge connecting X (tree T_{i-1}) to G - X (remaining vertices). Then e (minimum-weight fringe edge) is part of the MST

Proof: Using contradiction, suppose e = (u, v) is not part of MST. Then there is another edge e' = (u', v') between *X* and *G* – *X* and belongs to MST. Replace *e'* by *e* will result in a spanning tree with smaller total weight than MST. Contradiction!

Notes on Prim's algorithm

To locate the minimum-weight fringe edge, we can use the heap structure. But here we use the min-heap, where the root has a key smaller than both children

- Construct the min-heap -- O(|V|)
- Delete the min O(log |V|), it can be performed |V|-1 times
- Verify minimum weight from any remaining vertex to the tree this may be performed |*E*| times. Each verification may result in a key priority change in the heap, which takes O(log |*V*|).
- Therefore, the total complexity is O[|*V*|+(|*V*|-1+|*E*|)*log |*V*]]=O(|*E*| log |*V*|)

MinHeap and Prim's Algorithm

Dijkstra's Algorithm – Single-Source Shortest Paths

Single-source short paths problem – find the shortest path starting from a given vertex to any other vertex

Example: hub airports for airplane planning

Using greedy strategy to find the single-source shortest paths

- In Floyd's algorithm, we find the all-pair shortest paths, which may not be necessary in many applications
- Certainly, all-pair shortest paths contain the single-source shortest paths. But Floyd's algorithm has $O(|V|^3)$ complexity!

There are many algorithms that can solve this problem, here we introduce the **Dijkstra's algorithm**

Note: Dijkstra's algorithm only works **when all the edge-weight are nonnegative.**

Dijkstra's Algorithm on Undirected Graph

Similar to Prim's MST algorithm, with the following difference:

- Start with tree consisting of one vertex source
- "grow" tree one vertex/edge, which has minimum length of path, at a time to produce spanning tree
 - –Construct a series of expanding subtrees $T_1, T_2, ...$
- Keep track of shortest path from source to each of the vertices in T_i
- at each stage construct T_{i+1} from T_i: add minimum weight edge connecting a vertex in tree (T_i) to one not yet in tree
 - -choose from "fringe" nodes
 - -(this is the "greedy" step!)

edge (v,w) with lowest d(s,v) + d(v,w) source destination

algorithm stops when all vertices are included

Example:

Find the shortest paths starting from vertex a

Step 1:

Tree vertices: a(-,0)

Priority queue: b(a,3), d(a,7), $c(-,\infty)$, $e(-,\infty)$

Step 2:

Tree vertices: a(-,0), b(a,3),

Priority queue: $d(a,7) \rightarrow d(b,3+2)$, $c(-,\infty) \rightarrow c(b,3+4)$, $e(-,\infty)$

Step 3:

Tree vertices: a(-,0), b(a,3), d(b,5)

Priority queue: c(b,3+4), $e(-,\infty) \rightarrow e(d,5+4)$

Step 4:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7)

Priority queue: *e(d,9)*

Step 5:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

Remaining vertices: none \rightarrow the algorithm is done!

Output the Single-Source Shortest Paths

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

from a to b:	a-b	of length 3
from a to d:	a-b-d	of length 5
from a to c:	a-b-c	of length 7
from <i>a</i> to e:	a-b-d-e	of length 9