Recall: Floyd’s Algorithm: All pairs shortest
paths

In a weighted graph, find shortest paths
between every pair of vertices

Same idea: construct solution through series
of matrices D), D), ... using an initial subset
of the vertices as intermediaries.

1 2 3 4 1 2 3 4
0 o 3 o 10 10 3 4
2 0 o o [>2 2 0 5 6
o 7 0 1 317 7 0 1
6 o o 0 416 16 9 0

Weight matrix Distance matrix

Similar to Warshall’s Algorithm

d” in D* is equal to the length of shortest path among all

pl]aths from the ith vertex to jth vertex with each intermediate
vertex, if any, numbered not higher than k

d;.k) :mln{d(k D d 1)+a’(k N for k >1, d(o) =W,

Pseudocode of Floyd’s Algorithm

The next matrix in sequence can be written over its
predecessor

ALGORITHM Floyd(W|l..n,l..n))
D«W
for k < 1tondo
fori < 1tondo
for j < 1tondo
Dli, j] < min{D[i, j], D[i,k]+ Dlk, j]}

return D

Chapter 9: Greedy algorithms

Change-making problem
» Coin-system in US: 25(quarter), 10 (dime), 5(nickel), 1(penny)
* If you need to give a change of 48 cents using coins,
» 48 cents = 1 quarter + 2 dimes + 3 pennies
 This is a greedy algorithm: reduce the amount in the fastest way

The greedy approach constructs a solution through a
sequence of steps until a complete solution is reached, On
each step, the choice made must be

» Feasible: Satisfy the problem’s constraints
* locally optimal: the best choice
* Irrevocable: Once made, it cannot be changed later

Minimum Spanning Tree (MST)

Motivation: Planning the layout of cables or water pipes with the
minimum length to cover all houses in a community

-> a tree structure (a connected acyclic graph)

Spanning tree of a connected graph G

* A connected acyclic subgraph of G that includes all of G’s vertices.
» At least one spanning tree exists for G.

Minimum Spanning Tree of a weighted, connected graph G:

« aspanning tree of G of minimum total weight.
4
3

1 —>
7

Prim’s MST algorithm

Start with tree consisting of one vertex

“Grow” tree one vertex/edge at a time to produce MST
» Construct a series of expanding subtrees T,, T,, ...

Greedy step: at each stage construct T,,, from T.: add an edge
with minimum weight connecting a vertex in tree (T,) to one not yet
in tree

For all vertices that are not yet in the tree, we have two groups
 Fringe nodes: has an edge to at least one node in current tree T,
* unseen nodes: no edge to any node in T,

A priority queue is used
* The node with highest priority will be select

* The priority queue will be updated every time when a new vertex is
added

Algorithm stops when all vertices are included

Prim’s MIST algorithm

ALGORITHM Prim(G)

//Prim’s algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = (V, E)
//Output: E, the set of edges composing a minimum spanning tree of G
Vr <= {vg} //the set of tree vertices can be initialized with any vertex
Er < ()
fori < 1to|V|—1do
find a minimum-weight edge ¢* = (v*, u*) among all the edges (v, u)
suchthatvisin Vo anduisin V — Vy
Vi < Vo U {u™)
Er < Ez U {e*)
return £,

An Example:

Finding the MST of the following graph using Prim’s algorithm

Step 1:

Start from empty tree T, pick one vertex, a(-,-) and add itto T
Priority queue: b(a,3), f(a,5), e(a,6), c(-,«), d(-,~)

Step 2:

Add the minimum-weight fringe edge b(a,3) into T
Priority queue: c(b,1), f(b,4), e(a,6), d(-,~)

Step 3:

Add the minimum-weight fringe edge c(b,1) into T
Priority queue: f(b,4), d(c,6), e(a,6)

Step 4:

Add the minimum-weight fringe edge f(b,4) into T
Priority queue: e(f,2), d(f,5)

Step 5:

Add the minimum-weight fringe edge e(f,2) into T
Priority queue: d(f,5)

Step 6:

Add the minimum-weight fringe edge d(f,5) into T

No remaining vertices and the algorithm is done!

1

An Example

vertices
“ b(a,3), d(a,4), c(a,5), e(-,»), f(-,»), g(-,»), h(=,), i(-,%), j(-,*), K(-,*),
|(-’oo)

CIEEIE e(b,3), d(a,4), c(@,5), f(b,6), g(-,), h(=,), i(-,=), (), k(-,*), I(-,=)
d(e’1) ’ f(e,2), i(e’4)’ C(a,5), g(_’oo)’ h(_’oo),j(_’oo)’ k(_’oo)’ I("Oo)
LIERE c(d,2), f(e,2), i(e,4), h(d,5), g(-*), j(-,), k(-,%), I(-,*)

f(e,2), g(C,4), i(e’4)’ h(d,5), j(_’oo)’ k(-,oo), |(_’oo)

g(C,4), i(e!4)’ h(d’5)’ j(f,5), k(_’oo)’ |(-’oo)

nm- h(g,3), i(e,4), j(f,5) , k(g,6), I(-,)

i(e,4), j(f,5), k(g,6), I(-,)

HM_ i(i,3), 1i,5), k(g.6)

STHRIEE 1(i,5), k(g,6)

TSI «(9.6)
k(g6)

An Example

N3 & The MST consists of the edges
ST T\ ab, be, ed, dc, ef, cg, gh, ei, ij, il,
4 3
and gk
——————0

(%)
£
~ x’/ o &
on
N e
s 1\(‘0-
(S]
N -~
n

fa
/
P o
T
- won
w
o

g

'/-
\C
(w =)

Does Prim’s Algorithm Really Produce MST?

Lemma: Let T;_, be part of the minimum spanning tree T, which
contains a subset of the vertices of G(X). Let edge e be the
smallest-weight edge connecting X (tree T;_;) to G — X (remaining
vertices). Then e (minimum-weight fringe edge) is part of the MST

Proof: Using contradiction, suppose e = (u, v) is not part of MST.
Then there is another edge e’ = (v, v’) between X and ¢ — X and
belongs to MST. Replace e’ by e will result in a spanning tree with
smaller total weight than MST. Contradiction!

Notes on Prim’s algorithm

To locate the minimum-weight fringe edge, we can use the
heap structure. But here we use the min-heap, where the root
has a key smaller than both children

 Construct the min-heap -- O(| V)
* Delete the min — O(log |V]), it can be performed |V]|-1 times

* Verify minimum weight from any remaining vertex to the tree —
this may be performed |E| times. Each verification may result
in a key priority change in the heap, which takes O(log |V]).

« Therefore, the total complexity is

O[|VI+(|V]-1+|El)*log [V|]=O(|E] log |V])

MinHeap and Prim’s Algorithm

b(a,3), f(a,5), e(a,6), c(-,), d(-,~) c(b,1), f(b,4), e(a,6), d(-,~)

- .,’w-:,’w-»&

f(b,4), d(c,6), e(a,6)

= ¢ ®

Dijkstra’s Algorithm - Single-Source Shortest
Paths

Single-source short paths problem — find the shortest path starting
from a given vertex to any other vertex

Example: hub airports for airplane planning

Using greedy strategy to find the single-source shortest paths

* In Floyd’s algorithm, we find the all-pair shortest paths, which may
not be necessary in many applications

« Certainly, all-pair shortest paths contain the single-source shortest
paths. But Floyd’s algorithm has O(|V|3) complexity!

There are many algorithms that can solve this problem, here we
introduce the Dijkstra’s algorithm

Note: Dijkstra’s algorithm only works when all the edge-weight are
nonnegative.

Dijkstra’s Algorithm on Undirected Graph

Similar to Prim’s MST algorithm, with the following difference:
« Start with tree consisting of one vertex — source

* “grow” tree one vertex/edge, which has minimum length of
path, at a time to produce spanning tree

— Construct a series of expanding subtrees T,, T,, ...

« Keep track of shortest path from source to each of the vertices
in T,

» at each stage construct T,,, from T,: add i
connecting a vertex in tree (T,) to one not yet in tree
—choose from “fringe” nodes ;
dge (v, th | t d(s,v) + d(v,
— (this is the “greedy” step!) edge (v.w) with lowes l/(/s v) * d(v M%

. . source destination
» algorithm stops when all vertices are included

Example:

Find the shortest paths starting from vertex a

Step 1:

Tree vertices: a(-,0)

Priority queue: b(a,3), d(a,7), ¢(-,2), e (-,0)

Step 2:

Tree vertices: a(-,0), b(a,3),

Priority queue: d(a,7) 2d(b,3+2), ¢(-,0)=>c(b,3+4), e (-,»)

Step 3:

Tree vertices: a(-,0), b(a,3), d(b,5)
Priority queue: c(b,3+4), e (-,0) De(d,5+4)

Step 4:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7)
Priority queue: ¢(d,9)

Step 5:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

Remaining vertices: none - the algorithm is done!

Output the Single-Source Shortest Paths

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

from a to b: a-b of length 3
from a to d: a-b-d of length 5
from ato c: a-b-c of length 7
from a to e: a-b-d-e of length 9

