
Recall: Floyd’s Algorithm: All pairs shortest

paths

In a weighted graph, find shortest paths

between every pair of vertices

Same idea: construct solution through series

of matrices D(0), D(1), … using an initial subset

of the vertices as intermediaries.

2

4
3

1

2

3 6

7

1
064

1073

022

301

4321









091664

10773

65022

431001

4321

Weight matrix Distance matrix

Similar to Warshall’s Algorithm

in is equal to the length of shortest path among all
paths from the ith vertex to jth vertex with each intermediate
vertex, if any, numbered not higher than k

)(k

ijd
)(kD

v i v j

v k

d
i k

(k-1)
d

k j

(k-1)

d
i j

(k-1)

ijij

k

kj

k

ik

k

ij

k

ij wdkdddd =+= −−−)0()1()1()1()(,1},min{ for

Pseudocode of Floyd’s Algorithm

The next matrix in sequence can be written over its
predecessor

D

jkDkiDjiDjiD

nj

ni

nk

WD

nnWFloyd

 return

do to for

do to for

do to for

ALGORITHM

]},[],[],,[min{],[

1

1

1

])..1,..1[(

+









Chapter 9: Greedy algorithms

Change-making problem

• Coin-system in US: 25(quarter), 10 (dime), 5(nickel), 1(penny)

• If you need to give a change of 48 cents using coins,

• 48 cents = 1 quarter + 2 dimes + 3 pennies

• This is a greedy algorithm: reduce the amount in the fastest way

The greedy approach constructs a solution through a
sequence of steps until a complete solution is reached, On
each step, the choice made must be

• Feasible: Satisfy the problem’s constraints

• locally optimal: the best choice

• Irrevocable: Once made, it cannot be changed later

Minimum Spanning Tree (MST)

Motivation: Planning the layout of cables or water pipes with the
minimum length to cover all houses in a community

→ a tree structure (a connected acyclic graph)

Spanning tree of a connected graph G

• A connected acyclic subgraph of G that includes all of G’s vertices.

• At least one spanning tree exists for G.

Minimum Spanning Tree of a weighted, connected graph G:

• a spanning tree of G of minimum total weight.
3

42

1
4

2

6
1

3

7

3

42

1
4

2

6
1

3

7

Prim’s MST algorithm

Start with tree consisting of one vertex

“Grow” tree one vertex/edge at a time to produce MST

• Construct a series of expanding subtrees T1, T2, …

Greedy step: at each stage construct Ti+1 from Ti: add an edge
with minimum weight connecting a vertex in tree (Ti) to one not yet
in tree

For all vertices that are not yet in the tree, we have two groups

• Fringe nodes: has an edge to at least one node in current tree Ti

• unseen nodes: no edge to any node in Ti

A priority queue is used

• The node with highest priority will be select

• The priority queue will be updated every time when a new vertex is
added

Algorithm stops when all vertices are included

Prim’s MST algorithm

An Example:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Finding the MST of the following graph using Prim’s algorithm

Step 1:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Start from empty tree T, pick one vertex, a(-,-) and add it to T

Priority queue: b(a,3), f(a,5), e(a,6), c(-,∞), d(-,∞)

Step 2:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Add the minimum-weight fringe edge b(a,3) into T

Priority queue: c(b,1), f(b,4), e(a,6), d(-,∞)

Step 3:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Add the minimum-weight fringe edge c(b,1) into T

Priority queue: f(b,4), d(c,6), e(a,6)

Step 4:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Add the minimum-weight fringe edge f(b,4) into T

Priority queue: e(f,2), d(f,5)

Step 5:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Add the minimum-weight fringe edge e(f,2) into T

Priority queue: d(f,5)

Step 6:

b

dfa

c

3

1

64 4

5 5

e

2
6 8

Add the minimum-weight fringe edge d(f,5) into T

No remaining vertices and the algorithm is done!

An Example

Tree

vertices

Priority queue for the fringe vertices

a(-,-) b(a,3), d(a,4), c(a,5), e(-,∞), f(-,∞), g(-,∞), h(-,∞), i(-,∞), j(-,∞), k(-,∞),

l(-,∞)

b(a,3) e(b,3), d(a,4), c(a,5), f(b,6), g(-,∞), h(-,∞), i(-,∞), j(-,∞), k(-,∞), l(-,∞)

e(b,3) d(e,1) , f(e,2), i(e,4), c(a,5), g(-,∞), h(-,∞),j(-,∞), k(-,∞), l(-,∞)

d(e,1) c(d,2), f(e,2), i(e,4), h(d,5), g(-,∞), j(-,∞), k(-,∞), l(-,∞)

c(d,2) f(e,2), g(c,4), i(e,4), h(d,5), j(-,∞), k(-,∞), l(-,∞)

f(e,2) g(c,4), i(e,4), h(d,5), j(f,5), k(-,∞), l(-,∞)

g(c,4) h(g,3), i(e,4), j(f,5) , k(g,6), l(-,∞)

h(g,3) i(e,4), j(f,5), k(g,6), l(-,∞)

i(e,4) j(i,3), l(i,5), k(g,6)

j(i,3) l(i,5), k(g,6)

l(i,5) k(g,6)

k(g,6)

An Example

The MST consists of the edges

ab, be, ed, dc, ef, cg, gh, ei, ij, il,

and gk

Does Prim’s Algorithm Really Produce MST?

e i

v '

v

u '

u

T i - 1

Notes on Prim’s algorithm

To locate the minimum-weight fringe edge, we can use the
heap structure. But here we use the min-heap, where the root
has a key smaller than both children

• Construct the min-heap -- O(|V|)

• Delete the min – O(log |V|), it can be performed |V|-1 times

• Verify minimum weight from any remaining vertex to the tree –
this may be performed |E| times. Each verification may result
in a key priority change in the heap, which takes O(log |V|).

• Therefore, the total complexity is

O[|V|+(|V|-1+|E|)*log |V|]=O(|E| log |V|)

MinHeap and Prim’s Algorithm

b(a,3), f(a,5), e(a,6), c(-,∞), d(-,∞)

b3

d∞

f5

c∞

e6

c1

f4

d ∞

e6

c(b,1), f(b,4), e(a,6), d(-,∞)

f4

d6e6

f(b,4), d(c,6), e(a,6)

f5

d∞

c∞

e6

f4

d∞e6

Dijkstra’s Algorithm – Single-Source Shortest

Paths

Single-source short paths problem – find the shortest path starting
from a given vertex to any other vertex

Example: hub airports for airplane planning

Using greedy strategy to find the single-source shortest paths

• In Floyd’s algorithm, we find the all-pair shortest paths, which may
not be necessary in many applications

• Certainly, all-pair shortest paths contain the single-source shortest
paths. But Floyd’s algorithm has O(|V|3) complexity!

There are many algorithms that can solve this problem, here we
introduce the Dijkstra’s algorithm

Note: Dijkstra’s algorithm only works when all the edge-weight are
nonnegative.

Dijkstra’s Algorithm on Undirected Graph

Similar to Prim’s MST algorithm, with the following difference:

• Start with tree consisting of one vertex – source

• “grow” tree one vertex/edge, which has minimum length of
path, at a time to produce spanning tree

– Construct a series of expanding subtrees T1, T2, …

• Keep track of shortest path from source to each of the vertices
in Ti

• at each stage construct Ti+1 from Ti: add minimum weight edge
connecting a vertex in tree (Ti) to one not yet in tree

– choose from “fringe” nodes

– (this is the “greedy” step!)

• algorithm stops when all vertices are included

edge (v,w) with lowest d(s,v) + d(v,w)

source destination

Example:

b

eda

c

3

4

62 5

7 4

Find the shortest paths starting from vertex a

Step 1:

Tree vertices: a(-,0)

Priority queue: b(a,3), d(a,7), c(-,∞), e (-,∞)

b

eda

c

3

4

62 5

7 4

Step 2:

Tree vertices: a(-,0), b(a,3),

Priority queue: d(a,7)→d(b,3+2), c(-,∞)→c(b,3+4), e (-,∞)

b

eda

c

3

4

62 5

7 4

Step 3:

Tree vertices: a(-,0), b(a,3), d(b,5)

Priority queue: c(b,3+4), e (-,∞)→e(d,5+4)

b

eda

c

3

4

62 5

7 4

Step 4:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7)

Priority queue: e(d,9)

b

eda

c

3

4

62 5

7 4

Step 5:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

Remaining vertices: none → the algorithm is done!

b

eda

c

3

4

62 5

7 4

Output the Single-Source Shortest Paths

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

b

eda

c

3

4

62 5

7 4

from a to b: a-b of length 3

from a to d: a-b-d of length 5

from a to c: a-b-c of length 7

from a to e: a-b-d-e of length 9

