Announcement

Homework 1 was posted in Blackboard and class
website

Due on Thursday, Jan. 20, before class starts

You need to submit your homework through
Blackboard.

Last Class: Definition of Algorithm

An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input, in a finite amount of time.

problem

|

algorithm

l

input . “computer” . output

Fundamental Data Structure

Data Structure: a particular scheme of organizing
related data items

Important data structures:
* Array
* Linked list (queue, stack, heap, ...)
« Graph
* Tree
* Set

Graph

» Undirected and directed (digraph): G=<V,E>
« vertices (V) and edges (E)
« number of vertices (|V|) and number of edges (|E|)
» Undirected graph
—Endpoints: e.g., two endpoints of an edge (a,b)
» Directed graph/Digraph
—Tail and head: e.g., tail (a) and head (b) of an edge (a,b)

Write down the V and E for the following two graphs

Graph Representation

Adjacency matrix and adjacency linked list

Adjacency matrix Adjacency linked list

—Cc — d

—c — f

—a—b—e

RPRORRFROO
(o) Jdele) e

elel o) ol
RPOOROO
ORrRPOOOF

OFrRrOOoORkr K-

—>ad —*¢€

-h DO OO | T D

— pb—¢

When should we use adjacency matrix and when adjacent
linked list?

Graph sparseness

Weighted Graph

A weight or cost is assigned to each edge

* In adjacency matrix, we can incorporate this weight and use cQ
to represent the case of no linking edge

* In adjacency linked list, add a data item to store the weight

Applications:
 Traveling salesman
« Shortest path etc.

a b c d
aloo 5 1 oo al ob5-c1
b| 5 o 7 4 b| »>ab—-c¢7 - d4
c| 1 7 oo 2 c| —>a1—->b7—>4d?2
dloo 4 2 oo d| > b4—>c¢?2
(a) (b) (c)

FIGURE 1.8 (a) Weighted graph. (b) Its weight matrix. (c) Its adjacency lists.

Special Graphs -- Trees

» A connected acyclic graph

» An unconnected acyclic graph - a forest

()—® @ O

(— O—D

(O—9) OO
(a) (b)
FIGURE 1.10 (a) Tree. (b) Forest.

Trees

» One simple path between vertices in a tree exists and is
unique
» For atree we have |E|=|V|-1

» A sufficient and necessary condition
* Why?

> Rooted tree = root at level 0

@

O—O—O—0C => =

® ONNO
(@) (b)

FIGURE 1.11 (a) Free tree. (b) Its transformation into a rooted tree.

Rooted Trees

» Some concepts related to a vertex in arooted tree
» Root/leaf
 (Proper) Ancestors/descendants
 Parent/Child/Siblings
* Depth of a vertex v: the length of the simple path root — v
» Height of a tree: the longest simple path in the tree

» Operations: insert/delete a node, search a key
» Applications: file directories, dictionaries, etc o
» Ordered rooted trees o 0

> Binary trees @
subtree — O
ORnO

Binary Tree

Each vertex has no more than two children

»The height of a binary tree is the length of the longest simple
path from the root to the leaf

For a binary tree with n nodes, its height h satisfies

log njghgn—\l

/

A complete tree A linked list

Implementation of a Binary Tree

/o 5 \ /- 12 null

null 1 -\ null 7 null null 10 null

null 4 null

Transform an Ordered Tree to a Binary Tree

First child-next sibling
L eft child: first child
*Right child: next sibling

T a null

’ b o——» null d -~ T e null
| |
C ———»nulll g |null null f|null

null h ———» null / null

Special Binary Trees

» Heap (priority queue)

» Binary search tree —the number associated with the parent
Is larger than the ones in its left subtree and smaller than
the ones in its right subtree.

(1)
OO
OJOXOGIO

heap

Binary search tree

Sets and Dictionaries

Set:
« Unordered collection of unigue items
 Set representations: bit vector or a list
— Difference between a set and a list (ordered and not unique)
« Set operations
—Membership checking
— Set union & set intersection

Dictionary: a set with the operations of searching, adding, and
deleting

Theoretical Analysis of Algorithm -- Algorithm
Efficiency

[Time efficiency]

Space efficiency

Theoretical Analysis of Time Efficiency

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most towards the
running time of the algorithm.

* nisanatural number
Input size (nonnegative integer)

/ \ Sometimes, we can

T C have |||U|tip|e numbers.

running time execution time Number of times
for basic operation basic operation is
executed

Why not use unit of time?

How to Choose Basic Operations

Basic operation should be simple and cannot be represented
by other operations in the same algorithm

T(n) = Ti(n) + -+ Ty(n) = coprti(n) + - + copmtu(n)

If t;(n) = t,(n), cop1 > €,p, MM Operation 1is the basic
operation.

(13

or “/” rather than “+” and “-

(%

For example, choose

If t1(n) K tz(n), €op1 = Cop2 mm) Operation 2 is the basic
operation

http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

Example: Selection Sort

ALGORITHM SelectionSort(A[0..n — 1])

/ISorts a given array by selection sort
//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in ascending order
fori < 0Oton —2do

min <—i

for j < i+1ton—1do

if Alj] < Almin| min < j
swap Ali| and A[min]

Input size? Basic operation?

Input Size and Basic Operation Examples

Problem

Input size measure

Basic operation

Search for key in a list
of n items

of items in list -- n

Key comparison

Multiply two matrices of
floating point numbers

Dimensions of matrices

Floating point
multiplication

Compute a"

n or # of bits in n

Floating point
multiplication

Graph problem

of vertices and/or # of
edges

Visiting a vertex or
traversing an edge

Types of Formulas for Counting Basic
Operations

Exact formula

e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific multiplicative
constant

e.g., C(n)=0.5n?

Formula indicating order of growth with unknown multiplicative
constant

e.g., C(n) =cn?

Order of Growth

The number of operations grows with an increase of the input size.
‘Example: assume T(n) = ¢,,n?
—How much faster will algorithm run on computer that is twice as
fast?

—How much longer does it take to solve problem of double input
size?

Order of growth determines the growth rate as the input size goes
to infinity
*Recall the example of computing GCD:
—Euclid’s algorithm: 5logo,n

-Agorthm 2. O) N

—Algorithm 3: cnloglogn Euclid's 0 35 5

Al 2 1 5 10 100 1,000 10,000
Al 3 N/A 24 8 153 1,933 22,203

More Examples of Order of Growth

c(n)

n [log,m n nlogyn n? n? 27 n!

10 3.3 107 33107 107 10° 10° 3.6-10°
102 | 6.6 10¢ 6610 10* 10° 1.310% 9.3.10%7
100 10 10° 1.010¢ 105 10°

104 13 10¢ 1.310% 108 102

10° 17 10° 1.710% 1010 1018

109 | 20 105 2.0107 102 1018

Time complexity increases!

—

Best-case, Average-case, Worst-case

For some algorithms efficiency depends on the property of input:

Worst case: W(n) — max # of basic operations over inputs of size n

Best case: B(n) — min # of basic operations over inputs of size n

Average case: A(n) — “average” # of basic operations over inputs of
sizen

« # of the basic operation will be executed on typical input
* NOT the average of worst and best case

» Expected number of basic operations repetitions considered as a
random variable under some assumption about the probability
distribution of all possible inputs of size n

Example: Sequential Search

Problem: Given a list of n elements and a search key K, find an
element equal to K, if any.

Algorithm: Scan the list and compare its successive elements with
K until either a matching element is found (successful search) of
the list is exhausted (unsuccessful search)

Worst case

Cworst(n) =N

Best case

Cbest (n) — 1

Average case Caverage (n) — 7

Caverage(n):1'£+2'£+"'+n'£+n-(1— p):n(l—g)+§

n n n

Next Time

Fundamentals of the analysis of algorithm efficiency
 Analysis framework
* Big O notation, big theta notation, and big omega notation

Reading Assignments: Chapter 2

