
Announcement

Homework 1 was posted in Blackboard and class 
website

Due on Thursday, Jan. 20, before class starts

You need to submit your homework through 
Blackboard.



Last Class: Definition of Algorithm

An algorithm is a sequence of unambiguous instructions 
for solving a problem, i.e., for obtaining a required 
output for any legitimate input, in a finite amount of time.

“computer”

problem

algorithm

input output



Fundamental Data Structure

Data Structure: a particular scheme of organizing 
related data items

Important data structures:

• Array

• Linked list (queue, stack, heap, …)

• Graph 

• Tree

• Set



Graph

➢ Undirected and directed (digraph): G=<V,E>

• vertices (V) and edges (E)

• number of vertices (|V|) and number of edges (|E|)

➢ Undirected graph

– Endpoints: e.g., two endpoints of an edge (a,b)

➢ Directed graph/Digraph

– Tail and head: e.g., tail (a) and head (b) of an edge (a,b)

Write down the V and E for the following two graphs

a c b

d e f

a b c

d e f



Graph Representation

Adjacency matrix and adjacency linked list 

When should we use adjacency matrix and when adjacent 
linked list?

0 0 1 1 0 0
0 0 1 0 0 1
1 1 0 0 1 0
1 0 0 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0
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Adjacency matrix Adjacency linked list

Graph sparseness



Weighted Graph

A weight or cost is assigned to each edge

• In adjacency matrix, we can incorporate this weight and use   
to represent the case of no linking edge

• In adjacency linked list, add a data item to store the weight

Applications:

• Traveling salesman

• Shortest path etc.





Special Graphs -- Trees

➢ A connected acyclic graph 

➢ An unconnected acyclic graph → a forest 



Trees

➢ One simple path between vertices in a tree exists and is 
unique

➢ For a tree we have |E|=|V|-1

• A sufficient and necessary condition

• Why?

➢ Rooted tree → root at level 0



subtree

➢ Some concepts related to a vertex in a rooted tree

• Root/leaf

• (Proper) Ancestors/descendants

• Parent/Child/Siblings

• Depth of a vertex 𝑣: the length of the simple path 𝑟𝑜𝑜𝑡 → 𝑣

• Height of a tree: the longest simple path in the tree

➢ Operations: insert/delete a node, search a key

➢ Applications: file directories, dictionaries, etc

➢ Ordered rooted trees

➢ Binary trees

Rooted Trees



Binary Tree

Each vertex has no more than two children

➢The height of a binary tree is the length of the longest simple 
path from the root to the leaf

  1log2 − nhn

A linked listA complete tree

For a binary tree with n nodes, its height h satisfies



Implementation of a Binary Tree



Transform an Ordered Tree to a Binary Tree

First child-next sibling

•Left child: first child

•Right child: next sibling



➢ Heap (priority queue)

➢ Binary search tree – the number associated with the parent 
is larger than the ones in its left subtree and smaller than 
the ones in its right subtree.

Special Binary Trees

12

10 9

5 7 41

heap

Binary search tree



Sets and Dictionaries

Set:

• Unordered collection of unique items

• Set representations: bit vector or a list 
– Difference between a set and a list (ordered and not unique)

• Set operations 
– Membership checking

– Set union & set intersection

Dictionary: a set with the operations of searching, adding, and 
deleting



Theoretical Analysis of Algorithm -- Algorithm 

Efficiency

Time efficiency

Space efficiency



Theoretical Analysis of Time Efficiency

Time efficiency is analyzed by determining the number of 
repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most towards the 
running time of the algorithm.

T(n) ≈ copC(n)

running time execution time

for basic operation

Number of times 

basic operation is 

executed

input size

Why not use unit of time?

• n is a natural number 

(nonnegative integer)

• Sometimes, we can 

have multiple numbers.



How to Choose Basic Operations

Basic operation should be simple and cannot be represented 
by other operations in the same algorithm

𝑇 𝑛 = 𝑇1 𝑛 +⋯+ 𝑇𝑀 𝑛 = 𝑐𝑜𝑝,1𝑡1 𝑛 + ⋯+ 𝑐𝑜𝑝,𝑀𝑡𝑀 𝑛

If   𝒕𝟏 𝒏 ≈ 𝒕𝟐 𝒏 , 𝒄𝒐𝒑,𝟏 ≫ 𝒄𝒐𝒑,𝟐 Operation 1 is the basic 
operation. 

For example, choose “*” or “/” rather than “+” and “-” 
http://en.wikipedia.org/wiki/Computational_complexity_of_
mathematical_operations

If   𝒕𝟏 𝒏 ≪ 𝒕𝟐 𝒏 , 𝒄𝒐𝒑,𝟏 ≈ 𝒄𝒐𝒑,𝟐 Operation 2 is the basic 
operation

http://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations


Example: Selection Sort

Input size? Basic operation?



Input Size and Basic Operation Examples

Problem Input size measure Basic operation

Search for key in a list 
of n items

# of items in list -- n Key comparison

Multiply two matrices of 
floating point numbers

Dimensions of matrices
Floating point 
multiplication

Compute an n or # of bits in n
Floating point 
multiplication

Graph problem
# of vertices and/or # of 
edges

Visiting a vertex or 
traversing an edge



Types of Formulas for Counting Basic 

Operations

Exact formula

e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific multiplicative 
constant

e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown multiplicative 
constant

e.g., C(n) ≈ cn2



Order of Growth 

n 1 5 10 100 1,000 10,000

Euclid’s 0 3.5 5 10 15 20

Al. 2 1 5 10 100 1,000 10,000

Al. 3 N/A 2.4 8 153 1,933 22,203



More Examples of Order of Growth 

Time complexity increases!

𝑐(𝑛)



Best-case, Average-case, Worst-case

For some algorithms efficiency depends on the property of input:

Worst case:    W(n) – max # of basic operations over inputs of size n

Best case:      B(n) – min # of basic operations over inputs of size n

Average case: A(n) – “average” # of basic operations over inputs of 
size n

• # of the basic operation will be executed on typical  input

• NOT the average of worst and best case

• Expected number of basic operations repetitions considered as a 
random variable under some assumption about the probability 
distribution of all possible inputs of size n



Example: Sequential Search

Problem: Given a list of n elements and a search key K, find an 
element equal to K, if any.

Algorithm: Scan the list and compare its successive elements with 
K until either a matching element is found (successful search) of 
the list is exhausted (unsuccessful search)
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Average case
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Next Time

Fundamentals of the analysis of algorithm efficiency

• Analysis framework

• Big O notation, big theta notation, and big omega notation

Reading Assignments: Chapter 2


