
Announcement

Homework #5 has been posted in both Blackboard and course
website.

Due at: 10:05 am, Thursday, April 7

Chapter 7: Space-Time Tradeoffs

For many problems some extra space really pays off:

Prestructuring

• hashing

Preprocessing (Input enhancement)

• auxiliary tables (shift tables for pattern matching)

Dynamic programming

String Matching

String Searching - History

1970: Cook shows (using finite-state machines) that problem
can be solved in time proportional to n+m

1976 Knuth-Morris-Pratt find algorithm based on Cook’s idea;
when a mismatch occurs, the word itself has sufficient
information to determine where the next match could begin,

At about the same time Boyer and Moore find an algorithm
that examines only a fraction of the text in most cases (by
comparing characters in pattern and text from right to left,
instead of left to right)

Horspool’s Algorithm

A simplified version of Boyer-Moore algorithm that retains key
insights:

• compare pattern characters to text from right to left

• given a pattern, create a shift table that determines
how much to shift the pattern when a mismatch
occurs (input enhancement)

Consider the Problem

Search pattern BARBER in some text

Compare the pattern in the current text position from the right
to the left

If the whole match is found, done.

Otherwise, decide the shift distance of the pattern (move it to
the right)

There are four cases!

s0 … c … sn-1

B A R B E R

Shift Distance -- Case 1:

There is no ‘c’ in the pattern. Shift by the m – the length of the
pattern

s0 … S … sn-1

B A R B E R

B A R B E R

s0 … c … sn-1

B A R B E R

Example:

shift 6 characters

Shift Distance -- Case 2:

There are occurrence of ‘c’ in the pattern, but it is not the last
one. Shift should align the rightmost occurrence of the ‘c’ in
the pattern

s0 … B … sn-1

B A R B E R

B A R B E R
shift 2 characters

Example:

s0 … c … sn-1

B A R B E R

Shift Distance -- Case 3:

‘c’ matches the last character in the pattern, but no ‘c’ among
the other m-1 characters. Follow Case 1 and shift by m

s0 … M E R … sn-1

L E A D E R

L E A D E R

s0 … c … sn-1

L E A D E R

Example:

shift 6 characters

Shift Distance -- Case 4:

‘c’ matches the last character in the pattern, and there are
other ‘c’s among the other m-1 characters. Follow Case 2.

s0 … O R … sn-1

O R D E R

O R D E R

s0 … c … sn-1

O R D E R

Example:

shift 3 characters

We can precompute the shift distance for

every possible character ‘c’ (given a pattern)

=

otherwise character, last its to pattern the of characters

 1- first the among rightmost the from distance the

pattern the of characters 1- first the among not is if

, length spattern' the

mc

mc

m

ct)(

Shift Table for the pattern “BARBER”

c A B C D E F … R … Z _

t(c) 4 2 6 6 1 6 6 3 6 6 6

Case 1&3

Case 2&4

Create a Shift Table

Shift Table for the pattern “BARBER”

c A B C D E F … R … Z _

t(c) 4 2 6 6 1 6 6 3 6 6 6

Horspool’s Algorithm

Example

Example: find the pattern BARBER from the following text

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O

B A R B E R

B A R B E R

B A R B E R

B A R B E R

B A R B E R

B A R B E R

1 matching

1 matching

1 matching

6 matching

1 matching

2 matching

Total: 12 matching operations

c A B C D E F … R … Z _

t(c) 4 2 6 6 1 6 6 3 6 6 6

B E S S _ K N E W _ A B O U T _ B A O B A B S

B A O B A B

B A O B A B

B A O B A B

B A O B A B
B A O B A B (success)

Another Example: Pattern = B A O B A B

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6

_

6

Shift table

1 matching

3 matching

1 matching

6 matching

Total: 13 matching operations

2 matching

Algorithm Efficiency

The worst-case complexity is Θ(nm)

In average, it is Θ(n)

It is usually much faster than the brute-force algorithm

A simple exercise: Create the shift table of 26 letters and
space for the pattern BAOBABCD

Boyer-Moore algorithm

Based on two ideas:

• compare pattern characters to text from right to left

• precomputing shift sizes in two tables
–bad-symbol table indicates how much to shift based on

text’s character causing a mismatch

–good-suffix table indicates how much to shift based on
matched part (suffix) of the pattern

The worst-case efficiency of Boyer-Moore algorithm is linear.

Bad-symbol Shift in Boyer-Moore Algorithm

Build a bad-symbol shift table as in the Horspool’s algorithm.

If the rightmost character of the pattern doesn’t match, BM algorithm acts as
Horspool’s (Case 1 and 2)

If the rightmost character of the pattern does match, BM compares preceding
characters right to left until either all pattern’s characters match or a
mismatch on text’s character ‘c’ is encountered after k > 0 matches

text

pattern

bad-symbol shift d1 = max{t1(c) - k, 1}

c

k matches searching

Shift in the bad-symbol shift table

Good-suffix shift in Boyer-Moore algorithm

Good-suffix shift d2 is applied after 0 < k < m last characters were
matched

d2(k) = the distance between matched suffix of size k and its rightmost
occurrence in the pattern that is not preceded by the same
character as the suffix

Example: CABABA d2(k=1) = 4

Case 1: if there is no such occurrence – unknown prefix, match the
longest part of the k-character suffix with corresponding prefix;

Case 2: if there are no such suffix-prefix matches, d2 (k) = m

Good-suffix shift in Boyer-Moore algorithm

Example: CABABA

d2(1) = 4,

d2(2) = 6, Case 2,

d2(3) = 2,

d2(4) = 6, Case 2,

d2(5) = 6, Case 2,

CABABA

CABABA

CABABA

CABABA

CABABA

Same prefix

Cannot find BABA

Choose the one with different prefix

Cannot find ABABA

Choose the one with different prefix

Good-suffix shift in Boyer-Moore algorithm

Example: BAOBAB

d2(1) = 2,

d2(2) = 5, Case 1,

d2(3) = 5, Case 1,

d2(4) = 5, Case 1,

d2(5) = 5, Case 1,

BAOBAB

BAOBAB

BAOBAB

BAOBAB

BAOBAB

Good-suffix shift in the Boyer-Moore alg. (cont.)

After matching successfully 0 < k < m characters, the algorithm
shifts the pattern right by

d = max {d1, d2}

where d1 = max{t1(c) - k, 1} is bad-symbol shift

d2(k) is good-suffix shift

Boyer-Moore Algorithm (cont.)

Step 1 Construct the bad-symbol shift table (the one as Horspool’s)

Step 2 Construct the good-suffix shift table

Step 3 Align the pattern against the beginning of the text

Step 4 Repeat until a matching substring is found or text ends:

Compare the corresponding characters right to left.

If no character match, follow the Case 1&2 as the Horspool’s algorithm

If 0 < k < m characters are matched, retrieve entry t1(c) from the bad-symbol
table for the text’s character c causing the mismatch and entry d2(k) from the
good-suffix table and shift the pattern to the right by

d = max {d1, d2}
where d1 = max{t1(c) - k, 1}.

B E S S _ K N E W _ A B O U T _ B A O B A B S

B A O B A B

d1 = t1(K) = 6 B A O B A B

k =2,d1 = t1(_)-k = 4,

d2(2) = 5, d = 5

B A O B A B

k =1,d1 = t1(_)-k = 5

d2(1) = 2, d=5

B A O B A B (success)

Example of Boyer-Moore Algorithm

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6

_

6

k pattern d2

1 BAOBAB 2

2 BAOBAB 5

3 BAOBAB 5

4 BAOBAB 5

5 BAOBAB 5

Bad-symbol shift table

good-symbol shift table

1 matching

3 matching

2 matching

6 matching
Total: 12 matching operations

Pattern: ABBB

Compare BM with Horpool’s

Bad-symbol shift table A B C … Z _

3 1 4 4 4 4

C B B B B B A B B BText

Using Horpool’s

A B B B

A B B B

A B B B

A B B B

A B B B

4 comparisons

4 comparisons

4 comparisons

1 comparison

4 comparisons

A total of 17 comparisons

Pattern: ABBB

Compare BM with Horpool’s

k pattern d2

1 ABBB 2

2 ABBB 4

3 ABBB 4

Bad-symbol shift table

good-symbol shift table

A B C … Z _

3 1 4 4 4 4

C B B B B B A B B B

A B B B

A B B B

A B B B

d1 = t1(C)-k = 4-3=1

d2 = 4

d1 = t1(A)-k = 3-1=2

d2 = 2

4 comparisons

2 matches

4 comparisons

A total of 10 comparisons

The worst-case efficiency of

Boyer-Moore algorithm is linear!

Space and Time Tradeoffs: Hashing

A very efficient method for implementing a dictionary, i.e., a
set with the operations:

– insert

– search

– delete

Each entry has many fields, at least one of which is for
identification - unique

Applications:

– databases

– symbol tables

Hash tables and hash functions

Hash table: an array with indices that correspond to buckets

Hash function: determines the bucket for each record

Example: student records, key=SSN. Hash function:

h(k) = k mod m

(k is a key and m is the number of buckets)

• if m = 1000, where is record with SSN= 123-45-6789 stored?

Desirable hash functions:

• be easy to compute

• distribute keys evenly throughout the table

Collisions

If h(k1) = h(k2) then there is a collision.

Good hash functions result in fewer collisions.

Collisions can never be completely eliminated.

Two types handle collisions differently:

• Open hashing

– bucket points to linked list of all keys hashing to it.

• Closed hashing

– in case of collision, find another bucket for one of the keys (need
Collision resolution strategy)

• linear probing: use next bucket

• double hashing: use second hash function to compute increment

Example of Open Hashing

Store student record into 10 bucket using hashing function

h(SSN)=SSN mod 10

xxx-xx-3333

xxx-xx-8888

xxx-xx-3313

xxx-xx-8882

xxx-xx-8884

xxx-xx-8898

Efficiency of searching a key depends on the length of the
linked list

0 1 2 3 4 5 6 7 8 9

3333

3313

8882 8884

8888

8898

Open hashing

If hash function distributes keys uniformly, average length of
linked list will be α =n/m (load factor)

Average number of successful search ≈ 1+α/2

Average number of unsuccessful search =α

Carefully select m

Open hashing still works if n>m.

Insertion: append to the end Θ(1)

Deletion: search the key and deleted Θ(α)

Closed Hashing (Linear Probing)

8828 8882 3333 8883 8884 8888 8898

0 1 2 3 4 5 6 7 8 9

Closed Hashing (Linear Probing)

Search for a given key

Keep searching until either find a match or find an empty bucket.

h(SSN)=SSN mod 10

xxx-xx-3333

xxx-xx-8888

xxx-xx-8883

xxx-xx-8882

xxx-xx-8884

xxx-xx-8898

xxx-xx-8828

8828 8882 3333 8883 8884 8888 8898

0 1 2 3 4 5 6 7 8 9

Closed Hashing (Linear Probing)

Deletions are not straightforward.

• lazy deletion: mark the previous occupied bucket with a special
symbol

Number of probes (matching operations) to insert/find/delete a key
depends on load factor α = n/m (hash table density)

– successful search: (½) (1+ 1/(1- α))

– unsuccessful search: (½) (1+ 1/(1- α)²)

As the table gets filled (α approaches 1), number of probes
increases dramatically:

