Announcement

We will have an in-class quiz (Quiz #3) on Thursday, March 17
It is open-book and open-notes.

The question will ask you to create an AVL tree on a given list
of numbers. There will be a bonus question on tree
traversal — preorder, inorder, and postorder.



Large Integer Multiplication

Some applications, notably modern cryptology, require
manipulation of integers that are over 100 decimal digits long

Such integers are too long to fit a single word of a computer
Therefore, they require special treatment
Consider the multiplication of two such long integers
n—l
X — xn—lxn—2 o .xl‘xO = le-ri
i=0

Classic paper-and-pencil algorithm

n—1
n? digit multiplications Y=Y, 1Vua V1Yo = Zyjrf

j=0



Large Integer Multiplication - Divide&Conquer

We want to calculate 23 x 14
Since 23=2.10'+3-10°and14=1-10'+4-10°

We have
23*14:(2-101+3-10°)*(1-1()1+4-100)

= (2* 110> + (3*1+2*4)10' +(3*4)10°

Which includes four digit multiplications (n?)

But 3%14+2%4 Compute}la\lready,’
= (24+3)*(1+4)—(2*D)-(3*4)

Therefore, we only need three digit multiplications



One Formula

Given a=a,a, and b=b,b,, compute c=a*b

We have

c=a*b=c,10°+¢10" +¢,10°

where
%

¢, =a,*b
_ %

Co =a, ™ b,

¢ =(a,+a,)*(b +by)—(c, +¢,)

That means only three digit multiplications are needed to
multiply two 2-digit integers



To Multiply Two ndigit integers

Assume n is even, write
a = a110”/2 +a, and b= bll()”/2 4+ bo For example, for “1234”, a;= 12, a,;~34, n=4
Then

c=a*b=c,10" +¢10"* +¢,10°

where

c, =a, *b,

Co =a, * b,

¢, =(a,+ay)*(b +by)—(c, +¢)

To calculate the involved three multiplications — recursion!
Stops when n=1



Efficiency

The recurrence relation is

T(n)=3T(n/2)forn>1,T(1)=1

Solving it by backward substitution for n=2k yields

T(25=3T(2""H=3"T(12"?)
=3'7(2"")=3"

Therefore, 1 log, 3 1.585 2
T(n)=3"""=n"""=n""<n




Reading Assignments

Chapter 5.4 Strassen’s Matrix Multiplication

Chapter 5.5 Closest pair and convex-hull by divide-and-
conquer



Transform and Conquer

Solve problem by transforming into:

a more convenient instance of the same problem (instance simplification)
* presorting
« Gaussian elimination

a different representation of the same instance (representation change)
» balanced search trees
* heaps and heapsort

a different problem with available algorithms (problem reduction)
* reductions to graph problems




Instance Simplification - Presorting

Solve problem by transforming into another simpler/easier
instance of the same problem

Presorting:

Why: Many problems involving lists are easier when list is
sorted.

When: A preprocessing step if multiple operations of following
are needed:

* searching

« computing the median (selection problem)
« computing the mode

» finding repeated elements



Example 1: Searching Problem

Find a value vin A[1],...A[n].

Brute-force search:
» Sequential search with
—worst case O(n).

Presorted search T(n)=T_,(n)+ T...,c1(N)
= O(n log n)+ O(log n) = ©(n log n)

Binary search

 For a single search, the presorted search is inferior to the
brute-force search

 For repeated searches in the same list, presorted search
may be more efficient because the sorting need not be
repeated



Example 2: Selection Problem

Find the kt» smallest element in A[1],...A[n]. Special cases:

e minimum: k=1 }
Brute-force @(n
e maximum: K=n f (n)

* median: k= |_n/2]

Partition-based algorithm (Variable decrease & conquer):
« worst case: T(n) =T(n-1) + (n+1) 2> ©(n?)
* best case: O(n)
 average case: T(n) =T(n/2) + (n+1) = O(n)

Presorting-based algorithm
* sort list
* return AJK]
* O(nlogn) + ©(1) = ©(nlogn)



Notes on Selection Problem

Partition-based algorithm (Variable decrease & conquer):
« worst case: T(n) =T(n-1) + (n+1) 2> ©(n?)
* best case: O(n)
 average case: T(n) =T(n/2) + (n+1) - O(n)
Presorting-based algorithm: Q(nign) + ©(1) = Q(nign)

Special cases of max, min: brute-force algorithm is better ©(n)



Example 3: Finding Repeated Elements/Array
Uniqueness

Presorting-based algorithm:
 Sort the array
« Scan array to find repeated adjacent elements:

ALGORITHM Pr esortUniqueElements( A[O,---,n—1])
//Input : An array A[O0,---,n-1]of orderable elements
//Output : Returns " true" 1f no equal elements, otherwise return " false"
sort the array A
fori <~ 0ton-2do
if A[i] = A[i+1]return false

return true




Example 3: Finding Repeated Elements/Array
Uniqueness

Brute force algorithm: ALGORITHM UniqueElements( A[0..n —1])
« Worst case: O(n?) for i <~ 0 ton-2do

for j <« i+1ton-l1do
if A[i]= A[ j]return false

return true

Presorting-based algorithm:

- Sort the array: ©(nlogn) } 0
nlogn
* scan array to find repeated adjacent elements: ©(n) (nlogn)

Conclusion: Presorting yields significant improvement




Example 4: Computing A Mode

A mode is a value that occurs most often in a given list of
numbers

For example: the mode of [5,1,5,7,6,5,7]is 5

Brute-force technique: construct a list to record the frequency
of each distinct element

* In each iteration, the i-th element is compared to the stored
distinct elements. If a matching is found, its frequency is
incremented by 1. Otherwise, current element is added to the
list as a distinct element

« Worst case complexity ©(n?), when all the given n elements
are distinct



Example 4: Computing A Mode With Presorting
Algorithm

ALGORITHM PresortMode( A[0..n —1])

Stepl : Sort the array 4

Step2 :i <0

modfrequency <— 0 // highest frequency seen so far
whilei <n-1do

runlength < 1; runvalue <— A[i]

How many .

elements while i + runlength < n—1and A[i + runlength] = runvalue
have the runlength <— runlength+1

same value

if runlength > modefrequency
modefrequency <— runlength, modevalue <— runvalue

[ < i+ runlength

return modevalue




Example 4: Complexity of PresortMode()

Step1: Sorting ©(nlogn)

Step2: ©O(n) since each element will be visited once for
comparison

Overall complexity of presortMode is ©(nlogn)

Much more efficient than the brute-force algorithm ©(n?)



Summary: Presorting

Solve problem by transforming into another simpler/easier instance of
the same problem

For a single operation:
« Searching: ©(n log n) inferior to brute-force search O(n)
 Selection problem: ©(n log n) inferior to Partition-based selection ©(n)
 Finding repeated elements: ©(n log n) better than brute-force ©(n?)
« computing the mode: ©(n log n) better than brute-force ©(n?)

For multiple operations on the same list, presorting is preferred

Efficient sorting algorithms should be employed such as MergeSort.



Representation Change - Balanced Binary
Search Trees

Search a Key in a Binary Search Tree
Basic operation: key comparison

# of comparisons in the worst case: h+1
log|lV|<h<|V]|—-1

Worst case: the tree degrades to a singly linked list ©(|V|)
Average case: O(log|V|)

‘ .\' Same aS Sequentlal search
Q)

(aHow we can improve it? ()




Representation Change - Balanced Binary
Search Trees (AVL Trees)

The AVL tree is named after its two inventors, G.M. Adelson-Velsky
and E.M. Landis, who published it in their 1962 paper "An algorithm
for the organization of information.”

AVL tree is a balanced binary search tree.

An AVL tree Not an AVL tree

The number shown above the node is its balance factor
balance factor = height of left subtree - height of right subtree

For an AVL tree, |balance factor| <=1



Maintain the Balance of An AVL Tree

> When?

* Insert a new node or delete a node may make it unbalanced — the
balance factors of one or more nodes become +2 or -2.

> How?

* By rotation operations
* Four types of rotations
— two of them are mirror images of the other two

> Where?

* Rotate a subtree rooted at the unbalanced node (whose balance factor
has become either +2 or -2) closest to the change



Four Types of Rotations for Three-Node AVL Trees

Case 1: Balance factors of the unbalanced node and its child have same sign

Type 1: Single right rotation Type 2: Single left rotation

. AN




Four Types of Rotations for Three-Node AVL Trees

Case 2: Balance factors of the unbalanced node and its child have different signs

Ca e N

—>

(c)
1 . f R 0 0
= &) = K@E
Qi@ 5
©)
\T ype 3: Double left-right rotation/

3

Type 4: Double right—left rotation




General Case: Single R-rotation

Height(T )=Height(T,)=Height(T,)

Last inserted node

I <ce<T,<r<IT,



General Case: Double LR-rotation

Last inserted node

I <e<T,<g<T,<r<lI



Example: Construct an AVL Tree for the List
[5! 6! 8! 3! 2! 4! 7]

@°
o




Example: Construct an AVL Tree for the List
[5! 6! 8! 3! 2! 4! 7]

0 -1

& ©




Continued

[5, 6! 8, 3! 2, 4! 7]




Notes on AVL Tree

Rotations can be done in constant time (1)

Rotations guarantee an AVL tree
A binary search tree
A balanced tree

The height (h) of an AVL tree with n nodes is bounded by
| log, n |< h<1.4405log,(n+2)—1.3277

average: 1.Ollog2n+0.1 for large n



Operations in an AVL Tree

Searching: O(logn)

Insertion: a new node is inserted at the leaf position
« Searching ©(logn)
« Rebalance (bottom up) ©O(logn)

Deletion:
« Searching: ©(logn)
* Deletion:
— A leaf or a non-leaf node with only one child, remove it. ©(1)

— Otherwise, replace it with either the largest in its left subtree or
the smallest in its right subtree, and remove that node. ©(logn)

« Rebalance ©(logn)

Drawbacks: need rotation frequently to rebalance the tree



Other Search Trees

Self-balanced BST
« Red-black trees (height of subtrees is allowed to differ by up to
a factor of 2: 2 < 2 orh <2)

T'

Self-optimized BST

« Splay trees: move the recent visited vertex to root so that
recently accessed elements are quick to access again

Multiway search trees
 2-3 trees, 2-3-4 trees and B-trees (not a binary tree!)
—allow more than one key in a node of a search tree
—a node is called an n-node if it has at most n — 1 ordered keys
—all leaves are on the same level (perfectly balanced)

—In practice, parents are for indexing, leaf nodes for storing
record



2-3 Tree - A Multiway Search Tree

A search tree may have 2-node and 3-node

 Height balanced — all leaves are on the same level

2-node 3-node

< K > K

« Constructed by successive insertions of keys

A new key is always inserted into a leaf of the tree. If the
leaf is a 3-node (with two keys) already, it’s split into two
with the middle key promoted to the parent.



An Example of 2-3 Tree Construction

Construct a 2-3 tree for the list 9, 5,8, 3,2,4, 7

@é,
0T dob i
BT TS



Note on 2-3 Tree

* Height of the tree log;(n+1)-1<h < log,(n+1) -1

« Time efficiency
« Search, insertion, and deletion are in ®(log n)

The idea of 2-3 tree can be generalized by allowing more keys
per node

o 2-3-4 trees
» B-trees



