
Announcement

We will have an in-class quiz (Quiz #3) on Thursday, March 17
It is open-book and open-notes.

The question will ask you to create an AVL tree on a given list
of numbers. There will be a bonus question on tree
traversal – preorder, inorder, and postorder.

Large Integer Multiplication

Some applications, notably modern cryptology, require
manipulation of integers that are over 100 decimal digits long

Such integers are too long to fit a single word of a computer

Therefore, they require special treatment

Consider the multiplication of two such long integers

Classic paper-and-pencil algorithm

n2 digit multiplications

−

=

+
−

=

−

=

−−

−

=

−−

=

==

==

1

0

1

0

1

0

0121

1

0

0121

n

i

ji

j

n

j

i

n

j

j

jnn

n

i

i

inn

ryxXY

ryyyyyY

rxxxxxX

Large Integer Multiplication – Divide&Conquer

We want to calculate 23 x 14

Since

We have

Which includes four digit multiplications (n2)

But

Therefore, we only need three digit multiplications

0101 1041011410310223 +=+= and

012

0101

10)4*3(10)4*21*3(10)1*2(

)104101(*)103102(14*23

+++=

++=

)4*3()1*2()41(*)32(

4*21*3

−−++=

+ Computed already!

One Formula

Given a=a1a0 and b=b1b0, compute c=a*b

We have

That means only three digit multiplications are needed to
multiply two 2-digit integers

)()(*)(

*

*

101010*

0201011

000

112

0

0

1

1

2

2

ccbbaac

bac

bac

cccbac

+−++=

=

=

++==

where

To Multiply Two n-digit integers

Assume n is even, write

Then

To calculate the involved three multiplications – recursion!
Stops when n=1

0

2/

10

2/

1 1010 bbbaaa nn +=+= and

)()(*)(

*

*

101010*

0201011

000

112

0

0

2/

12

ccbbaac

bac

bac

cccbac nn

+−++=

=

=

++==

where

For example, for “1234”, a1= 12, a0=34, n=4

Efficiency

The recurrence relation is

Solving it by backward substitution for n=2k yields

Therefore,

1)1(,1)2/(3)(== TnnTnT for

kkkk

kkk

T

TTT

3)2(3

)2(3)2(3)2(221

==

==

−

−−

2585.13loglog 223)(nnnnT
n

==

Reading Assignments

Chapter 5.4 Strassen’s Matrix Multiplication

Chapter 5.5 Closest pair and convex-hull by divide-and-
conquer

Transform and Conquer

Solve problem by transforming into:

a more convenient instance of the same problem (instance simplification)

• presorting

• Gaussian elimination

a different representation of the same instance (representation change)

• balanced search trees

• heaps and heapsort

a different problem with available algorithms (problem reduction)

• reductions to graph problems

Instance Simplification - Presorting

Solve problem by transforming into another simpler/easier
instance of the same problem

Presorting:

Why: Many problems involving lists are easier when list is
sorted.

When: A preprocessing step if multiple operations of following
are needed:

• searching

• computing the median (selection problem)

• computing the mode

• finding repeated elements

Example 1: Searching Problem

Find a value v in A[1],…A[n].

Brute-force search:

• Sequential search with

–worst case Θ(n).

Presorted search T(n)=Tsort(n)+ Tsearch(n)

= Θ(n log n)+ Θ(log n) = Θ(n log n)

• For a single search, the presorted search is inferior to the
brute-force search

• For repeated searches in the same list, presorted search
may be more efficient because the sorting need not be
repeated

Binary search

Find the kth smallest element in A[1],…A[n]. Special cases:

• minimum: k = 1

• maximum: k = n

• median: k = n/2

Partition-based algorithm (Variable decrease & conquer):

• worst case: T(n) =T(n-1) + (n+1) → Θ(n2)

• best case: Θ(n)

• average case: T(n) =T(n/2) + (n+1) → Θ(n)

Presorting-based algorithm

• sort list

• return A[k]

• Θ(nlogn) + Θ(1) = Θ(nlogn)

Example 2: Selection Problem

Brute-force Θ(n)

Notes on Selection Problem

Partition-based algorithm (Variable decrease & conquer):

• worst case: T(n) =T(n-1) + (n+1) → Θ(n2)

• best case: Θ(n)

• average case: T(n) =T(n/2) + (n+1) → Θ(n)

Presorting-based algorithm: Ω(nlgn) + Θ(1) = Ω(nlgn)

Special cases of max, min: brute-force algorithm is better Θ(n)

Example 3: Finding Repeated Elements/Array

Uniqueness

Presorting-based algorithm:

• Sort the array

• Scan array to find repeated adjacent elements:

ereturn tru

falsereturn]1[][if

do 2 to0for

Aarray sort the

false""return otherwise elements, equal no if true"" Returns ://Output

elements orderable of 1]-n,A[0,array An ://Input

])1,,0[(PrALGORITHM

+=

−

iAiA

n-i

nAeElementsesortUniqu

Example 3: Finding Repeated Elements/Array

Uniqueness

Brute force algorithm:

• Worst case: Θ(n2)

Presorting-based algorithm:

• Sort the array: Θ(nlogn)

• scan array to find repeated adjacent elements: Θ(n)

Conclusion: Presorting yields significant improvement

Θ(nlogn)

true return

false return if

do to for

do to for

ALGORITHM

][][

11

20

])1..0[(

jAiA

n-ij

n-i

nAentsUniqueElem

=

+

−

Example 4: Computing A Mode

A mode is a value that occurs most often in a given list of
numbers

For example: the mode of [5, 1, 5, 7, 6, 5, 7] is 5

Brute-force technique: construct a list to record the frequency
of each distinct element

• In each iteration, the i-th element is compared to the stored
distinct elements. If a matching is found, its frequency is
incremented by 1. Otherwise, current element is added to the
list as a distinct element

• Worst case complexity Θ(n2), when all the given n elements
are distinct

Example 4: Computing A Mode With Presorting

Algorithm

modevalue

runlengthii

runvaluemodevaluerunlengthncymodefreque

ncymodefrequerunlength

runlengthrunlength

runvaluerunlengthiAnrunlengthi

iArunvaluerunlength

ni

cymodfrequen

iStep

AStep

nAePresortMod

return

;

 if

1

][and 1 while

][;1

do 1 while

far soseen frequency highest //0

0:2

 array Sort the:1

])1..0[(ALGORITHM

+

+

=+−+

−

−

How many

elements

have the

same value

Example 4: Complexity of PresortMode()

Step1: Sorting Θ(nlogn)

Step2: Θ(n) since each element will be visited once for
comparison

Overall complexity of presortMode is Θ(nlogn)

Much more efficient than the brute-force algorithm Θ(n2)

Summary: Presorting

Solve problem by transforming into another simpler/easier instance of
the same problem

For a single operation:

• Searching: Θ(n log n) inferior to brute-force search Θ(n)

• Selection problem: Θ(n log n) inferior to Partition-based selection Θ(n)

• Finding repeated elements: Θ(n log n) better than brute-force Θ(n2)

• computing the mode: Θ(n log n) better than brute-force Θ(n2)

For multiple operations on the same list, presorting is preferred

Efficient sorting algorithms should be employed such as MergeSort.

Representation Change – Balanced Binary

Search Trees

Search a Key in a Binary Search Tree

Basic operation:

of comparisons in the worst case:

k

<k >k

Worst case: the tree degrades to a singly linked list Θ(|V|)

Average case: Θ(log|V|)

key comparison

log 𝑉 ≤ ℎ ≤ 𝑉 − 1

ℎ + 1

a
0

a
1

an-2

an-1

.
.

.

(a)

an-1

an-2

a 1

a 0

.
.

.

(b)

Same as sequential search

How we can improve it?

5 20

124 7

2

(a)

10

1

8

10

1

0

-1

0

0

5 20

4 7

2

(b)

10

2

8

00

1

0

-1

0

Representation Change – Balanced Binary

Search Trees (AVL Trees)

An AVL tree Not an AVL tree

The AVL tree is named after its two inventors, G.M. Adelson-Velsky
and E.M. Landis, who published it in their 1962 paper "An algorithm
for the organization of information.“

AVL tree is a balanced binary search tree.

The number shown above the node is its balance factor

balance factor = height of left subtree - height of right subtree

For an AVL tree, |balance factor| <=1

Maintain the Balance of An AVL Tree

➢ When?

• Insert a new node or delete a node may make it unbalanced – the
balance factors of one or more nodes become +2 or -2.

➢ How?

• By rotation operations

• Four types of rotations

– two of them are mirror images of the other two

➢ Where?

• Rotate a subtree rooted at the unbalanced node (whose balance factor
has become either +2 or -2) closest to the change

Four Types of Rotations for Three-Node AVL Trees

Case 1: Balance factors of the unbalanced node and its child have same sign

3

2

2

1

1

0

2

0

1

0

3

0

>
R

(a)

1

-2

2

-1

3

0

2

0

1

0

3

0

>
L

(b)

Type 1: Single right rotation

3

Type 2: Single left rotation

1

Four Types of Rotations for Three-Node AVL Trees

Type 3: Double left-right rotation

3

2

1

-1

2

0

3

2

2

1

>
L

(c)
1

0

1

-2

3

1

2

0

2

0

1

0

3

0

>
RL

(d)

R

Case 2: Balance factors of the unbalanced node and its child have different signs

3

2

1

-1

2

0

2

0

1

0

3

0

>
LR

(c)

1

-2

3

1

2

0

2

0

1

0

3

0

>
RL

(d)

Type 4: Double right–left rotation

General Case: Single R-rotation

321 TrTcT

Height(T1)=Height(T2)=Height(T3)

1

0

Last inserted node

Insert a node

1

2 0

0
Single R-rotation

General Case: Double LR-rotation

4321 TrTgTcT

0

1 2

-1
Insert a node

Last inserted node

0

-1/00/1
Double LR-rotation

Example: Construct an AVL Tree for the List

[5, 6, 8, 3, 2, 4, 7]

5

-1

6

0

5

0

5

-2

6

-1

8

0

>
6

0

8

0

5

0

L(5)

6

1

5

1

3

0

8

0

6

2

5

2

3

1

2

0

8

0

>
R (5)

6

1

3

0

2

0

8

0

5

0

Which one should be rotated?

Example: Construct an AVL Tree for the List

[5, 6, 8, 3, 2, 4, 7]

5

-1

6

0

5

0

5

-2

6

-1

8

0

>
6

0

8

0

5

0

L(5)

6

1

5

1

3

0

8

0

6

2

5

2

3

1

2

0

8

0

>
R (5)

6

1

3

0

2

0

8

0

5

0

Continued

[5, 6, 8, 3, 2, 4, 7]

6

2

3

-1

2

0

5

1

4

0

8

0

>
LR (6)

5

0

3

0

2

0

4

0

6

-1

8

0

5

-1

3

0

2

0

4

0

6

-2

8

1

7

0

>
RL (6)

5

0

3

0

2

0

4

0

7

0

8

0

6

0

Notes on AVL Tree

 3277.1)2(log4405.1log 22 −+ nhn

1.0log01.1 2 +n

Operations in an AVL Tree

Searching: Θ(logn)

Insertion: a new node is inserted at the leaf position

• Searching Θ(logn)

• Rebalance (bottom up) Θ(logn)

Deletion:

• Searching: Θ(logn)

• Deletion:

–A leaf or a non-leaf node with only one child, remove it. Θ(1)

–Otherwise, replace it with either the largest in its left subtree or
the smallest in its right subtree, and remove that node. Θ(logn)

• Rebalance Θ(logn)

Drawbacks: need rotation frequently to rebalance the tree

Other Search Trees

2-3 Tree – A Multiway Search Tree

• A search tree may have 2-node and 3-node

• Height balanced – all leaves are on the same level

• Constructed by successive insertions of keys

• A new key is always inserted into a leaf of the tree. If the
leaf is a 3-node (with two keys) already, it’s split into two
with the middle key promoted to the parent.

An Example of 2-3 Tree Construction

Construct a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7

9

>
8

955, 9 5, 8, 9

8

93, 5

2, 3, 5

8

9

>

>

3, 8

92 5

3, 8

92 4, 5

3, 8

4, 5, 72 9

> 3, 5, 8

2 4 7 9

5

3

42

8

97

Note on 2-3 Tree

• Height of the tree log3 (n + 1) - 1 h log2 (n + 1) - 1

• Time efficiency

• Search, insertion, and deletion are in (log n)

The idea of 2-3 tree can be generalized by allowing more keys
per node

• 2-3-4 trees

• B-trees

