
Announcement

We will have an in-class quiz (Quiz #3) on Thursday, March 17 
It is open-book and open-notes.

The question will ask you to create an AVL tree on a given list 
of numbers. There will be a bonus question on tree 
traversal – preorder, inorder, and postorder.



Large Integer Multiplication

Some applications, notably modern cryptology, require 
manipulation of integers that are over 100 decimal digits long

Such integers are too long to fit a single word of a computer

Therefore, they require special treatment

Consider the multiplication of two such long integers

Classic paper-and-pencil algorithm 

n2 digit multiplications 
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Large Integer Multiplication – Divide&Conquer

We want to calculate 23 x 14

Since

We have

Which includes four digit multiplications (n2) 

But 

Therefore, we only need three digit multiplications
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One Formula

Given a=a1a0 and b=b1b0, compute c=a*b

We have 

That means only three digit multiplications are needed to 
multiply two 2-digit integers
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To Multiply Two n-digit integers 

Assume n is even, write

Then

To calculate the involved three multiplications – recursion! 
Stops when n=1
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For example, for “1234”, a1= 12, a0=34, n=4 



Efficiency

The recurrence relation is

Solving it by backward substitution for n=2k yields

Therefore, 
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Reading Assignments

Chapter 5.4 Strassen’s Matrix Multiplication

Chapter 5.5 Closest pair and convex-hull by divide-and-
conquer



Transform and Conquer

Solve problem by transforming into:

a more convenient instance of the same problem (instance simplification)

• presorting

• Gaussian elimination

a different representation of the same instance (representation change)

• balanced search trees

• heaps and heapsort

a different problem with available algorithms (problem reduction)

• reductions to graph problems



Instance Simplification - Presorting

Solve problem by transforming into another simpler/easier 
instance of the same problem

Presorting:

Why: Many problems involving lists are easier when list is 
sorted.

When: A preprocessing step if multiple operations of following 
are needed:

• searching 

• computing the median (selection problem)

• computing the mode

• finding repeated elements



Example 1: Searching Problem

Find a value v in  A[1],…A[n]. 

Brute-force search: 

• Sequential search with

–worst case Θ(n).

Presorted search T(n)=Tsort(n)+ Tsearch(n)

= Θ(n log n)+ Θ(log n) = Θ(n log n)

• For a single search, the presorted search is inferior to the 
brute-force search

• For repeated searches in the same list, presorted search 
may be more efficient because the sorting need not be 
repeated

Binary search



Find the kth smallest element in  A[1],…A[n]. Special cases:

• minimum:   k = 1

• maximum:  k = n

• median:      k =   n/2

Partition-based algorithm (Variable decrease & conquer):

• worst case: T(n) =T(n-1) + (n+1) → Θ(n2) 

• best case: Θ(n) 

• average case: T(n) =T(n/2) + (n+1)  → Θ(n) 

Presorting-based algorithm 

• sort list

• return A[k]

• Θ(nlogn) + Θ(1) = Θ(nlogn)

Example 2: Selection Problem

Brute-force Θ(n)



Notes on Selection Problem

Partition-based algorithm (Variable decrease & conquer):

• worst case: T(n) =T(n-1) + (n+1) → Θ(n2) 

• best case: Θ(n) 

• average case: T(n) =T(n/2) + (n+1)  → Θ(n) 

Presorting-based algorithm: Ω(nlgn) + Θ(1) = Ω(nlgn) 

Special cases of max, min: brute-force algorithm is better Θ(n)



Example 3: Finding Repeated Elements/Array 

Uniqueness

Presorting-based algorithm: 

• Sort the array 

• Scan array to find repeated adjacent elements: 
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Example 3: Finding Repeated Elements/Array 

Uniqueness

Brute force algorithm: 

• Worst case: Θ(n2) 

Presorting-based algorithm: 

• Sort the array: Θ(nlogn) 

• scan array to find repeated adjacent elements: Θ(n) 

Conclusion: Presorting yields significant improvement
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Example 4: Computing A Mode

A mode is a value that occurs most often in a given list of 
numbers

For example: the mode of [5, 1, 5, 7, 6, 5, 7] is 5

Brute-force technique: construct a list to record the frequency 
of each distinct element

• In each iteration, the i-th element is compared to the stored 
distinct elements. If a matching is found, its frequency is 
incremented by 1. Otherwise, current element is added to the 
list as a distinct element

• Worst case complexity Θ(n2), when all the given n elements 
are distinct



Example 4: Computing A Mode With Presorting 
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Example 4: Complexity of PresortMode()

Step1: Sorting Θ(nlogn)

Step2: Θ(n) since each element will be visited once for 
comparison

Overall complexity of presortMode is Θ(nlogn)

Much more efficient than the brute-force algorithm Θ(n2)



Summary: Presorting

Solve problem by transforming into another simpler/easier instance of 
the same problem

For a single operation:

• Searching: Θ(n log n) inferior to brute-force search Θ(n) 

• Selection problem: Θ(n log n) inferior to Partition-based selection Θ(n) 

• Finding repeated elements: Θ(n log n) better than brute-force Θ(n2) 

• computing the mode: Θ(n log n) better than brute-force Θ(n2) 

For multiple operations on the same list, presorting is preferred

Efficient sorting algorithms should be employed such as MergeSort.



Representation Change – Balanced Binary 

Search Trees

Search a Key in a Binary Search Tree

Basic operation: 

# of comparisons in the worst case:

k

<k >k

Worst case: the tree degrades to a singly linked list Θ(|V|)

Average case: Θ(log|V|)

key comparison

log 𝑉 ≤ ℎ ≤ 𝑉 − 1
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How we can improve it?
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Representation Change – Balanced Binary 

Search Trees (AVL Trees)

An AVL tree Not an AVL tree

The AVL tree is named after its two inventors, G.M. Adelson-Velsky
and E.M. Landis, who published it in their 1962 paper "An algorithm 
for the organization of information.“

AVL tree is a balanced binary search tree.

The number shown above the node is its balance factor

balance factor  = height of left subtree - height of right subtree

For an AVL tree, |balance factor| <=1



Maintain the Balance of An AVL Tree

➢ When? 

• Insert a new node or delete a node may make it unbalanced – the 
balance factors of one or more nodes become +2 or -2. 

➢ How? 

• By rotation operations

• Four types of rotations

– two of them are mirror images of the other two

➢ Where? 

• Rotate a subtree rooted at the unbalanced node (whose balance factor
has become either +2 or -2) closest to the change



Four Types of Rotations for Three-Node AVL Trees

Case 1: Balance factors of the unbalanced node and its child have same sign
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Four Types of Rotations for Three-Node AVL Trees

Type 3: Double left-right rotation
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General Case: Single R-rotation
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General Case: Double LR-rotation
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Example: Construct an AVL Tree for the List 

[5, 6, 8, 3, 2, 4, 7] 
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Example: Construct an AVL Tree for the List 

[5, 6, 8, 3, 2, 4, 7] 
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Continued 

[5, 6, 8, 3, 2, 4, 7] 
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Notes on AVL Tree
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Operations in an AVL Tree

Searching: Θ(logn) 

Insertion: a new node is inserted at the leaf position

• Searching Θ(logn) 

• Rebalance (bottom up) Θ(logn) 

Deletion:

• Searching: Θ(logn) 

• Deletion: 

–A leaf or a non-leaf node with only one child, remove it. Θ(1) 

–Otherwise, replace it with either the largest in its left subtree or 
the smallest in its right subtree, and remove that node. Θ(logn) 

• Rebalance Θ(logn) 

Drawbacks: need rotation frequently to rebalance the tree



Other Search Trees



2-3 Tree – A Multiway Search Tree

• A search tree may have 2-node and 3-node

• Height balanced – all leaves are on the same level

• Constructed by successive insertions of keys 

• A new key is always inserted into a leaf of the tree.  If the 
leaf is a 3-node (with two keys) already, it’s split into two 
with the middle key promoted to the parent. 



An Example of 2-3 Tree Construction

Construct a 2-3 tree for the list  9, 5, 8, 3, 2, 4, 7
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Note on 2-3 Tree

• Height of the tree log3 (n + 1) - 1  h   log2 (n + 1)  - 1

• Time efficiency 

• Search, insertion, and deletion are in (log n) 

The idea of 2-3 tree can be generalized by allowing more keys 
per node 

• 2-3-4 trees 

• B-trees


