Announcement

We will have an in-class quiz (Quiz \#3) on Thursday, March 17 It is open-book and open-notes.

The question will ask you to create an AVL tree on a given list of numbers. There will be a bonus question on tree traversal - preorder, inorder, and postorder.

Large Integer Multiplication

Some applications, notably modern cryptology, require manipulation of integers that are over 100 decimal digits long

Such integers are too long to fit a single word of a computer
Therefore, they require special treatment
Consider the multiplication of two such long integers

Classic paper-and-pencil algorithm

$$
\begin{aligned}
& X=x_{n-1} x_{n-2} \cdots x_{1} x_{0}=\sum_{i=0}^{n-1} x_{i} r^{i} \\
& Y=y_{n-1} y_{n-2} \cdots y_{1} y_{0}=\sum_{j=0}^{n-1} y_{j} r^{j} \\
& X Y=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} x_{i} y_{j} r^{i+j}
\end{aligned}
$$

Large Integer Multiplication - Divide\&Conquer

We want to calculate 23×14
Since $\quad 23=2 \cdot 10^{1}+3 \cdot 10^{0}$ and $14=1 \cdot 10^{1}+4 \cdot 10^{0}$
We have

$$
\begin{aligned}
23 * 14 & =\left(2 \cdot 10^{1}+3 \cdot 10^{0}\right) *\left(1 \cdot 10^{1}+4 \cdot 10^{0}\right) \\
& =(2 * 1) 10^{2}+(3 * 1+2 * 4) 10^{1}+(3 * 4) 10^{0}
\end{aligned}
$$

Which includes four digit multiplications ($\boldsymbol{n}^{\mathbf{2}}$)
But

$$
\begin{aligned}
& 3 * 1+2 * 4 \quad \text { Computed already! } \\
& =(2+3) *(1+4)-(2 * 1)-(3 * 4)
\end{aligned}
$$

Therefore, we only need three digit multiplications

One Formula

Given $a=a_{1} a_{0}$ and $b=b_{1} b_{0}$, compute $c=a * b$
We have

$$
c=a * b=c_{2} 10^{2}+c_{1} 10^{1}+c_{0} 10^{0}
$$

where

$$
\begin{aligned}
& c_{2}=a_{1} * b_{1} \\
& c_{0}=a_{0} * b_{0} \\
& c_{1}=\left(a_{1}+a_{0}\right) *\left(b_{1}+b_{0}\right)-\left(c_{2}+c_{0}\right)
\end{aligned}
$$

That means only three digit multiplications are needed to multiply two 2-digit integers

To Multiply Two n-digit integers

Assume \boldsymbol{n} is even, write
$a=a_{1} 10^{n / 2}+a_{0}$ and $b=b_{1} 10^{n / 2}+b_{0} \quad$ For example, for "1234", $\boldsymbol{a}_{1}=12, \boldsymbol{a}_{0}=34, \boldsymbol{n}=4$
Then

$$
c=a^{*} b=c_{2} 10^{n}+c_{1} 10^{n / 2}+c_{0} 10^{0}
$$

where

$$
\begin{aligned}
& c_{2}=a_{1} * b_{1} \\
& c_{0}=a_{0} * b_{0} \\
& c_{1}=\left(a_{1}+a_{0}\right) *\left(b_{1}+b_{0}\right)-\left(c_{2}+c_{0}\right)
\end{aligned}
$$

To calculate the involved three multiplications - recursion! Stops when $n=1$

Efficiency

The recurrence relation is

$$
T(n)=3 T(n / 2) \text { for } n>1, T(1)=1
$$

Solving it by backward substitution for $\boldsymbol{n}=\mathbf{2}^{\boldsymbol{k}}$ yields

$$
\begin{aligned}
T\left(2^{k}\right) & =3 T\left(2^{k-1}\right)=3^{2} T\left(2^{k-2}\right) \\
& =3^{k} T\left(2^{k-k}\right)=3^{k}
\end{aligned}
$$

Therefore,

$$
T(n)=3^{\log _{2} n}=n^{\log _{2} 3} \approx n^{1.585}<n^{2}
$$

Reading Assignments

Chapter 5.4 Strassen's Matrix Multiplication
Chapter 5.5 Closest pair and convex-hull by divide-andconquer

Transform and Conquer

Solve problem by transforming into:
a more convenient instance of the same problem (instance simplification)

- presorting
- Gaussian elimination
a different representation of the same instance (representation change)
- balanced search trees
- heaps and heapsort
a different problem with available algorithms (problem reduction)
- reductions to graph problems

Instance Simplification - Presorting

Solve problem by transforming into another simpler/easier instance of the same problem

Presorting:

Why: Many problems involving lists are easier when list is sorted.

When: A preprocessing step if multiple operations of following are needed:

- searching
- computing the median (selection problem)
- computing the mode
- finding repeated elements

Example 1: Searching Problem

Find a value v in $A[1], . . A[n]$.
Brute-force search:

- Sequential search with
-worst case $\Theta(n)$.
Presorted search $T(n)=T_{\text {sort }}(n)+T_{\text {search }}(n)$

- For a single search, the presorted search is inferior to the brute-force search
- For repeated searches in the same list, presorted search may be more efficient because the sorting need not be repeated

Example 2: Selection Problem

Find the $\boldsymbol{k}^{\text {th }}$ smallest element in $\mathrm{A}[1], \ldots \mathrm{A}[n]$. Special cases:

- minimum: $\left.\begin{array}{l}k=1 \\ \text { maximum: } \\ k=n\end{array}\right\}$ Brute-force $\boldsymbol{\Theta}(\boldsymbol{n})$
- median: $k=\lceil n / 2\rceil$

Partition-based algorithm (Variable decrease \& conquer):

- worst case: $\mathrm{T}(n)=\mathrm{T}(n-1)+(n+1) \rightarrow \Theta\left(n^{2}\right)$
- best case: $\Theta(n)$
- average case: $\mathrm{T}(n)=\mathrm{T}(n / 2)+(n+1) \rightarrow \Theta(n)$

Presorting-based algorithm

- sort list
- return A[k]
- $\Theta(n \log n)+\Theta(1)=\Theta(n \log n)$

Notes on Selection Problem

Partition-based algorithm (Variable decrease \& conquer):

- worst case: $\mathrm{T}(n)=\mathrm{T}(n-1)+(n+1) \rightarrow \Theta\left(n^{2}\right)$
- best case: $\Theta(n)$
- average case: $\mathrm{T}(n)=\mathrm{T}(n / 2)+(n+1) \rightarrow \Theta(n)$

Presorting-based algorithm: $\Omega(n \lg n)+\Theta(1)=\Omega(n \lg n)$
Special cases of max, min: brute-force algorithm is better $\boldsymbol{\Theta}(n)$

Example 3: Finding Repeated Elements/Array Uniqueness

Presorting-based algorithm:

- Sort the array
- Scan array to find repeated adjacent elements:

ALGORITHM Pr esortUniqueElements($A[0, \cdots, n-1]$)
$/ /$ Input : An array A $[0, \cdots, \mathrm{n}-1]$ of orderable elements
//Output : Returns "true" if no equal elements, otherwise return "false" sort the array A
for $i \leftarrow 0$ to $n-2$ do

$$
\text { if } A[i]=A[i+1] \text { return false }
$$

return true

Example 3: Finding Repeated Elements/Array Uniqueness

Brute force algorithm:

- Worst case: $\Theta\left(n^{2}\right)$

```
ALGORITHM UniqueElements(A[0..n-1])
for }i\leftarrow0\mathrm{ to }n-2\mathrm{ do
    for }j\leftarrowi+1\mathrm{ to }n-1\mathrm{ do
    if }A[i]=A[j]\mathrm{ return false
return true
```

Presorting-based algorithm:

- Sort the array: Θ ($n \log n$)
- scan array to find repeated adjacent elements: $\Theta(n)$,

Conclusion: Presorting yields significant improvement

Example 4: Computing A Mode

A mode is a value that occurs most often in a given list of numbers

For example: the mode of $[5,1,5,7,6,5,7]$ is 5
Brute-force technique: construct a list to record the frequency of each distinct element

- In each iteration, the i-th element is compared to the stored distinct elements. If a matching is found, its frequency is incremented by 1 . Otherwise, current element is added to the list as a distinct element
- Worst case complexity $\Theta\left(n^{2}\right)$, when all the given n elements are distinct

Example 4: Computing A Mode With Presorting Algorithm

	ALGORITHM PresortMode $(A[0 . . n-1])$ Step $1:$ Sort the array A Step $2: i \leftarrow 0$ modfrequency $\leftarrow 0$ while $i \leq n-1$ do runlength $\leftarrow 1 ;$ runvalue $\leftarrow A[i]$
How many elements have the same value	while $i+$ runlength $\leq n-1$ and $A[i+$ runlength $]=$ runvalue if runlength \leftarrow runlength +1 modefrequency \leftarrow modefrequency
$i \leftarrow i+$ runlength; modevalue \leftarrow runvalue	
return modevalue	

Example 4: Complexity of PresortMode()

Step1: Sorting $\boldsymbol{O}(n \log n)$
Step2: $\Theta(n)$ since each element will be visited once for comparison

Overall complexity of presortMode is Θ (nlogn)
Much more efficient than the brute-force algorithm $\boldsymbol{O}\left(n^{2}\right)$

Summary: Presorting

Solve problem by transforming into another simpler/easier instance of the same problem

For a single operation:

- Searching: $\Theta(n \log n)$ inferior to brute-force search $\Theta(n)$
- Selection problem: $\Theta(\mathrm{n} \log n)$ inferior to Partition-based selection $\Theta(n)$
- Finding repeated elements: $\Theta(n \log n)$ better than brute-force $\Theta\left(n^{2}\right)$
- computing the mode: $\Theta(n \log n)$ better than brute-force $\Theta\left(n^{2}\right)$

For multiple operations on the same list, presorting is preferred
Efficient sorting algorithms should be employed such as MergeSort.

Representation Change - Balanced Binary Search Trees

Search a Key in a Binary Search Tree

Basic operation: key comparison
\# of comparisons in the worst case: $\quad h+1$

$$
\log |V| \leq h \leq|V|-1
$$

Worst case: the tree degrades to a singly linked list $\Theta(|V|)$
Average case: $\Theta(\log |V|)$

Representation Change - Balanced Binary Search Trees (AVL Trees)

The AVL tree is named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published it in their 1962 paper "An algorithm for the organization of information."

AVL tree is a balanced binary search tree.

An AVL tree

Not an AVL tree

The number shown above the node is its balance factor balance factor $=$ height of left subtree - height of right subtree

For an AVL tree, |balance factor| <=1

Maintain the Balance of An AVL Tree

> When?

- Insert a new node or delete a node may make it unbalanced - the balance factors of one or more nodes become +2 or -2 .
> How?
- By rotation operations
- Four types of rotations
- two of them are mirror images of the other two
> Where?
- Rotate a subtree rooted at the unbalanced node (whose balance factor has become either +2 or -2) closest to the change

Four Types of Rotations for Three-Node AVL Trees

Case 1: Balance factors of the unbalanced node and its child have same sign

Four Types of Rotations for Three-Node AVL Trees

Case 2: Balance factors of the unbalanced node and its child have different signs

Type 4: Double right-left rotation

Type 3: Double left-right rotation

General Case: Single R-rotation

$\operatorname{Height}\left(T_{1}\right)=\operatorname{Height}\left(T_{2}\right)=\operatorname{Height}\left(T_{3}\right)$

Last inserted node

$$
T_{1}<c<T_{2}<r<T_{3}
$$

General Case: Double LR-rotation

Last inserted node

$$
T_{1}<c<T_{2}<g<T_{3}<r<T_{4}
$$

Example: Construct an AVL Tree for the List
 [5, 6, 8, 3, 2, 4, 7]

Example: Construct an AVL Tree for the List
 [5, 6, 8, 3, 2, 4, 7]

Continued

[5, 6, 8, 3, 2, 4, 7]

Notes on AVL Tree

Rotations can be done in constant time ©(1)
Rotations guarantee an AVL tree
-A binary search tree
-A balanced tree
The height (\boldsymbol{h}) of an AVL tree with \boldsymbol{n} nodes is bounded by

$$
\left\lfloor\log _{2} n\right\rfloor \leq h<1.4405 \log _{2}(n+2)-1.3277
$$

average: $\quad 1.01 \log _{2} n+0.1$ for large n

Operations in an AVL Tree

Searching: $\Theta(\log n)$
Insertion: a new node is inserted at the leaf position

- Searching $\Theta(\log n)$
- Rebalance (bottom up) Θ (logn)

Deletion:

- Searching: Θ (logn)
- Deletion:
-A leaf or a non-leaf node with only one child, remove it. Θ (1)
-Otherwise, replace it with either the largest in its left subtree or the smallest in its right subtree, and remove that node. Θ (logn)
- Rebalance $\Theta(\log n)$

Drawbacks: need rotation frequently to rebalance the tree

Other Search Trees

Self-balanced BST

- Red-black trees (height of subtrees is allowed to differ by up to a factor of $2: \frac{h_{l}}{h_{r}} \leq 2$ or $\frac{h_{r}}{h_{l}} \leq 2$)

Self-optimized BST

- Splay trees: move the recent visited vertex to root so that recently accessed elements are quick to access again

Multiway search trees

- 2-3 trees, 2-3-4 trees and B-trees (not a binary tree!)
- allow more than one key in a node of a search tree
- a node is called an n-node if it has at most $n-1$ ordered keys
- all leaves are on the same level (perfectly balanced)
- In practice, parents are for indexing, leaf nodes for storing record

2-3 Tree - A Multiway Search Tree

- A search tree may have 2-node and 3-node
- Height balanced - all leaves are on the same level

- Constructed by successive insertions of keys
- A new key is always inserted into a leaf of the tree. If the leaf is a 3-node (with two keys) already, it's split into two with the middle key promoted to the parent.

An Example of 2-3 Tree Construction

Construct a 2-3 tree for the list $9,5,8,3,2,4,7$

Note on 2-3 Tree

- Height of the tree $\log _{3}(n+1)-1 \leq h \leq \log _{2}(n+1)-1$
- Time efficiency
- Search, insertion, and deletion are in $\Theta(\log n)$

The idea of 2-3 tree can be generalized by allowing more keys per node

- 2-3-4 trees
- B-trees

