
About Programming Assignment #1

• Readme/script file should include any information/instructions 
to compile and run your code successfully, for example

• Any additional library you used

• Make file

• Command lines to compile/run your code

• Where you put the “input.txt” file …

• Numbers to sort should be floating-point numbers. You 
should be able to handle a random number of floating-point 
numbers, e.g., 1.221, 78.1, and 6661.1112.

• For the empirical study, you’d better use logarithmic scale for 
both horizontal (input size) and vertical (time) axes.

• An appropriate time unit is microsecond or at least 
millisecond



Quicksort

Select a pivot (partitioning element)

Rearrange the list so that all the elements in the positions before the 
pivot are smaller than or equal to the pivot and those after the pivot 
are larger than or equal to the pivot 

Exchange the pivot with the last element in the first (i.e., ≤)  sublist–
the pivot is now in its final position

Partition into two sublists.

Sort the two sublists individually by quicksort

p

A[i] ≤ p A[i] p



Efficiency of Quicksort

Basic operation: 

Best case:
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So you don’t need to count



Efficiency of Quicksort

Worst case:

Average case:

A[0] A[1] … A[n-2] A[n-1]
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Assumption: the partition can happen in any position

with an equal probability 
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sorted array! — Θ( n2)

random arrays — Θ( n log n)



Improvements of Quicksort

• Better pivot selection: median-of-three partitioning 
avoids worst case in sorted files

• Quicksort is effective for large array

• Switch to insertion sort on small subarrays

Possible issue: Not stable!

•Stability: the relative order or records with equal 
search keys is not changed during sorting



Mergesort vs. Quicksort

Mergesort Quicksort

Basic operation key comparison key comparison

Best case O(nlogn) O(nlogn)

Average case O(nlogn) O(nlogn)

Worst case O(nlogn) O(n2)

Stable yes no

In place no yes
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Selection Problem

Find the kth smallest element in  A[1],…A[n]. Special 
cases:

• minimum:   k = 1

• maximum:  k = n

• median:      k =   n/2

How can we solve the problem?



Partition-based Selection

pivot/split at A[s] using partitioning algorithm from 
quicksort

if s=k return A[s] 

else if s<k repeat with sublist A[s+1],…A[n]. 

else if s>k repeat with sublist A[1],…A[s-1]. 

It is actually a variable size decrease & conquer 

algorithm. Why?



Efficiency of Partition-based Selection

worst case: T(n) =T(n-1) + (n+1) → Θ(n2) 

best case: Θ(n) 

average case: T(n) =T(n/2) + (n+1)  → Θ(n) 

Why we use this algorithm?

Bonus: also identifies the k smallest elements (not just the 

kth)



Binary Tree Traversals

A binary tree T is defined as a finite set of nodes that is either 
empty or consists of a root and two disjoint binary trees TL

and TR called the left and right subtree of the root

Solve the subproblem for each subtree by divide-
conquer

T TL R



Height of a binary tree

1)}(),(max{

1

)(

+

−=

rL THeightTHeight

T

THeight

 return else

 return   if

ALGORITHM



Input size n(T): # nodes in T 

0)0(

0)(,1))(())(())((

=

++=

A

TnTnATnATnA rL for

Basic operation: “+”
Recurrence:

3)1(,1)0(

0)(for,1))(())(())((

==

++=

CC

TnTnCTnCTnC rL

Basic operation: check if it is an empty tree
Recurrence:



Extended Binary Tree

Extended binary tree becomes a full binary tree (strictly binary tree)

• Internal nodes – the original nodes

• External nodes – the special nodes replacing the empty subtrees and 
empty leaf nodes

• Total number of nodes = 2 * #internal_node+1 = # external node +# 
internal node 

# external node = # internal node+1

External nodes

internal nodes



Height of a binary tree

When basic operation is checking if it is an empty tree, all nodes 
including external and internal nodes are visited

→C(n) = #external nodes+#internal nodes =2n(T)+1 

When basic operation is “+”, only the internal nodes are visited

→ A(n) = #internal nodes = n(T)



Traverse the binary tree

List all the nodes

Depth-first traversal: visit as far as possible along each subtree

• Preorder traversal: root → left subtree → right subtree

• Inorder traversal: left subtree → root → right subtree

• Postorder traversal: left subtree → right subtree → root

Breadth-first traversal: visit every level from low to right

Breadth-first:    a, b, c, d, e, f, g



Traverse the binary tree

Preorder traversal: root → left subtree → right subtree

What is the efficiency?
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Large Integer Multiplication

Some applications, notably modern cryptology, require 
manipulation of integers that are over 100 decimal digits long

Such integers are too long to fit a single word of a computer

Therefore, they require special treatment

Consider the multiplication of two such long integers

Classic paper-and-pencil algorithm 

n2 digit multiplications 
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Large Integer Multiplication – Divide&Conquer

We want to calculate 23 x 14

Since

We have

Which includes four digit multiplications (n2) 

But 

Therefore, we only need three digit multiplications

0101 1041011410310223 +=+=  and 
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One Formula

Given a=a1a0 and b=b1b0, compute c=a*b

We have 

That means only three digit multiplications are needed to 
multiply two 2-digit integers
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To Multiply Two n-digit integers 

Assume n is even, write

Then

To calculate the involved three multiplications – recursion! 
Stops when n=1

0

2/

10

2/

1 1010 bbbaaa nn +=+=  and

)()(*)(

*

*

101010*

0201011

000

112

0

0

2/

12

ccbbaac

bac

bac

cccbac nn

+−++=

=

=

++==

where

For example, for “1234”, a1= 12, a0=34, n=4 



Efficiency

The recurrence relation is

Solving it by backward substitution for n=2k yields

Therefore, 
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Reading Assignments

Chapter 5.4 Strassen’s Matrix Multiplication

Chapter 5.5 Closest pair and convex-hull by divide-and-
conquer


