
Announcement

Midterm Exam 2

• Thursday, March 24 in class

• Covered material: Lecture 10 → the class on Tuesday March
22

• Do not forget to prepare your cheat sheet (a single-side letter-
size paper)

Announcement

Programming Assignment #1 has been posted in Blackboard
and course website.

Quicksort

Select a pivot (partitioning element)

Rearrange the list so that all the elements in the positions before the
pivot are smaller than or equal to the pivot and those after the pivot
are larger than or equal to the pivot

Exchange the pivot with the last element in the first (i.e., ≤) sublist–
the pivot is now in its final position

Partition into two sublists.

Sort the two sublists individually by quicksort

p

A[i] ≤ p A[i] p

Illustrations

p all are < p ≥ p . . . ≤ p all are > p

→ i j ←

Case 1: stop earlier before meeting with each other

p all are < p Ai≥ p . . . Aj ≤ p all are > p

→ i j ←

Search from left to right and right to left simultaneously

Stop searching while the conditions violate the requirements

At the beginning: i=1; j=n-1

i < j, Swap 𝐴[𝒊] and 𝐴[𝑗]
After swapping, keep searching

0

Illustrations

p all are < p Aj ≤ p Ai ≥ p all are > p

→ ij ←

p all are < p = p all are > p

→ i= j ←

Case 2: stop when two searching directions cross

Searching stops when i > j

Case 3: stop at the same position

Searching stops when i = j

For both two cases, the pivot position = j

Swap 𝐴[𝑝] and 𝐴[𝑗]

QuickSort Algorithm

]..1[

]1..[

//])..[(

])..[(

rsAQuickSort

slAQuickSort

srlAPartitions

rl

rlAQuickSort

+

−





position split a is

 if

ALGORITHM

The partition algorithm



or i = r

or j = l

The leftmost element in the subarray is chosen as the pivot

Do not need frequent

memory access

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

Initialization:

i=1 and j=7

From left to right,

compare:

5 and 3,

5 and 1,

5 and 9

From right to left,

compare:

5 and 7,

5 and 4

5 comparisons

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

First stop

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

i j

5 3 1 4 8 2 9 7

Swap 4 and 9

Keep working:

From left to right,

compare:

5 and 8

From right to left,

compare:

5 and 2

2 comparisons

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

j i

5 3 1 4 2 8 9 7

Second stop --

Swap 8 and 2

Keep working:

From left to right,

compare:

5 and 8

From right to left,

compare:

5 and 2

2 comparisons

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

j i

5 3 1 4 2 8 9 7

Pivot position s=4i >= j

l=0, r=7

S=4
9 comparisons

Quicksort Example

5 3 1 9 8 2 4 7

l=3, r=3

l=5, r=7

s=6

(b)

l=2, r=1

l=2, r=3

s=2

l=0, r=0

l=0, r=3

s=1

l=0, r=7

s=4

l=7, r=7l=5, r=5

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

i j

5 3 1 4 8 2 9 7

j i

5 3 1 4 2 8 9 7

2 3 1 4 5 8 9 7

Pivot position s=4

Perform quicksort on these two new arrays separately

9 comparisons

5 comparisons 4 comparisons

3 comparisons

9+5+4+3=21 comparisons

More Examples of Quicksort

23, 53, 2, 78, 12, 54, 1, 8

12, 31, 11, 55, 12, 79, 81, 2

Efficiency of Quicksort

Basic operation:

Best case:

 )()2/(2 nfnCC bestbest += 0)1(,1 = bestCnfor





=

+
=

jin

jin
nf

1
)(

Master Theorem: a=2,b=2,k=1

)log(nnCbest 

split in the middle — Θ(n log n)

key comparison

So you don’t need to count

Efficiency of Quicksort

Worst case:

Average case:

A[0] A[1] … A[n-2] A[n-1]

1)1()(++−= nnCnC worstworst

ij

  nnpnCpCn
n

nC
n

p

avgavgavg ln2)1()()1(*
1

)(
1

0










−−+++=
−

=

Assumption: the partition can happen in any position

with an equal probability

10 − np

First subarray

second subarray
probability

0)1(,0)0(== avgavg CC

sorted array! — Θ(n2)

random arrays — Θ(n log n)

Improvements of Quicksort

• Better pivot selection: median-of-three partitioning
avoids worst case in sorted files

• Quicksort is effective for large array

• Switch to insertion sort on small subarrays

Possible issue: Not stable!

•Stability: the relative order or records with equal
search keys is not changed during sorting

Mergesort vs. Quicksort

Mergesort Quicksort

Basic operation key comparison key comparison

Best case O(nlogn) O(nlogn)

Average case O(nlogn) O(nlogn)

Worst case O(nlogn) O(n2)

Stable yes no





1];C[][else

1];[][

][][if

])1..0[],1..0[],1..0[(ALGORITHM

+

+



−+−−

jjjkA

iiiBkA

jCiB

qpAqCpBMerge
Algorithm Partition

Inner loop procedure



