Announcement

Midterm Exam 2

- Thursday, March 24 in class
- Covered material: Lecture $10 \rightarrow$ the class on Tuesday March 22
- Do not forget to prepare your cheat sheet (a single-side lettersize paper)

Announcement

Programming Assignment \#1 has been posted in Blackboard and course website.

Quicksort

Select a pivot (partitioning element)
Rearrange the list so that all the elements in the positions before the pivot are smaller than or equal to the pivot and those after the pivot are larger than or equal to the pivot

Exchange the pivot with the last element in the first (i.e., \leq) sublistthe pivot is now in its final position

Partition into two sublists.
Sort the two sublists individually by quicksort

Illustrations

Search from left to right and right to left simultaneously

Stop searching while the conditions violate the requirements
Case 1: stop earlier before meeting with each other

Illustrations

Case 2: stop when two searching directions cross

Case 3: stop at the same position

For both two cases, the pivot position $=\boldsymbol{j}$
Swap $A[p]$ and $A[j]$

QuickSort Algorithm

```
ALGORITHM QuickSort(A[l..r])
if \(l<r\)
    \(s \leftarrow \operatorname{Partition}(A[l . . r]) / / s\) is a splitposition
    QuickSort A[l..s - 1]
    QuickSort \(A[s+1 . . r]\)
```


The partition algorithm

Algorithm Partition(A[l..r])
//Partitions a subarray by using its first element as a pivot
//Input: A subarray $A[l . . r]$ of $A[0 . . n-1]$, defined by its left and right
$/ / \quad$ indices l and $r(l<r)$
//Output: A partition of $A[l . . r]$, with the split position returned as
// this function's value
$p \leftarrow A[l] \longleftarrow$ The leftmost element in the subarray is chosen as the pivot
$i \leftarrow l ; \quad j \leftarrow r+1$
repeat
repeat $i \leftarrow i+1$ until $A[i] \geq \rho$ or $i=r$
repeat $j \leftarrow j-1$ until $A[j] \leq(p)$ or $j=l$
swap $(A[i], A[j])$
until $i \geq j$
$\operatorname{swap}(A[i], A[j]) \quad / /$ undo last swap when $i \geq j$
Do not need frequent
swap $(A[l], A[j])$
return j

Quicksort Example

$\begin{array}{llllllll}5 & 3 & 1 & 9 & 8 & 2 & 4\end{array}$

Initialization:
$\mathrm{i}=1$ and $\mathrm{j}=7$
From left to right, compare:
5 and 3, 5 and 1, 5 and 9

From right to left, compare:
5 and 7,
5 and 4

5 comparisons

Quicksort Example

$\begin{array}{llllllll}5 & 3 & 1 & 9 & 8 & 2 & 4 & 7\end{array}$

First stop

Quicksort Example

$\begin{array}{llllllll}5 & 3 & 1 & 9 & 8 & 2 & 4 & 7\end{array}$

Swap 4 and 9

Keep working:
From left to right, compare:
5 and 8

From right to left, compare:
5 and 2

2 comparisons

Quicksort Example

$\begin{array}{llllllll}5 & 3 & 1 & 9 & 8 & 2 & 4\end{array}$

Second stop -Swap 8 and 2

Keep working:
From left to right, compare:
5 and 8

From right to left, compare:
5 and 2

2 comparisons

Quicksort Example

Quicksort Example

Perform quicksort on these two new arrays separately

More Examples of Quicksort
23, 53, 2, 78, 12, 54, 1, 8
12, 31, 11, 55, 12, 79, 81, 2

Efficiency of Quicksort

Basic operation: key comparison
Best case: split in the middle $-\Theta(n \log n)$
$C_{\text {best }}=2 C_{\text {best }}(\lfloor n / 2\rfloor)+f(n) \quad$ for $\quad n>1, C_{\text {best }}(1)=0$
$f(n)=\left\{\begin{array}{cc}n+1 & i \neq j \\ n & i=j\end{array} \Rightarrow\right.$ So you don't need to count
Master Theorem: $a=2, b=2, k=1$

$$
C_{b e s t} \in \Theta(n \log n)
$$

Efficiency of Quicksort

Worst case: sorted array! - $\Theta\left(n^{2}\right)$

$$
C_{\text {worst }}(n)=C_{\text {worst }}(n-1)+n+1
$$

A[n-2] $A[n-1]$

Average case: random arrays $-\Theta(n \log n)$
Assumption: the partition can happen in any position $0 \leq p \leq n-1$ with an equal probability

$$
C_{a v g}(0)=0, C_{a v g}(1)=0
$$

Improvements of Quicksort

- Better pivot selection: median-of-three partitioning avoids worst case in sorted files
- Quicksort is effective for large array
- Switch to insertion sort on small subarrays

Possible issue: Not stable!
-Stability: the relative order or records with equal search keys is not changed during sorting

Mergesort vs. Quicksort

	Mergesort	Quicksort
Basic operation	key comparison	key comparison
Best case	O(nlogn)	O(nlogn)
Average case	O(nlogn)	O(nlogn)
Worst case	O(nlogn)	O(n²)
Stable	yes	no

ALGORITHM Merge $(B[0 . . p-1], C[0 . . q-1], A[0 . . p+q-1])$
\ldots
\quad if $B[i] \leq C[j]$
$\quad A[k] \leftarrow B[i] ; i \leftarrow i+1$
\quad else $A[k] \leftarrow \mathrm{C}[j] ; j \leftarrow j+1$

Algorithm Partition

```
repeat
    repeat }i\leftarrowi+1\mathrm{ until }A[i]\geq
    repeat j}\leftarrowj-1 until A[j]\leq
    swap(A[i],A[j])
    until i\geqj
```

Inner loop procedure

