Announcement

The deadline of Homework #3 has been extended to 11:59pm,
Feb 25.

Announcement

Homework #4 has been posted in Blackboard and course
website.

Due: Thursday, March 3 before class starts.

Announcement

We will have an in-class quiz (Quiz #2) on Tuesday, March 1. It
is open-book and open-notes.

The question will ask you to perform quicksort on a given list
of numbers.

Topological Sorting

Problem: find an order of vertices such that for every edge in
the graph, the starting vertex is listed before the ending vertex

E le: :
Xample Five courses has the

prerequisite relation shown
in the left. Find the right
order to take all of them
sequentially

Note: problem 1s solvable 1ff
graph 1s DAG

Topological Sorting Algorithms

DFS-based algorithm:

« DFS traversal: note the order with which the vertices are
popped off stack (dead end)

* Reverse order solves topological sorting
« Back edges encountered?— NOT a DAG!

Source removal algorithm

« Repeatedly identify and remove a source vertex, i.e., a
vertex that has no incoming edges

An Example: DFS-based Topological Sorting

@ @ C5
o
@ @ C14 C25

(@) (b)

O(V+E) using adjacency linked lists

The popping-off order:

C5, C4, C3, C1, C2

The topologically sorted list:
C2CI (C3C4C5

()

An Example: Source removal

e, o Sl o) Sm2
3 l — 3] l —~ (cg l
CANC ez o cs

Step 3 Step 4 Step 5
delete C3 delete C4 delete C5
N

s €9

CIC2C3C40C5

O(V+E) using adjacency linked lists How to implement it?

Comparison

DFS based algorithm and the source removal algorithm may
produce different valid topological order lists.

2 C12»C3 »C4 »C5
1 C2 »C3 »C4 »C5

Variable-Size-Decrease: Binary Search Trees

* Every element in the left subtree is smaller than the root
* Every element in the right subtree is larger than the root

« Search a key in a binary search tree is reduced to search in a
subtree in each iteration.

* The height of the subtree changes each time ‘

‘ variable-size-decrease

Search a Key in a Binary Search Tree

Basic operation: key comparison
of comparisons in the worst case: h+1

loglV|<h<|V]|-1

Worst case: the tree degrades to a singly linked list O(|V|)
Average case: O(log|V|)

B
(a) .

Searching and insertion in binary search trees

Searching — straightforward

Insertion — search for key, insert at leaf where search
terminated

Example 1: 5, 10,3, 1,7,12,9

Example 2:4,5,7,2,1, 3,6

Reading Assignments

Chapter 5.3, 5.4 and 5.5

Now, Chapter 5 -- Divide and Conquer

The most well-known algorithm design strategy:

Divide instance of problem into two or more smaller
instances of the same problem, ideally of about
the same size

Solve smaller instances recursively

Obtain solution to original (larger) instance by
combining these solutions obtained for the
smaller instances

Divide-and-conquer technique

L

An Example

Compute the sum of n numbers a,, a,, ..., a,.4-

Question: How to design a divide-and-conquer algorithm to
solve this problem and what is its complexity?

Use divide-and-conquer strategy:

a,+...+a,_, =(a,+...+ %/zj_l) + (“Ln/zj +a)

What is the recurrence and the complexity of this recursive
algorithm?

Does it improve the efficiency of the brute-force algorithm?

General Divide and Conquer Recurrence

C(n) = 2C (g) +1,forn>1 C(1) =0

T(n) =aT(n/b) + f (n) where f (n) € ©(n¥)

a < bk T(n) € ©(n%)

a = bk T(n) € ©(n*Ilog n)

a > bk T(n) € ©(n'9-3)
a=2, b=2, k=0

a>b*, C(n) belongs to @ (n)

Mergesort

Algorithm:

Split array A[1..n] in two and make copies of each half in
arrays B[1..|n/2|]] and C[1..[n/2]]

Sort arrays B and C

Merge sorted arrays B and C into array A as follows:

« Repeat the following until no elements remain in one of the
arrays:
—compare the first elements in the remaining unprocessed
portions of the arrays
—copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

* Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

88888888

Mergesort Example / \
8329

/N /\
/\ /\ /\ /\

VAR VERVARY
NS NS
S,

Algorithm in Pseudocode

ALGORITHM MergeSort(A[0..n —1])
ifn>1
copy A[0.]n/2|-11to B[0.|n/2 |-1]
copy A[|n/2 |.n—1]1to C[0.]n/2]-1]
MergeSort (B[0.|n/2|-1])
MergeSort (C [O..|_n / 2_| —1])
Merge(B,C, A)

Merge Algorithm in Pseudocode

ALGORITHM Merge(B[0..p —1],C[0..g —1], 4A[0..p + g —1])
i< 0,0, k<0
while i < pand j < g do

if B[i]<C[]]

Akl < Bli];i<i+1

else A[k] < C[j]; j <« j+1

k< k+1
ifi=p

copy C[j..q—1]to A[k..p+q —1]
else

copy Bli..p —1]to A[k..p +q —1]

Efficiency

Recurrence
C(n)=2C(n/2)*+C ., .(n) for n>1, C(1)=0
Basic operation is a comparison and we have

C =n-1 ------ worst case

merge(n)

General Divide and Conquer Recurrence

C(n)=2€(§)+n—1,forn>1 C(1)=0

T(n) =aT(n/b) + f (n) where f (n) € ©(n¥)

a < bk T(n) € ©(n%)

a = bk T(n) € ©(n*Ilog n)

a > bk T(n) € ©(n'9-3)
a=2, b=2, k=I

a=b*, C(n) belongs to @ (nlogn)

Efficiency

Recurrence
C(n)=2C(n/2)*+C ., .(n) for n>1, C(1)=0
Basic operation is a comparison and we have
C nergeln)=n-1 ------ worst case

Using the Master Theorem, the complexity of mergesort
algorithm is

©(n log n)

It is more efficient than SelectionSort, BubbleSort and
InsertionSort, where the time complexity is ©(n?)

Quicksort

Select a pivot (partitioning element)

Rearrange the list so that all the elements in the positions before the
pivot are smaller than or equal to the pivot and those after the pivot
are larger than or equal to the pivot

Exchange the pivot with the last element in the first (i.e., £) sublist—
the pivot is now in its final position

Partition into two sublists.

Sort the t ists_individually by quicksort

Hlustrations

Search from left to right and right to left simultaneously

At the beginning: i=1; j=n-1

i j—

p | allare<p all are > p

Stop searching while the conditions violate the requirements

Case 1: stop earlier before meeting with each other

p |allare<p |[Azp ... |A<p all are > p

i <j, Swap Ali] and}mJ

After swapping, keep searching

Hlustrations

Case 2: stop when two searching directions cross

—j— —i
p all are <p Aj‘Sp A >p all are > p
\—Seuﬁh’in/g stops when i > j
Case 3: stop at the same position
= 1=] «—
p all are <p - p all are > p

For both two cases, the pivot position = j

earching stops when i =j

Swap Alp| and A|j]

QuickSort Algorithm

ALGORITHM QuickSort(A[l..r])

if [<r
s < Partition(A[l..r])// s is a split position
QuickSort A[l..s —1]
QuickSort A[s +1..r]

The Partition Algorithm

Algorithm Partition(A[l.r])

{ {Partitions a subarray by using its first element as a pivot
{ {Imput: A subarray A[l..r] of A[0..n — 1], defined by its left and right
i indices I and r (I < r)

{ {Output: A partition of A[l.r], with the split posiion returned as
I this function’s value
p + All]
T j+r+1
repeat

repeat i +— i+ 1 until Al{] =p ori=r

repeat § + j — 1 until Alj] <p or j=/

swap(Alf], A[])
until z > 4
swap(Al|i, A[f]) //undo last swap when ¢ = §
swap(All], Alj]

return j

Quicksort Example

531982 47

Initialization: 0 [1 /2 [3 |4 |5 |6 |7
i g |

1=1 and j=7
5 3 1 9 8 2 4 7

From left to right, From right to left,
compare: compare:

5 and 3, 5and 7,

5and 1, 5and 4

5and 9

Quicksort Example

531982 47

First stop 0 1112 13 45 16 |7
] j

%

5 3 1 9 8 2 4 7

Quicksort Example

531982 47

Swap 4 and 9 /—\ ~——
5 3 1 Q\J
Keep working: i ﬁ From right to left,
From left to right, —> compare:
compare: 5 3 1 4 8 2 9 7 S and 2

5 and 8

Quicksort Example

531982 47

Second stop --
Swap 8 and 2

Keep working:
From left to right,
compare:

5 and 8

/\%

From right to left,
compare:
5 and 2

Quicksort Example

5319 8 2 47
1=0. r=7

0 112 (3 41567 -
| i

5314?897

i >= jm) Pivot position s=4

Quicksort Example

53198 247
0 111203 14 5 6|7
—>] «<—

5 3 1 9 8 2 4 7

Pivot position s=4

Perform quicksort on these two new arrays separately

I=0, r=3

s=1

I=0, r=0

I=0, =7

=4

=5, =7

=6

=2, r=3

I=5, r=5

s=2

=2, =1

=3,

r=3

I=7, r=7

