
Announcement

The deadline of Homework #3 has been extended to 11:59pm,
Feb 25.

Announcement

Homework #4 has been posted in Blackboard and course
website.

Due: Thursday, March 3 before class starts.

Announcement

We will have an in-class quiz (Quiz #2) on Tuesday, March 1. It
is open-book and open-notes.

The question will ask you to perform quicksort on a given list
of numbers.

Topological Sorting

Problem: find an order of vertices such that for every edge in
the graph, the starting vertex is listed before the ending vertex

Example:
Five courses has the

prerequisite relation shown

in the left. Find the right

order to take all of them

sequentially

Note: problem is solvable iff

graph is DAG

C1

C2 C5

C4

C3

C1

C2 C5

C4

C3

Topological Sorting Algorithms

DFS-based algorithm:

• DFS traversal: note the order with which the vertices are
popped off stack (dead end)

• Reverse order solves topological sorting

• Back edges encountered?→ NOT a DAG!

Source removal algorithm

• Repeatedly identify and remove a source vertex, i.e., a
vertex that has no incoming edges

An Example: DFS-based Topological Sorting

C2 C1 C3 C4 C5

Θ(V+E) using adjacency linked lists

C51

C42

C33

C14 C2 5

The popping-off order:

C5, C4, C3, C1, C2

The topologically sorted list:

(a) (b) (c)

C1

C2 C5

C4

C3

An Example: Source removal

delete C1 delete C2

delete C3 delete C4 delete C5

C1

C2 C5

C4

C3

C2 C5

C4

C3

C5

C4

C3

C5

C4

C5

C1 C2 C3 C4 C5

Θ(V+E) using adjacency linked lists How to implement it?

Step 1 Step 2

Step 3 Step 4 Step 5

Comparison

DFS based algorithm and the source removal algorithm may
produce different valid topological order lists.

C2 C1 C3 C5C4

C1 C2 C3 C5C4

Variable-Size-Decrease: Binary Search Trees

• Every element in the left subtree is smaller than the root

• Every element in the right subtree is larger than the root

• Search a key in a binary search tree is reduced to search in a
subtree in each iteration.

• The height of the subtree changes each time

variable-size-decrease

k

<k >k

Search a Key in a Binary Search Tree

Basic operation:

of comparisons in the worst case:

k

<k >k

a
0

a
1

an-2

an-1

.
.

.

(a)

an-1

an-2

a 1

a 0

.
.

.

(b)

Worst case: the tree degrades to a singly linked list Θ(|V|)

Average case: Θ(log|V|)

key comparison

log 𝑉 ≤ ℎ ≤ 𝑉 − 1

h+1

Searching and insertion in binary search trees

Searching – straightforward

Insertion – search for key, insert at leaf where search
terminated

Example 1: 5, 10, 3, 1, 7, 12, 9

Example 2: 4, 5, 7, 2, 1, 3, 6

Reading Assignments

Chapter 5.3, 5.4 and 5.5

Now, Chapter 5 -- Divide and Conquer

The most well-known algorithm design strategy:

Divide instance of problem into two or more smaller
instances of the same problem, ideally of about
the same size

Solve smaller instances recursively

Obtain solution to original (larger) instance by
combining these solutions obtained for the
smaller instances

Divide-and-conquer technique

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

An Example

Compute the sum of n numbers a0, a1, …, an-1.

Question: How to design a divide-and-conquer algorithm to
solve this problem and what is its complexity?

Use divide-and-conquer strategy:

What is the recurrence and the complexity of this recursive
algorithm?

Does it improve the efficiency of the brute-force algorithm?

   
)()...(... 12/12/010 −−− ++++=++ nnnn aaaaaa

General Divide and Conquer Recurrence

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)

a < bk T(n) ∈ Θ(nk)

a = bk T(n) ∈ Θ(nk log n)

a > bk T(n) ∈ Θ(nlog b a)

a=2, b=2, k=0

a>bk, C(n) belongs to Θ (n)

𝐶 𝑛 = 2𝐶
𝑛

2
+ 1, 𝑓𝑜𝑟 𝑛 > 1 𝐶 1 = 0

Mergesort

Algorithm:

Split array A[1..n] in two and make copies of each half in
arrays B[1.. n/2] and C[1.. n/2]

Sort arrays B and C

Merge sorted arrays B and C into array A as follows:

• Repeat the following until no elements remain in one of the
arrays:

– compare the first elements in the remaining unprocessed
portions of the arrays

– copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

• Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Mergesort Example

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

Algorithm in Pseudocode

   

   

 

 
),,(

])12/..0[(

)]12/..0[(

]12/..0[to]1..2/[copy

]12/..0[to]12/..0[copy

1 if

])1..0[(ALGORITHM

ACBMerge

nCMergeSort

nBMergeSort

nCnnA

nBnA

n

nAMergeSort

−

−

−−

−−



−

Merge Algorithm in Pseudocode

]1..[]1..[

]1..[]1..[

1

1];C[][

1];[][

][][

000

])1..0[],1..0[],1..0[(

−+−

−+−

=

+

+

+







−+−−

qpkApiB

qpkAqjC

pi

kk

jjjkA

iiiBkA

jCiB

qjpi

; k; ji

qpAqCpBMerge

 to copy

 else

 to copy

 if

 else

 if

do and while

ALGORITHM

Efficiency

Recurrence

C(n)=2C(n/2)+Cmerge(n) for n>1, C(1)=0

Basic operation is a comparison and we have

Cmerge(n)=n-1 ------ worst case

General Divide and Conquer Recurrence

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)

a < bk T(n) ∈ Θ(nk)

a = bk T(n) ∈ Θ(nk log n)

a > bk T(n) ∈ Θ(nlog b a)

a=2, b=2, k=1

a=bk, C(n) belongs to Θ (nlogn)

𝐶 𝑛 = 2𝐶
𝑛

2
+ 𝑛 − 1, 𝑓𝑜𝑟 𝑛 > 1 𝐶 1 = 0

Efficiency

Recurrence

C(n)=2C(n/2)+Cmerge(n) for n>1, C(1)=0

Basic operation is a comparison and we have

Cmerge(n)=n-1 ------ worst case

Using the Master Theorem, the complexity of mergesort
algorithm is

Θ(n log n)

It is more efficient than SelectionSort, BubbleSort and
InsertionSort, where the time complexity is Θ(n2)

Quicksort

Select a pivot (partitioning element)

Rearrange the list so that all the elements in the positions before the
pivot are smaller than or equal to the pivot and those after the pivot
are larger than or equal to the pivot

Exchange the pivot with the last element in the first (i.e., ≤) sublist–
the pivot is now in its final position

Partition into two sublists.

Sort the two sublists individually by quicksort

p

A[i] ≤ p A[i] p

Illustrations

p all are < p ≥ p . . . ≤ p all are > p

→ i j ←

Case 1: stop earlier before meeting with each other

p all are < p Ai≥ p . . . Aj ≤ p all are > p

→ i j ←

Search from left to right and right to left simultaneously

Stop searching while the conditions violate the requirements

At the beginning: i=1; j=n-1

i < j, Swap 𝐴[𝒊] and 𝐴[𝑗]
After swapping, keep searching

0

Illustrations

p all are < p Aj ≤ p Ai ≥ p all are > p

→ ij ←

p all are < p = p all are > p

→ i= j ←

Case 2: stop when two searching directions cross

Searching stops when i > j

Case 3: stop at the same position

Searching stops when i = j

For both two cases, the pivot position = j

Swap 𝐴[𝑝] and 𝐴[𝑗]

QuickSort Algorithm

]..1[

]1..[

//])..[(

])..[(

rsAQuickSort

slAQuickSort

srlAPartitions

rl

rlAQuickSort

+

−





position split a is

 if

ALGORITHM

The Partition Algorithm



or i = r

or j = l

The leftmost element in the subarray is chosen as the pivot

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

Initialization:

i=1 and j=7

From left to right,

compare:

5 and 3,

5 and 1,

5 and 9

From right to left,

compare:

5 and 7,

5 and 4

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

First stop

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

i j

5 3 1 4 8 2 9 7

Swap 4 and 9

Keep working:

From left to right,

compare:

5 and 8

From right to left,

compare:

5 and 2

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

j i

5 3 1 4 2 8 9 7

Second stop --

Swap 8 and 2

Keep working:

From left to right,

compare:

5 and 8

From right to left,

compare:

5 and 2

Quicksort Example

5 3 1 9 8 2 4 7

0 1 2 3 4 5 6 7

j i

5 3 1 4 2 8 9 7

Pivot position s=4i >= j

l=0, r=7

S=4

Quicksort Example

5 3 1 9 8 2 4 7

l=3, r=3

l=5, r=7

s=6

(b)

l=2, r=1

l=2, r=3

s=2

l=0, r=0

l=0, r=3

s=1

l=0, r=7

s=4

l=7, r=7l=5, r=5

0 1 2 3 4 5 6 7

i j

5 3 1 9 8 2 4 7

i j

5 3 1 4 8 2 9 7

j i

5 3 1 4 2 8 9 7

2 3 1 4 5 8 9 7

Pivot position s=4

Perform quicksort on these two new arrays separately

