
Breadth-First Search (BFS)

Explore graph moving across to all the neighbors of last
visited vertex

Similar to level-by-level tree traversals

Instead of a stack (LIFO), breadth-first uses queue (FIFO)

Applications: same as DFS

BFS Example – undirected graph

c f

ea

bd

g h

ij

a

dc e

f b

g

h

i

j

6

5

4

3

2

1

b

f

e

d

c

a

Input Graph

(Adjacency matrix /

linked list

BFS forest

(Tree edge /

Cross edge)

Queue

10

9

8

7

i

j

h

g

BFS algorithm

bfs(v)

count ← count + 1

mark v with count

initialize queue with v

while queue is not empty do

for each vertex w adjacent to the front
vertex do

if w is marked with 0

count ←count + 1

mark w with count

add w to the end of the queue

remove the front vertex from the queue

ALGORITHM BFS(G)

//Input: Graph 𝐺 =< 𝑉, 𝐸 >
//Output: Graph G with its

//vertices marked with

//consecutive integers in the

//order they’ve been visited by

//BFS traversal

count ← 0

mark each vertex with 0

for each vertex v in V do

if v is marked with 0

bfs(v)

Example – Directed Graph

a b

e f

c d

g h

BFS traversal:

BFS Forest and Queue

a c

h

g

e fb d

6

5

4

3

2

1

h

g

f

e

b

a

Queue

BFS forest

2

1

3

4

How many cross edges? 4

8

7

d

c

Breadth-first search: Notes

BFS has same efficiency as DFS and can be implemented with
graphs represented as:

• Adjacency matrices: Θ(|V|2)

• Adjacency linked lists: Θ(|V|+|E|)

Yields single ordering of vertices (order added/deleted from
queue is the same)

Graph Traversal

▪ DFS
▪ Uses a stack

▪ Yields two distinct ordering of vertices:

–Preorder traversal: as vertices are first encountered (pushed onto
stack)

–Postorder traversal: as vertices become dead-ends (popped off stack)

▪ Result in a DFS forest

-- Tree edges, back edges, forward edges, and cross edges

▪ BFS
▪ Uses a queue

▪ Yields one ordering of vertices

▪ Result in a BFS forest with tree edges and cross edges

▪ Both DFS and BFS have efficiency
• Adjacency matrices: Θ(|V|2)

• Adjacency linked lists: Θ(|V|+|E|)

Directed Acyclic Graph (DAG)

A directed graph with no cycles

Arise in modeling many problems, eg:

• prerequisite structure

• food chains

A digraph is a DAG if its DFS forest has no back edge.

C1

C2 C5

C4

C3

Example:

a b

c

d

e

(a)

a

b

c

d

e

(b)

DFS forestDG

Not a DAG!

Topological Sorting

Problem: find an order of vertices such that for every edge in
the graph, the starting vertex is listed before the ending vertex

Example:
Five courses has the

prerequisite relation shown

in the left. Find the right

order to take all of them

sequentially

Note: problem is solvable iff

graph is DAG

C1

C2 C5

C4

C3

C1

C2 C5

C4

C3

Topological Sorting Algorithms

DFS-based algorithm:

• DFS traversal: note the order with which the vertices are
popped off stack (dead end)

• Reverse order solves topological sorting

• Back edges encountered?→ NOT a DAG!

Source removal algorithm

• Repeatedly identify and remove a source vertex, i.e., a
vertex that has no incoming edges

An Example: DFS-based Topological Sorting

C2 C1 C3 C4 C5

Θ(V+E) using adjacency linked lists

C51

C42

C33

C14 C2 5

The popping-off order:

C5, C4, C3, C1, C2

The topologically sorted list:

(a) (b) (c)

C1

C2 C5

C4

C3

An Example: Source removal

delete C1 delete C2

delete C3 delete C4 delete C5

C1

C2 C5

C4

C3

C2 C5

C4

C3

C5

C4

C3

C5

C4

C5

C1 C2 C3 C4 C5

Θ(V+E) using adjacency linked lists How to implement it?

Step 1 Step 2

Step 3 Step 4 Step 5

Comparison

DFS based algorithm and the source removal algorithm may
produce different valid topological order lists.

C2 C1 C3 C5C4

C1 C2 C3 C5C4

Variable-Size-Decrease: Binary Search Trees

• Every element in the left subtree is smaller than the root

• Every element in the right subtree is larger than the root

• Search a key in a binary search tree is reduced to search in a
subtree in each iteration.

• The height of the subtree changes each time

variable-size-decrease

k

<k >k

Search a Key in a Binary Search Tree

Basic operation:

of comparisons in the worst case:

k

<k >k

a
0

a
1

an-2

an-1

.
.

.

(a)

an-1

an-2

a 1

a 0

.
.

.

(b)

Worst case: the tree degrades to a singly linked list Θ(|V|)

Average case: Θ(log|V|)

key comparison

log 𝑉 ≤ ℎ ≤ 𝑉 − 1

h+1

Searching and insertion in binary search trees

Searching – straightforward

Insertion – search for key, insert at leaf where search
terminated

Example 1: 5, 10, 3, 1, 7, 12, 9

Example 2: 4, 5, 7, 2, 1, 3, 6

Reading Assignments

Chapter 5.3, 5.4 and 5.5

Now, Chapter 5 -- Divide and Conquer

The most well-known algorithm design strategy:

Divide instance of problem into two or more smaller
instances of the same problem, ideally of about
the same size

Solve smaller instances recursively

Obtain solution to original (larger) instance by
combining these solutions obtained for the
smaller instances

Divide-and-conquer technique

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n

An Example

Compute the sum of n numbers a0, a1, …, an-1.

Question: How to design a divide-and-conquer algorithm to
solve this problem and what is its complexity?

Use divide-and-conquer strategy:

What is the recurrence and the complexity of this recursive
algorithm?

Does it improve the efficiency of the brute-force algorithm?

)()...(... 12/12/010 −−− ++++=++ nnnn aaaaaa

General Divide and Conquer Recurrence

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)

a < bk T(n) ∈ Θ(nk)

a = bk T(n) ∈ Θ(nk log n)

a > bk T(n) ∈ Θ(nlog b a)

a=2, b=2, k=0

a>bk, C(n) belongs to Θ (n)

𝐶 𝑛 = 2𝐶
𝑛

2
+ 1, 𝑓𝑜𝑟 𝑛 > 1 𝐶 1 = 0

