
Announcement

HW #3 has been posted on the website and Blackboard.

Due: Thursday, Feb. 24 before class starts

Chapter 4: Decrease and Conquer

Reduce problem instance to smaller instance of the same
problem

Solve smaller instance

Extend solution of smaller instance to obtain solution to
original problem

Also referred to as inductive or incremental approach

Examples of Decrease and Conquer

Decrease by one:

• Insertion sort

• Graph search algorithms:
– DFS

– BFS

– Topological sorting

Decrease by a constant factor

• Binary search

Variable-size decrease

• Euclid’s algorithm for computing gcd

• Selection by partition

Decrease-by-one -- Insertion Sort

This is a typical decrease-by-one technique

Assume A[0..i-1] has been sorted, how to achieve the sorted
A[0..i]?

Solution: insert the last element A[i] to the correct position

A[0] A[j] A[i-1] A[n-1].
smaller than or equal to A[i]

A[j+1] A[i]

greater than A[i]

Comparison direction

Insertion Sort

)(
4

)(2
2

n
n

nCaverage 

Input size? Basic operations?

)(
2

)1(
1)(2

1

1

1

0

n
nn

nC
n

i

i

j

worst 
−

==
−

=

−

=

)(11)(
1

1

nnnC
n

i

best −==
−

=

Insertion Sort Examples

Sort the numbers in a non-decreasing order

(a) 12 1 13 6 22 4

(b) 1 4 6 12 13 22

(c) 22 13 12 6 4 1

How many comparisons you need?

Insertion Sort Examples

12 1 13 6 22 4

1 12 13 6 22 4

1 12 13 6 22 4

1 6 12 13 22 4

1 6 12 13 22 4

1 4 6 12 13 22

1 comparison
1 comparison

3 comparisons

1 comparison

5 comparisons

1+1+3+1+5=11 comparisons

Graph Traversal

Many problems require processing all graph
vertices in systematic fashion

Graph traversal algorithms:

• Depth-first search (DFS)

• Breadth-first search (BFS)

They can be treated as decrease-by-one strategy.

Depth-First Search (DFS)

▪ Visits graph’s vertices by always moving away from
last visited vertex to an unvisited one, backtracks if no
adjacent unvisited vertex is available.

▪ Uses a stack

▪ a vertex is pushed onto the stack when it’s reached for
the first time

▪ a vertex is popped off the stack when it becomes a dead
end, i.e., when there is no adjacent unvisited vertex

▪ Construct a DFS forest

Example – Undirected Graph

c f

ea

bd

g h

ij

a

c

d f

b

e

g

h

i

j10,76,1

9,85,2

8,94,41,3

7,103,5

2,6

ga

hc

ifd

jb

e

Stack push/pop DFS forest

(Tree/Back edge)

Input Graph

Example – Undirected Graph

c f

ea

bd

g h

ij

Input Graph

a b c d e f g h i j
a 0 0 1 1 1 0 0 0 0 0
b 0 0 0 0 1 1 0 0 0 0

c 1 0 0 1 0 1 0 0 0 0
d 1 0 1 0 0 0 0 0 0 0

e 1 1 0 0 0 1 0 0 0 0
f 0 1 1 0 1 0 0 0 0 0
g 0 0 0 0 0 0 0 1 0 1

h 0 0 0 0 0 1 0 0 1 0
i 0 0 0 0 0 0 0 1 0 1

j 0 0 0 0 0 0 1 0 1 0

Adjacency matrix

ecbf

fbae

cad

fdac

feb

edca

→→→

→→→

→→

→→→

→→

→→→

hgj

jhi

igh

jhg

→→

→→

→→

→→

Adjacency linked list

Example – Undirected Graph

c f

ea

bd

g h

ij

a

c

d f

b

e

g

h

i

j10,76,1

9,85,2

8,94,41,3

7,103,5

2,6

ga

hc

ifd

jb

e

Stack push/pop DFS forest

(Tree/Back edge)

Input Graph

Depth-first search (DFS)

Pseudo code for
Depth-first-
search of
graph G=(V,E)

)(

0 with marked is if

do ajacent to in xeach vertefor

 with mark;1

)(

///

)(

0 with marked is if

do in xeach vertefor

0

unvisited as label//0 with inx each vertemark

 traversalDFSby tedfirst visibeen ve'order they in the integers//

econsecutiv with marked verticesitsG with Graph :Output//

,GGraph :Input//

)(ALGORITHM

wdfs

w

vVw

countvcountcount

vdfs

vdfs

v

Vv

count

V

EV

GDFS

+



=

Sub-algorithm

Example – Directed Graph (Digraph)

a b

e f

c d

g h

a c

h

g

e

f

b d

Original Diagraph
DFS forest

8,76,1

7,85,64,2

3,41,3

2,5

ca

deb

gf

h

Stack push/pop

DFS Forest and Stack

Four types of edges:

• Tree edge: parent to child (solid lines)

• Back edge: descendant to an ancestor

• Forward edge (directed graph only):

a link to a nonchild descendant

• Cross edge (directed graph only): other edges

How many back edges?

Forward edges?

Cross edges?

a c

h

g

e

f

b d
1

2

3

4
1

0

3

DFS: Notes

DFS can be implemented with graphs represented as:

• Adjacency matrices: Θ(|V|2)

• Adjacency linked lists: Θ(|V|+|E|)

Why?

Yields two distinct ordering of vertices:

• Preorder traversal: as vertices are first encountered (pushed
onto stack)

• Postorder traversal: as vertices become dead-ends (popped
off stack)

Applications:

• checking connectivity, finding connected components

• checking acyclicity

Breadth-First Search (BFS)

Explore graph moving across to all the neighbors of last
visited vertex

Similar to level-by-level tree traversals

Instead of a stack (LIFO), breadth-first uses queue (FIFO)

Applications: same as DFS

BFS Example – undirected graph

c f

ea

bd

g h

ij

a

dc e

f b

g

h

i

j

6

5

4

3

2

1

b

f

e

d

c

a

Input Graph

(Adjacency matrix /

linked list

BFS forest

(Tree edge /

Cross edge)

Queue

10

9

8

7

i

j

h

g

BFS algorithm

bfs(v)

count ← count + 1

mark v with count

initialize queue with v

while queue is not empty do

for each vertex w adjacent to the front
vertex do

if w is marked with 0

count ←count + 1

mark w with count

add w to the end of the queue

remove the front vertex from the queue

ALGORITHM BFS(G)

//Input: Graph 𝐺 =< 𝑉, 𝐸 >
//Output: Graph G with its

//vertices marked with

//consecutive integers in the

//order they’ve been visited by

//BFS traversal

count ← 0

mark each vertex with 0

for each vertex v in V do

if v is marked with 0

bfs(v)

Example – Directed Graph

a b

e f

c d

g h

BFS traversal:

BFS Forest and Queue

a c

h

g

e fb d

6

5

4

3

2

1

h

g

f

e

b

a

Queue

BFS forest

2

1

3

4

How many cross edges? 4

8

7

d

c

Breadth-first search: Notes

BFS has same efficiency as DFS and can be implemented with
graphs represented as:

• Adjacency matrices: Θ(|V|2)

• Adjacency linked lists: Θ(|V|+|E|)

Yields single ordering of vertices (order added/deleted from
queue is the same)

Graph Traversal

▪ DFS
▪ Uses a stack

▪ Yields two distinct ordering of vertices:

– Preorder traversal: as vertices are first encountered (pushed onto
stack)

– Postorder traversal: as vertices become dead-ends (popped off stack)

▪ Result in a DFS forest

-- Tree edges, back edges, forward edges, and cross edges

▪ BFS
▪ Uses a queue

▪ Yields one ordering of vertices

▪ Result in a BFS forest with tree edges and cross edges

▪ Both DFS and BFS have efficiency
• Adjacency matrices: Θ(|V|2)

• Adjacency linked lists: Θ(|V|+|E|)

