
Brute Force

From now on, we are going to learn some basic and general 
strategies in designing algorithms to solve some typical 
computing problems.

We will analyze the efficiency of these algorithms using the 
tools learned in the past several classes

We will learn how to design algorithms with better efficiency

First, let’s talk about the Brute Force strategies– the simplest 

• Brute Force is a straightforward approach to solving a 
problem, usually directly based on the problem’s statement 
and definitions of the concepts involved

• In many cases, Brute Force  does not provide you a very 
efficient solution



Sorting Algorithm

We have discussed one sorting algorithm: Selection Sort 

What are the basic idea behind the Selection Sort algorithm?

• Scanning the entire given list to find its smallest element and 
swap it with the first element

• This is a straightforward solution – Brute Force strategy

• What is its time efficiency –

An example: sorting the numbers [89 45 68 90 29 34 17]
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Another Brute-Force Application: Bubble Sort

Compare adjacent elements and exchange them if they are out 
of order

This the result after the first pass, which moves the largest as 
the rightmost element
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Algorithm in Pseudocode

What is the time efficiency?

Is there any way to improve the algorithm?

]1[][][]1[

20

20

]1..0[

]1..0[

]1..0[

])1..0[(

++

−



−

−

−

−

jAjAjAjA

in-j

n-i

nA

nA

nA

nABubbleSort

 and  swap  if

do  to for

do  to for

order ascending in sorted  Array :Output //

elements orderable of  array An :Input //

sort bubble by array sorts algorithm The //

ALGORITHM

)(1 2
2

0

2

0

n
n-

i

-in-

j


= =



Sequential Search – Brute Force

Find whether a search key is present in an array

Basic operation? Input size?

What is time efficiency of this algorithm?
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Brute-Force String Matching

Find a pattern in the text: Pattern – ‘NOT’, text –
‘NOBODY_NOTICED_HIM’

Typical Applications – ‘find’ function in the text editor, e.g., MS-Word, 
Google search

What is the time efficiency of this algorithm (the best case, the 
average case, and the worst case)?
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Exhaustive Search 

Combinatorial problem: finding the optimal combination from 
a finite set of combinatorial objects

A brute-force approach to combinatorial problem

• Involve combinatorial objects such as permutations, 
combinations, and subsets of a given set

• Two-step solution: 
–Generate every element of the problem’s domain

–Then compare and select the desirable element that satisfies the 
constraints

• The time complexity is high – usually the complexity grows 
exponentially with the input size



Exhaustive Search 

Three examples

• Traveling salesman problem

•Knapsack problem

• Assignment problem

Introduce the brute-force solutions to these 
problems

We will explore efficient solutions using 
advanced algorithm strategies



Traveling Salesman Problem

Problem statement: Find the shortest tour through a given n cities 
that visits each city exactly once before returning to the starting city 

Representation using graph model: 

• city → vertex

• road → edge

• length of the road → edge weight. 

Formulate the problem: TSP → shortest Hamiltonian Circuit 

• a cycle that passes through all the vertices of the graph exactly 
once



Traveling Salesman Problem

Solution -- Exhaustive search:

• List all the possible Hamiltonian circuits (starting from any 
vertex)

• Ignore the direction 

• How many candidate circuits do we have? → (n-1)!/2

• Very high complexity



TSP Example
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Knapsack Problem

Given n items of known weights w1, w2,…, wn and values v1, 
v2,…, vn and a knapsack of capacity W, find the most valuable 
subset of the items that fit into the knapsack.
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Brute-force Solution to the Knapsack Problem

Exhaustive search:

• Find all subset of the n items

• Each item can be selected or not selected to the 
knapsack

• In total, we have 2n subsets for n items. Why?

• Select the one with the largest value while satisfies 
the capacity constraint.

• Complexity 2n is very high.



Knapsack Example



Assignment Problem

n people to be assigned to execute n jobs, one person per job. 
C[i,j] is the cost if person i is assigned to job j. Find an 
assignment with the smallest total cost

Exhaustive search

• How many kinds of different assignments?

Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

The permutation of n persons → n!     

Very high complexity



Polynomial and non-polynomial Complexity

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorialNon-polynomial

TSP, Knapsack, and Assignment problem



Summary of Brute Force Strategies

Brute Force is a straightforward approach to solving a problem, 
usually directly based on the problem’s statement and definitions 
of the concepts involved

In many cases, Brute Force  does not provide you a very efficient 
solution

Examples:

• Sorting algorithms: selection sort and bubble sort Θ(n2)

• Sequential search Θ(n) and string match Θ(nm)

• Closest points Θ(n2)

• Convex polygons Θ(n3)

• Exhaustive Search for Combinatorial Problem

– Traveling salesman problem Θ(n!)

– Knapsack problem Θ(2n)

– Assignment problem Θ(n!)



Reading Assignment

Chapter 3.3 Closest-pair and Convex-Hull Problems by Brute 
Force



Design More Efficient Algorithms

If the exhaustive-search (brute-force) strategy takes 
non-polynomial time, it does not mean that there 
exists no polynomial-time algorithm to solve the 
same problem

In the coming lectures, we are going to learn many 
such kinds of strategies to design more efficient 
algorithms.

These new strategies may not be as straightforward 
as brute-force ones, e.g., the log n –time algorithm 
to compute an using a decrease-and-conquer 
strategy



Now, Chapter 4: Decrease and Conquer

Reduce problem instance to smaller instance of the same 
problem and extend solution

• Solve smaller instance

• Extend solution of smaller instance to obtain solution to original 
problem

Also referred to as inductive or incremental approach

Example:



Examples of Decrease and Conquer

Decrease by one:

• Insertion sort

• Graph search algorithms:
–DFS

–BFS

–Topological sorting

Decrease by a constant factor

• Binary search 

Variable-size decrease

• Euclid’s algorithm for computing gcd

• Selection by partition



What’s the difference?

Consider the problem of 
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Important Recurrence Types:

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) =  (n-1)c + d                          linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) =  [n(n+1)/2 – 1] c + d           quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half. 

T(n) = T(n/2) + c T(1) = d

Solution: T(n) =  c log2 n + d                           logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn                    T(1) = d

Solution: T(n) =  cn log2 n + d n                         n log2 n, e.g., mergesort



Consider the problem of 
exponentiation: Compute  an
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Important Recurrence Types:

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) =  (n-1)c + d                          linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) =  [n(n+1)/2 – 1] c + d           quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half. 

T(n) = T(n/2) + c T(1) = d

Solution: T(n) =  c log2 n + d                           logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn                    T(1) = d

Solution: T(n) =  cn log2 n + d n                         n log2 n, e.g., mergesort



Variable-size-decrease


