
Brute Force

From now on, we are going to learn some basic and general
strategies in designing algorithms to solve some typical
computing problems.

We will analyze the efficiency of these algorithms using the
tools learned in the past several classes

We will learn how to design algorithms with better efficiency

First, let’s talk about the Brute Force strategies– the simplest

• Brute Force is a straightforward approach to solving a
problem, usually directly based on the problem’s statement
and definitions of the concepts involved

• In many cases, Brute Force does not provide you a very
efficient solution

Sorting Algorithm

We have discussed one sorting algorithm: Selection Sort

What are the basic idea behind the Selection Sort algorithm?

• Scanning the entire given list to find its smallest element and
swap it with the first element

• This is a straightforward solution – Brute Force strategy

• What is its time efficiency –

An example: sorting the numbers [89 45 68 90 29 34 17]

)(2n

Another Brute-Force Application: Bubble Sort

Compare adjacent elements and exchange them if they are out
of order

This the result after the first pass, which moves the largest as
the rightmost element

90

 ?

 ?

 ? ?

 ?

 ?

173429896845

17903429896845

17349029896845

17342990896845

17342990688945

17342990684589

Algorithm in Pseudocode

What is the time efficiency?

Is there any way to improve the algorithm?

]1[][][]1[

20

20

]1..0[

]1..0[

]1..0[

])1..0[(

++

−



−

−

−

−

jAjAjAjA

in-j

n-i

nA

nA

nA

nABubbleSort

 and swap if

do to for

do to for

order ascending in sorted Array :Output //

elements orderable of array An :Input //

sort bubble by array sorts algorithm The //

ALGORITHM

)(1 2
2

0

2

0

n
n-

i

-in-

j


= =

Sequential Search – Brute Force

Find whether a search key is present in an array

Basic operation? Input size?

What is time efficiency of this algorithm?

1

1

][

0

][

)],..0[(

10

-

ini

ii

KiA

i

KnA

KnASearchSequential

..n-AK

 return else

 return if

do while

ALGORITHM

][in key Search //



+







Brute-Force String Matching

Find a pattern in the text: Pattern – ‘NOT’, text –
‘NOBODY_NOTICED_HIM’

Typical Applications – ‘find’ function in the text editor, e.g., MS-Word,
Google search

What is the time efficiency of this algorithm (the best case, the
average case, and the worst case)?

1

1

][][

0

0

])1..0[],1..0[(

-

imj

jj

jiTjPmj

j

n-m i

mPnTtchBFStringMa

 return

 return if

 and while

do to for

ALGORITHM

=

+

+=





−−

Best case: Θ(1) Average case: Θ(𝑚 + 𝑛) Worst case: Θ(𝑚𝑛)

Exhaustive Search

Combinatorial problem: finding the optimal combination from
a finite set of combinatorial objects

A brute-force approach to combinatorial problem

• Involve combinatorial objects such as permutations,
combinations, and subsets of a given set

• Two-step solution:
–Generate every element of the problem’s domain

–Then compare and select the desirable element that satisfies the
constraints

• The time complexity is high – usually the complexity grows
exponentially with the input size

Exhaustive Search

Three examples

• Traveling salesman problem

•Knapsack problem

• Assignment problem

Introduce the brute-force solutions to these
problems

We will explore efficient solutions using
advanced algorithm strategies

Traveling Salesman Problem

Problem statement: Find the shortest tour through a given n cities
that visits each city exactly once before returning to the starting city

Representation using graph model:

• city → vertex

• road → edge

• length of the road → edge weight.

Formulate the problem: TSP → shortest Hamiltonian Circuit

• a cycle that passes through all the vertices of the graph exactly
once

Traveling Salesman Problem

Solution -- Exhaustive search:

• List all the possible Hamiltonian circuits (starting from any
vertex)

• Ignore the direction

• How many candidate circuits do we have? → (n-1)!/2

• Very high complexity

TSP Example

a

dc

b

5

2

3

1

8 7

a ---> b ---> c --->d ---> a

a ---> b---> d ---> c ---> a

a ---> c ---> b ---> d --->a

a ---> c ---> d ---> b ---> a

a---> d ---> b ---> c ---> a

a ---> d ---> c ---> b ---> a

l = 2 + 8 + 1 + 7 = 18

l = 2 + 3 + 1 + 5 = 11

l = 5 + 8 + 3 + 7 = 23

l = 5 + 1 + 3 + 2 = 11

l = 7 + 3 + 8 + 5 = 23

l = 7 + 1 + 8 + 2 = 18

optimal

optimal

Tour Length

Redundant paths

Knapsack Problem

Given n items of known weights w1, w2,…, wn and values v1,
v2,…, vn and a knapsack of capacity W, find the most valuable
subset of the items that fit into the knapsack.

10

item 1 item 2 item 3 item 4Knapsack

w = 7

v = $42

w = 3

v = $12

w = 4

v = $40

w = 5

v = $25

1

1

2

2

3

3

4

4

Brute-force Solution to the Knapsack Problem

Exhaustive search:

• Find all subset of the n items

• Each item can be selected or not selected to the
knapsack

• In total, we have 2n subsets for n items. Why?

• Select the one with the largest value while satisfies
the capacity constraint.

• Complexity 2n is very high.

Knapsack Example

Assignment Problem

n people to be assigned to execute n jobs, one person per job.
C[i,j] is the cost if person i is assigned to job j. Find an
assignment with the smallest total cost

Exhaustive search

• How many kinds of different assignments?

Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

The permutation of n persons → n!

Very high complexity

Polynomial and non-polynomial Complexity

1 constant

log n logarithmic

n linear

n log n n log n

n2 quadratic

n3 cubic

2n exponential

n! factorialNon-polynomial

TSP, Knapsack, and Assignment problem

Summary of Brute Force Strategies

Brute Force is a straightforward approach to solving a problem,
usually directly based on the problem’s statement and definitions
of the concepts involved

In many cases, Brute Force does not provide you a very efficient
solution

Examples:

• Sorting algorithms: selection sort and bubble sort Θ(n2)

• Sequential search Θ(n) and string match Θ(nm)

• Closest points Θ(n2)

• Convex polygons Θ(n3)

• Exhaustive Search for Combinatorial Problem

– Traveling salesman problem Θ(n!)

– Knapsack problem Θ(2n)

– Assignment problem Θ(n!)

Reading Assignment

Chapter 3.3 Closest-pair and Convex-Hull Problems by Brute
Force

Design More Efficient Algorithms

If the exhaustive-search (brute-force) strategy takes
non-polynomial time, it does not mean that there
exists no polynomial-time algorithm to solve the
same problem

In the coming lectures, we are going to learn many
such kinds of strategies to design more efficient
algorithms.

These new strategies may not be as straightforward
as brute-force ones, e.g., the log n –time algorithm
to compute an using a decrease-and-conquer
strategy

Now, Chapter 4: Decrease and Conquer

Reduce problem instance to smaller instance of the same
problem and extend solution

• Solve smaller instance

• Extend solution of smaller instance to obtain solution to original
problem

Also referred to as inductive or incremental approach

Example:

Examples of Decrease and Conquer

Decrease by one:

• Insertion sort

• Graph search algorithms:
–DFS

–BFS

–Topological sorting

Decrease by a constant factor

• Binary search

Variable-size decrease

• Euclid’s algorithm for computing gcd

• Selection by partition

What’s the difference?

Consider the problem of
exponentiation: Compute an

Decrease-by-a-constant





=

−
=

1

1)1(
)(

na

nanf
nf

 if

 if

problem of size n

subproblem

of size n-1

solution to

the subproblem

solution to

the original problem

Efficiency class?

Important Recurrence Types:

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) = (n-1)c + d linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c T(1) = d

Solution: T(n) = c log2 n + d logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn T(1) = d

Solution: T(n) = cn log2 n + d n n log2 n, e.g., mergesort

Consider the problem of
exponentiation: Compute an

Decrease-by-a-constant-factor

problem of size n

subproblem

of size n/2

solution to

the subproblem

solution to

the original problem









=

−=

1

1)]2/)1(([

)]2/([

)(2

2

na

nanf

nnf

nf

 if

 than greater and odd is if

positive and even is if

Efficiency class?

Important Recurrence Types:

One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d

Solution: T(n) = (n-1)c + d linear, e.g., factorial

A pass through input reduces problem size by one.

T(n) = T(n-1) + cn T(1) = d

Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic, e.g., insertion sort

One (constant) operation reduces problem size by half.

T(n) = T(n/2) + c T(1) = d

Solution: T(n) = c log2 n + d logarithmic, e.g., binary search

Note: you can have similar solution with an arbitrary base b

A pass through input reduces problem size by half.

T(n) = 2T(n/2) + cn T(1) = d

Solution: T(n) = cn log2 n + d n n log2 n, e.g., mergesort

Variable-size-decrease

