
CSCE350: Data Structures and Algorithms

Spring 2022

Dr. Yan Tong

Health and Safety

Follow current COVID-19 guidelines
https://sc.edu/safety/coronavirus/safety_gui
delines

Face coverings

Seat map – keep a track who sit together for
contact tracing

https://sc.edu/safety/coronavirus/safety_guidelines

Course Information

Instructor: Dr. Yan Tong

Email: tongy@cse.sc.edu

Office: Storey Innovation Center 2273

Office Hours: By appointment

mailto:tongy@cse.sc.edu

About Me

Associate Professor, UofSC Jan. 2017 – present

Acting Graduate Director, CSE Jan. 2019 – June 2019

Assistant Professor, UofSC Dec. 2010 – Dec. 2016

Research Scientist, GE GRC Jan. 2008 – Nov. 2010

Ph. D. from RPI Dec. 2007

Selected Honors and Awards
• Univ. of South Carolina Breakthrough Star, 2014
• NSF CAREER Award, 2012
• GE Bronze Patent Award, 2009
• GE Level 3 Award (the second highest level), 2009

Dr. Tong’s Main Research Areas

CV/ML Enabled Data Analysis Fundamental Research in CV/ML

Multimodal Information Fusion

Today’s Agenda

Welcome.

Various administrative issues.

What is algorithm?

What is this course about?

Class Communication

Class homepage

http://www.cse.sc.edu/~tongy/csce350/csce350.html

Course syllabus

Blackboard (blackboard.sc.edu)
• Course syllabus
• Lecture notes
• Discussion board
• Solutions to homework assignments, quizzes, and exams
• Submission of homework/programming assignments,

quizzes, and exams

Check them regularly for
• Homework assignments and solutions, lectures, and more
• important announcements related to this course
• some useful links and additional readings

http://www.cse.sc.edu/~tongy/csce350/csce350.html
http://www.cse.sc.edu/~tongy/csce350/csce350syl.pdf

Required Textbook

Introduction to the Design and
Analysis of Algorithms, 3rd Edition

Anany V. Levitin, Villanova University

Addison Wesley

Grading Policy

• A (90-100%)

• B+ (86-89%)

• B (80-85%)

• C+ (76-79%)

• C (70-75%)

• D+ (66-69%)

• D (60-65%)

• F (0-59%)

Your scores of homework, programming assignments,
quizzes, exams, etc. will be available to you at
Blackboard when graded.

Your Grade Consists of

Midterm exams (2) (15% each)

Final exam (20%)

Homework assignments (6) (4% each)

Programming assignments (4) (21%, different weights
applied)

Quizzes (5) (1% each)

Exams

All exams are closed-book and closed-notes, except

• a single-side letter-size cheat sheet for each midterm

• a double-side letter-size cheat sheet for the final
exam.

Midterms: during class time. The dates and materials
covered in the midterms will be announced later

Final exam: May 3, Tuesday, 9:00 – 11:30 a.m.

Quizzes

Quizzes will be held in class and announced the lecture
before.

Quizzes are closed-book, but open-notes either printed
or handwritten.

Submission of Exams and Quizzes

Exams and quizzes will be conducted through
Blackboard.

•You may need to scan and upload your
answers

Hard copies of quizzes or exams are available
upon request. Please let me know if you
prefer a hard copy.

Please make sure you bring a laptop during the
exam/quiz days.

About Homework Assignments

• Must be completed independently by yourself while
peer discussion is encouraged

• A due date will be accompanied with each
homework. The due time will be at the beginning of
the class.

• Print or handwritten

• Submit via Blackboard before class starts

• Without the special permission from the instructor,
NO late homework will be accepted – Refer to late
submission policy

Programming Assignment

For each programming assignment,

• While peer discussion is encouraged, you must complete it independently
by yourself unless a teamwork is permitted by the instructor

• You’ll be asked to implement a program to solve a problem

• Requirements

• Code written in C or C++ (correct and clearly commented)

• A script or readme file including the instructions to compile and run the
code

• Code will be tested on department linux machines

• Code that does not compile will not be graded and get a 0 automatically

• Code needs to be turned in through Blackboard

• A due date will be accompanied with each programming assignment.
Without the special permission from the instructor, NO late submission
will be accepted – Refer to late submission policy

Code of Student Academic Responsibility

Violations of the University's Honor Code include, but are not

limited to improper citation of sources, using another

student's work, and any other form of academic

misrepresentation.

Any violation will result in a minimum academic penalty of a

grade of Zero of the assignment and will result in additional

disciplinary measures.

Violations of the University's Honor Code will be reported to

the Office of Student Conduct and Academic Integrity.

Topics Covered

1. Structured programming, stacks, queues, lists (3 hours)

2. Determining the Running Time of Programs, Order of Magnitude

Analysis (6 hours)

3. Brute force (3 hours)

4. Divide-and-Conquer (4 hours)

5. Dynamic Programming (6 hours)

6. Transform-and-Conquer (4 hours)

7. The Greedy Technique (3 hours)

8. Decrease-and-Conquer (3 hours)

9. Graphs (3 hours)

10. Reviews and exams (4 hours)

11. More as time permits (invited talks)

The time allocated for each topic is approximated.

What is an Algorithm?

In General: What is an Algorithm?

Recipe, process, method, technique, procedure,
routine,… with following requirements:

• Finiteness: terminates after a finite number of steps

• Definiteness: each step is unambiguously specified

• Input: valid inputs are clearly specified

• Output: can be proved to produce the correct output
given a valid input

• Effectiveness: steps are sufficiently simple and
basic

Some Important Points

• Each step of an algorithm is unambiguous

• The range of inputs has to be specified carefully

• The same problem may be solved by different
algorithms

• Different algorithms may take different
time/space to solve the same problem – we may
prefer one to the other

• The same algorithm can be implemented in
different ways

Why Study Algorithms?

Theoretical importance

• the core of computer science

Practical importance

• A practitioner’s toolkit of known algorithms
–Expedia travel plan, yahoo driving directions, Google

search, ..

• Framework for designing and analyzing algorithms
for new problems

Definition of Algorithm

An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input, in a finite amount of time.

“computer”

problem

algorithm

input output

Example: Finding Greatest Common Divisor

gcd(m,n)

Input: m and n are two nonnegative integers, (at least one of
them is non-zero), m>n (Note: the range of input is specified)

Output: gcd(m,n), the greatest common divisor, i.e., the largest
integer that divides both m and n

Euclid’s algorithm: Based on gcd(m,n)=gcd(n, m mod n) and

gcd(m,0)= m

For example:

gcd(60, 24)

=gcd(24,12)

=gcd(12,0)

=12

Will this algorithm eventually come to a stop? Why?

Finding Greatest Common Divisor: Euclid algorithm

m

rn

nm

nmr

n

nmEuclid

return

while

 ALGORITHM









mod

0

),(Pseudocode:

• Easy for human reading

• Independent of programming

language

• Compact

• Following structural

convention of programming

language, e.g.

• looping structure

• If-else branching

Finding Greatest Common Divisor: Euclid algorithm

m

rn

nm

nmr

n

nmEuclid

return

while

 ALGORITHM









mod

0

),(

Name of the algorithm

input

Steps of the

algorithm

output

In this course, you are required to write algorithms in

pseudocode instead of the real code in some special language.

Another Algorithm for Finding gcd(m,n)

Note that , the pseudocode is

t

tt

tnortm

nmt

nm

return

while

 ALGORITHM

1

)0mod()0mod(

),min(

),gcd(

−





),min(),gcd(0 nmnm 

The algorithm is derived based on the definition of gcd.

The Third Algorithm for Finding gcd(m,n)

Based on the method you learned in middle school

• Step 1: Find the prime factors of m

• Step 2: Find the prime factors of n

• Step 3: Identify all the common factors

• Step 4: Compute the product of these identified common
factors as gcd(m,n)

Example:

Problems: How to find all the prime factors of an integer?

(Sieve algorithm: See page 6-7 of the textbook)

12322)24,60gcd(

322224532260

==

==

Comparison

All the three algorithms find the gcd, which one is the
best?

Fundamentals of Algorithmic Problem Solving

Understanding the problem

Ascertaining the capabilities of a computational device

• Random-access machine (RAM) → sequential algorithms

• Speed and space

Choosing between exact and approximate problem solving

Deciding on appropriate data structure
• Array, linked list, tree, etc.

Algorithm design techniques

Methods of specifying an algorithm

• Pseudocode (for, if, while, //, , indentation…)

Prove an algorithm’s correctness – mathematic induction

Analyzing an algorithm – Simplicity, efficiency, generality

Coding an algorithm

In general

A good algorithm is a result of repeated effort and
rework

• Better data structure

• Better algorithm design

• Better time and/or space efficiency

• Easy to implement

Some Well-known Computational Problems

Sorting

Searching

Shortest paths in a graph: e.g., airline planning

Minimum spanning tree: e.g., planning for laying cable

Primality testing

Traveling salesman problem: e.g., soldering in
manufacturing microchips

Knapsack problem: e.g, finding the least wasteful way to
cut raw materials, selection of investments

Example: Sorting

Statement of problem:

• Input: A sequence of numbers

• Output: A reordering of the input sequence

• so that whenever

Instance: The sequence

Algorithms:

• Selection sort

• Insertion sort

• Merge sort

• (many others)

naaa ,...,, 21n

naaa ',...,',' 21

ji aa ''  ji 

3,8,2,3,5

Two desired properties:

• stable (preserving order for equal

elements) and

• in place (no extra memory)

Selection Sort

Input: array

Output: array a[1..n] sorted in non-decreasing order

Algorithm:

][],...,2[],1[naaa

for i =1 to n

swap a[i] with smallest of][],...,[naia

Selection Sort

This Course is Focused on

How to design algorithms

How to describe algorithms -- pseudocode

How to prove correctness

How to analyze algorithms -- efficiency

• Theoretical analysis

• Empirical analysis

Analysis of Algorithms

How good is the algorithm?

• Correctness

• Time efficiency

• Space efficiency

Does there exist a better algorithm?

• Lower bounds

• Optimality

Algorithm Design Strategies

Brute force

Decrease & conquer

Divide & conquer

Transform & conquer

Greedy approach

Dynamic programming

Backtracking and branch & bound

Space and time tradeoffs: e.g., hashing

Fundamental Data Structure

Data Structure: a particular scheme of organizing
related data items

We know you are familiar with most important ones:
array, list, graph, …

Array

Item[0] Item[1] . . . Item[n-1]

➢ A sequence of n items of the same data type

➢ Store contiguously in computer memory

➢ Can be accessed by its index

• Index is an integer ranged from [0..n-1], [1..n], or [low, high]

➢ Each and every element of an array can be accessed in the
same constant amount of time

➢ Can be used to implement string, a sequence of symbols

Linked List

➢ A sequence of elements called nodes

➢ Each node contains data and pointers

➢ Single linked list – single pointer

➢ To access a particular node, we start from header and
traverse the list

➢ The time needed for access a different node is different

➢ But it does not require reservation of the memory

➢ Easy to do insertions and deletions

Item[0] Item[1] Item[n-1]… nullHeader

Doubly Linked List

➢ Every node, except the first and the last, contains pointers
to both its successor and its predecessor

➢ Why we need doubly linked list?

• Single linked list can only go forward but cannot go backward

➢ How to do deletions and insertions in doubly linked list?

… Item[n-1] nullItem[n-1]Item[n-1]null

Special Linked List

➢ Stack – “last in first out” (LIFO)

• Push

• Pop

• Top

➢ Queue – “first in first out” (FIFO)

• Enqueue

• dequeue

➢ Priority queue

• Heap (finding/deleting the largest, insertion)

Graph

➢ Undirected and directed (digraph): G=<V,E>

• vertices (V) and edges (E)

• number of vertices (|V|) and number of edges (|E|)

➢ Undirected graph
–Endpoints: e.g., two endpoints of an edge (a,b)

➢ Directed graph/Digraph
–Tail and head: e.g., tail (a) and head (b) of an edge (a,b)

Write down the V and E for the following two graphs

a c b

d e f

a b c

d e f

Graph

➢ Loop: edge connecting a vertex to itself, e.g. a—a

➢ No multiple edges between the same pair of vertices in an
undirected graph

➢ Complete graph: an undirected graph, where every pair of
vertices is connected by an edge, denoted as

➢Number of edges in an undirected graph without loops

➢Dense graph → sparse graph

||VK

2/)1|(|||||0 − VVE

a b

complete graph

Graph

➢ Path: a sequence of adjacent (connected by an edge)
vertices starting from u and ending at v

• simple path: all traversed edges/vertices are distinct

• Length of the path -- # of traversed edges

➢ Connected graph – there exists a path between each pair of
vertices

➢ Cycle – a simple path between the same vertex

➢ Acyclic graph – a graph with no cycles

A cycle

Graph Representation

Adjacency matrix and adjacency linked list

When should we use adjacency matrix and when adjacent
linked list?

0 0 1 1 0 0
0 0 1 0 0 1
1 1 0 0 1 0
1 0 0 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0

a

b

c

d

e

f

c d

c f

b ea

ea

d fc

eb

a c b

d e f

Adjacency matrix Adjacency linked list

Graph sparseness

