Homework #2

Due on Thursday, February 3 before class starts

1. For each of the following functions, find a function g(n) such that $f(n) \in \Theta(g(n))$. You **must use the simplest** g(n) possible in your answers such as n, logn, nlogn, n^2 , n^3 , a^n , and product of them. Prove your assertion. (20pts) **Hints:** You can either use the definition of big- Θ or use the limit. **a.** $(n^3 + 1)^2$ **b.** $\sqrt{9n} + 9 \log n$ **c.** $2n \log(n^2) + (n + 1)^2 \log n$

d. $3^{n+2} + 4^{n-2}$

2. Prove that every polynomial of degree k, $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$, with $a_k > 0$ belongs to $\Theta(n^k)$. (10pts) **b**. Prove that exponential functions a^n have different orders of growth for different

```
values of base a > 0. (10pts)
```

Hints: Use either definition or limit to prove the assertions.

3. Find the order of growth of the following sums. You need to indicate the class $\Theta(g(n))$ the function belongs to. You must use the simplest g(n) possible in your answers. (20pts)

a. $\sum_{i=0}^{n} (i^2 + 1)^2$ **b.** $\sum_{i=1}^{n} n \, \lg(i^2)$ **c.** $\sum_{i=0}^{n} (i+1)2^i$ **d.** $\sum_{i=0}^{n} \sum_{j=0}^{i-1} (i+j)$ **Hints:** You may refer to **Appendix A** and the properties we discussed in class.

```
4 Consider the following algorithm.
Algorithm Enigma(A[1...n, 1...n])
//Input: A matrix A[1...n, 1...n] of real numbers
for i ← 1 to n do
for j ← 1 to n do
if A[i, j] ≠ A[j, i]
return false
return true
```

a. What does this algorithm compute? (5pts)

b. What is its basic operation and what is the efficiency class ($\Theta(g(n))$) the function belongs to) of this algorithm? (5pts)

c. Make as many improvements as you can in this algorithm. You must write down the pseudo code for your new algorithm. What is the efficiency class ($\Theta(g(n))$) the function belongs to) of your new algorithm? If you cannot improve this algorithm, explain why you cannot do it. (10pts)

5. Solve the following recurrence relations. Give the particular solution to the problem.

a. $x(n) = x(n - 1) + 3$ for $n > 0, x(0) = 2$	(5pts)
b. $x(n) = x(n - 1) + 3n$ for $n > 1, x(1) = 1$	(5pts)
c. $x(n) = x(n/4) + n$ for $n > 1$, $x(1) = 1$ (solve for $n = 4^k$)	(5pts)
d. $x(n) = 2x(n-1) - x(n-2)$ for $n > 1, x(0) = 0, x(1) = 1$	(5pts)