
1

Failure Inferencing based Fast Rerouting for
Handling Transient Link and Node Failures

Zifei Zhong∗, Srihari Nelakuditi∗, Yinzhe Yu†, Sanghwan Lee†, Junling Wang∗, Chen-Nee Chuah‡
∗ Univ. of South Carolina, Columbia† Univ. of Minnesota, Minneapolis‡ Univ. of Califorina, Davis

Abstract— With the emergence of Voice over IP and
other real-time business applications, there is a growing
demand for an IP network with high service availability.
Unfortunately, in today’s Internet, transient failures occur
frequently due to faulty interfaces, router crashes, etc., and
current IP networks lack the resiliency needed to provide
high availability. To enhance availability, we proposed
failure inferencing based fast rerouting(FIFR) approach
that exploits the existence of a forwarding table per line-
card, for lookup efficiency in current routers, to provide
fast rerouting similar to MPLS, while adhering to the
destination-based forwarding paradigm. In our previous
work, we have shown that the FIFR approach can deal
with single link failures. In this paper, we extend the
FIFR approach to ensure loop-free packet delivery in
case of single router failures also, thus mitigating the
impact of many scenarios of failures. We demonstrate
that the proposed approach not only provides high service
availability but also incurs minimal routing overhead.

I. I NTRODUCTION

Due to the popularity of the Internet, it is increasingly
being used for various mission-critical applications and
services such as Voice over IP, VPNs, Banking, Call
Centers and Multimedia Conferencing. Therefore, there
is a growing demand for IP networks withfive-nines
availability (99.999% uptime). Unfortunately,failures
occur frequently due to various causes such as faulty
interfaces, router crashes, routine maintenance, and ac-
cidental fiber cuts, even in well-managed and well-
provisioned networks [1]. A study on characterization
of failures in an IP backbone [1] found that around 20%
of the failures are due to planned maintenance and more
than 85% of the unplanned failures affect only a single
link or share a single router. Moreover, a majority of
these failures aretransient: 46% last less than a minute
and 86% last less than ten minutes. Hence, effective
handling of transient individual link and node failures
is key to ensuring high service availability.

There have been several proposals [2]–[5] for mitigat-
ing the impact of link failures on network performance.
A recipe suggested in [2] recommends accelerating the
convergence of link state routing protocols by fine-
tuning several parameters associated with link failure
detection, link state dissemination and routing table re-
computation. Such remedies run the risk of introducing
instability in the network, particularly when frequent

advertisements of internal link state changes can cause a
large churn of external routes due tohot-potato routing
often employed in the Internet [6]. To avoid global link
state updates, local rerouting schemes were proposed [3],
[4], but they impose certain restrictions on the network
topology and/or require major modifications to link state
generation, propagation, and processing mechanisms.
MPLS based approaches [5] handle transient failures by
leveragingexplicit routing for fast rerouting. However,
deployment of MPLS necessitates changing the forward-
ing plane of traditional routers to perform label swapping
instead of conventional destination-based forwarding.

We proposed [7] afailure inferencing based fast
rerouting (FIFR) approach for ensuring high service
availability without altering the forwarding paradigm of
the Internet. There are three key ideas that underpin
the FIFR approach:local rerouting, interface-specific
forwardingandfailure inferencing. Under FIFR, when a
link fails, adjacent nodesuppressesglobal advertisement
and instead initiateslocal reroutingof packets that were
to be forwarded through the failed link. Though other
nodes are not explicitly notified of the failure, theyinfer
it from packet’sflight. When a packet arrives at a node
through anunusual interface (through which it would
never arrive had there been no failure), corresponding
potential link failures can be inferred and the next hop
chosen to avoid those links. Theseinterface-specific
forwarding tables can beprecomputedsince inferences
about link failures can be made inadvance. Thus under
FIFR, when a link fails, only nodes adjacent to it
locally reroute packets to the affected destinations and
all other nodes simply forward packets according to their
precomputed interface-specific forwarding tables without
relying on network-wide link-state advertisements.

FIFR has several attractive features. It improves ser-
vice availability without jeopardizing routing stability
as it handles transient failures locally and notifies only
persistent failures globally. More importantly it requires
minimal changes to the control plane of the Internet. The
only change needed to the existing routing framework
for deploying FIFR is that traditional Dijkstra’s Shortest
Path First algorithm for computing interface-independent
routing table has to be replaced by an algorithm for
computing interface-dependent forwarding tables. The
FIFR approach (referred to as FIFRL) presented in [7]

2

prev 2 3 4

next 2 2 2

(a) without FIFR

prev 2 3 4

next 3 2 2

(b) with FIFRL

prev 2 3 4

next 4 4 2

(c) with FIFRN (v1)

prev 2 3 4

next 4 2 2

(d) with FIFRN (v2)

Fig. 1. Interface-specific forwarding table entries at node1 corresponding to destination node6

however has a limitation. It can deal with any single link
failures but can cause forwarding loops when multiple
links fail simultaneously due to events such as a node
(router) failure. In this paper, we address that limitation
by extending the FIFR approach (referred to as FIFRN)
to handle node failures in addition to link failures.

Our contributions in this paper are as follows. We
prove that when a single node fails, FIFRN forwards
a packet along a loop-free path to its destination if there
exists a path without the failed node. It also guarantees
that when a single linku−v fails, a packet to destination
d that arrives atu is locally rerouted tod if there exists a
path fromu to d that does not includev. In the event of a
single link failure, by treating it as a node failure, FIFRN

may forward a packet along a longer path than FIFRL.
However, we show that path lengthstretch(w.r.t. global
optimal routing) due to local rerouting under FIFRN is
comparable to that under FIFRL. In other words, FIFRN
inherits all the nice features of FIFRL, and yet protects
against more scenarios of failures. We describe FIFRN

in detail and evaluate its performance in the following.

II. FIFRN FOR HANDLING NODE FAILURES

We use an example to illustrate the operation of
FIFRN and contrast it with that of FIFRL. Consider the
topology shown in Fig. 2, where each link is labeled
with its weight. Assume that a packet is being forwarded
from source node1 to destination node6. Suppose link
2−5 is down. Without FIFR, conventional forwarding is
interface-independent as shown in Fig. 1(a). So if node
2 recomputes its entries while others are not notified of
the failure or still in the process of recomputing their
entries, then packets from1 to 6 get forwarded back
and forth between nodes1 and 2. On the other hand,
under FIFRL, when a packet destined to node6 arrives
at node1 from node2, node1 can infer that link 2−5
must have failed and forward it to node3 as in Fig. 1(b).

Now suppose node5 in Fig. 2 failed. Under FIFRL, a
packet from node1 to node6 gets caught in a forwarding
loop 1→2→1→3→1→2→1· · ·. This is because FIFRL
infers link failures and these inferences are made in
advance, not accumulated on the fly. Instead, node1 can
infer that node5 (and all its adjacent links not just link
2−5) failed and forward it to node4, when a packet
to destination6 arrives at node1 from node2. This is

1

2

3

6

4

5

1 1

1
2 2

3
3

3

Fig. 2. Topology used for illustration of FIFRN

TABLE I

NOTATION

V set of all nodes

E set of all edges

G graph (V ,E)

ce cost of edgee

Fd
j→i set of next hops fromj→i to d.

Kd
j→i key nodes fromj→i to d.

T −v
i SPT of i without nodev

V (k, T) vertices in subtree belowk in treeT
P (k, T) parents of nodek in treeT
N(k, T) next hops tok from root of T
Rd

i (X) next hops fromi to d with nodesX
Pd

i (X) shortest path fromi to d with nodesX .

Sy
x(P) subpath fromx to y of the pathP .

C(P) cost of the pathP

what happens under FIFRN as shown in Fig. 1(c). Thus
under FIFRN , when node5 is down, packets from1 to
6 traverse the path1→2→1→4→6.

We now present an algorithm for computing interface-
specific forwarding tables for handling node failures.
We make several assumptions here. We assume a for-
warding table per each interface, i.e., each line-card
serves one interface. Also, all the links in the network
are assumed to be point-to-point and bidirectional with
equal weight in both directions, which is generally true
for the backbone networks. We also assume that whole
network forms a single OSPF area and hence each node
has complete link state information. Finally, we prepare
for single node failures, i.e., we assume that at most
a single node failure is suppressed in the network. By
preparing for single node failures, FIFRN can handle
all planned maintenance and unplanned single link/node
failures, i.e.,88.6% of all types of failures [1].

3

The computation of forwarding table entries of an
interface involves identifying a set ofkey nodeswhose
failure causes a packet to arrive at the node through that
interface. We denote byKd

j→i, the set of nodes which
when down cause packets with destinationd to arrive at
nodei from nodej. When dealing with single suppressed
node failures, a nodeu is includedin N d

j→i only if both
of the following conditions are satisfied:

1) with u, j is a next hop fromi to d.
2) without u, edgej→i is along a shortest path from

an upstream (w.r.t.Pd
i (V)) node ofu to d.

In other words, key nodes are those nodes whose failure
makes a packet arrive at a node along thereverse shortest
path from that node to the destination.

The KEYNODESprocedure for computation of key
nodes of the interfacej→i is shown in Algorithm 1.
The notation used here and the rest of the paper is given
in Table I. SPF procedure (not shown here) used by
KEYNODESprocedure returns a shortest path tree (SPT)
rooted at the requested nodei given the set of vertices
V and edgesE . KEYNODESinitially setsKd

j→i to ∅ for
each destinationd and it remains∅, if j is not a next hop
from i to d without any failures. The condition in line4
checks ifj is a next hop fromi to any destination. The
set of nodes for whichj is a next hop fromi is empty
when j itself is reached through some other neighbor.
Essentially after line6, the setV ′ contains all the nodes
for which j is a usual next hop fromi. The set of key
nodes may be non-empty only for the nodes inV ′. A
node v is added to setKd

j→i if shortest paths fromu
(the parent ofv in treeTi) to d pass throughj→ i link
when v is down. To check this, the shortest path tree
T −v

u rooted at nodeu without the nodev is built using
SPF (line 9). The condition in line10 tests to see if
packets to any destination arrive ati from j when node
v is down. The set of destinations for whichi is not a
usual next hop fromj but becomes a next hop without
v is given byV (i, T −v

u) ∧ V ′. For all such destinations,
v is included in their set of key nodes (lines11−12).

Alg 1 : KEYNODES(j→i)
1: for all d ∈ V do
2: Kd

j→i ⇐ ∅
3: Ti ⇐ SPF(i,V, E)
4: if j /∈ N(j, Ti) then
5: return Kj→i

6: V ′ ⇐ V (j, Ti)
7: for all v ∈ V \ {i, j} do
8: u ⇐ P (v, Ti)
9: T −v

u ⇐ SPF(u,V \ {v}, E(V \ {v}))
10: if j→i ∈ T −v

u then
11: for all d ∈ V (i, T −v

u) ∧ V ′ do
12: Kd

j→i ⇐ Kd
j→i ∪ {v}

13: return Kj→i

Once the key nodes are determined, it is straightfor-

ward to compute the forwarding tables. LetFd
j→i denote

the set of next hops tod for packets arriving ati through
the interface associated with neighborj. This entry can
be computed after excluding the nodesKd

j→i, i.e.,Fd
j→i =

Rd
i (V \ Kd

j→i). For node1 and destination6 in Fig. 2,
the key nodes areK6

2→1 = {5},K6
3→1 = ∅,K6

4→1 = ∅.
The corresponding forwarding table entries are shown in
Fig. 1(d). Note that the entries in Fig. 1(c) (FIFRN v1)
are different from these (FIFRN v2) due to the reverse
shortest path condition for key nodes. This condition
yields more efficient computation of forwarding tables
at the expense of slight increase in path length for some
node pairs. For example, the path from1 to 6 is the same
in both, but the path from3 to 6 is 3→1→4→6 in v1 and
3→1→2→1→4→6 in v2. On the other hand, the entries
of v2 can be computed more efficiently inO(|E| log2 |V|)
time using an algorithm based on incremental SPF [8].

III. L OOP-FREE FORWARDING UNDERFIFRN

We now prove that with key nodes and forwarding
tables computed as described above,when no more than
one node failure is suppressed,FIFRN guarantees loop-
free forwarding to a destination if a path to it exists.
Suppose a packet with destinationd arrives at a nodei
through the interface associated with the neighbor node
j. It is clear that when no failure is suppressed, the
forwarding path fromi to d under FIFRN is no different
from the usual shortest path. In the following, we first
show thatd is still reachable fromi even if we remove
all the key nodesKd

j→i. We then prove that all the nodes
along the path fromi to d choose the next hops such
that no link is traversed twice in the same direction.

Lemma 1: If Kd
j→i 6= ∅ and v ∈ Kd

j→i, v is common
to all the shortest paths fromj to d in graphG.

Proof: By the definition of key nodes,j ∈ Rd
i (V).

Supposev is not common to all the shortest paths from
j to d, i.e.,j has a shorter path tod without v. Then, we
haveC(Pd

j (V)) = C(Pd
j (V \ {v})), wherePd

j (V \ {v})
does not contain the linkj→i. SinceC(Pd

i (V \ {v}) ≥
C(Pd

i (V)) ≥ C(Pd
j (V)), we haveC(Pd

i (V \ {v})) ≥
C(Pd

j (V \ {v})), which is a contradiction. Therefore,v
is common to all the shortest paths fromj to d.

Theorem 1:Given Kd
j→i 6= ∅ , there exists a path

from i to d in G \ Kd
j→i.

Proof: Assumev1, v2 ∈ Kd
j→i, where v1 is the

upstream node ofv2 in Pd
j (V). Since v2 ∈ Kd

j→i,
there exists a pathPd

j (V \ {v2}) (containingj→i) in
G \ {v2}. We show thatv1 6∈ Sd

i (Pd
j (V \ {v2})). Oth-

erwise, we have: i)C(Sv1
j (Pd

j (V \ {v2}))) = C(Pv1
j (V \

{v2})) = C(Pv1
j (V)) = C(Sv1

j (Pd
j (V))), i.e., cj−i +

C(Sv1
i (Pd

j (V \ {v2}))) = C(Sv1
j (Pd

j (V))) since v1 is
on the upstream ofv2 in Pd

j (V); ii) C(Sv1
i (Pd

i (V))) =
ci−j + C(Sv1

j (Pd
j (V))), so ci−j + C(Sv1

j (Pd
j (V))) ≤

4

C(Sv1
j (Pd

j (V \ {v2}))), since pathSv1
i (Pd

i (V)) is the
shortest path fromi to v1 in G. Combining i and ii, we
getci−j ≤ 0 (sinceci−j = cj−i), which is a contradiction.
Therefore,v1 6∈ Sd

i (Pd
j (V\{v2})) and there exists a path

from i to d in G \ {v1, v2}. Similarly, we can prove that
a path fromi to d exists inG \ Kd

j→i.
Lemma 2: If Kd

j→i 6= ∅, and v is the closest tod
among nodesKd

j→i, thenPd
i (V \Kd

j→i) = Pd
i (V \{v}).

Proof: Since there can be only one suchv in Kd
j→i

(by Lemma 1), for anyvr ∈ Kd
j→i, vr is on the upstream

of v. Supposevr ∈ Kd
j→i andvr is inPd

j (V\{v}). As vr

is not i or j, the pathSd
vr

(Pd
j (V \{v})) does not contain

i or j. Sincevr ∈ Kd
j→i, andvr is on the upstream of

v, we haveSvr
j (Pd

j (V \ {v})) = Svr
j (Pd

j (V)), where
Svr

j (Pd
j (V)) does not contain linkj→i. So there is

a shortest pathPd
j (V \ {v}) = Svr

j (Pd
j (V \ {v})) +

Sd
vr

(Pd
j (ε(V \ {v}))) from j to d excluding link j→i.

This contradicts thatv ∈ Kd
j→i. So, for anyvr ∈ Kd

j→i,
vr is not in Pd

j (V \ {v}). That is Pd
j (V \ {v}) =

Pd
j (V \ Kd

j→i). Sincei is the next hop ofj in G \ {v},
Pd

i (V \ {v}) = Pd
i (V \ Kd

j→i).
Lemma 3: If Kd

j→i 6= 0, v ∈ Kd
j→i, and u is the

closest upstream node tov on Pd
i (V), then Pd

i (V \
{v}) = Sd

i (Pd
u(V \ {v})).

Proof: By the definition of key nodes,v ∈ Rd
u(V).

SincePd
u(V \ {v}) contains the linkj→i, the path from

i to d in Pd
u(V \ {v}) is the shortest path fromi to d in

G\{v} by the optimal substructure of the shortest path.
ThusPd

i (V \ {v}) = Sd
i (Pd

u(V \ {v})).
Lemma 4:Let v be the closest node tod among the

nodes inKd
p→q for any two neighborsp andq. Then for

any link j→i on Pd
q (V \ Kd

p→q), if Kd
j→i 6= ∅, v is also

the closest node tod among the nodes inKd
j→i.

Proof: By Lemma 2,Pd
k (V\Kd

p→q) = Pd
k (V\{v}).

Sincej→i is in Pd
k (V \ {v}), andKd

j→i 6= ∅, Pp
v (V) is

a subpath ofPj
v(V), v ∈ Kd

j→i. Suppose there exists a
nodevc (vc 6= v) which is the closest node tod among
the nodes inKd

j→i. By Theorem 1,vc andv are common
to the shortest path fromj to d. ThenPp

v (V) is a subpath
of Pj

vc
(V), and sovc ∈ Kd

p→q, a contradiction.
Theorem 2:Under FIFRN , if a path exists from a

sources to a destinationd without a nodef , suppression
of its failure notification doesn’t cause a forwarding loop.

Proof: Under FIFRN , a packet froms to d is
forwarded along the usual shortest path till it were to
traverse the failed node. So we only need to prove that
for any nodeai adjacent to the failed nodef , there is
no loop fromai to d in casef ∈ Rd

ai
(V).

Let t ∈ Rd
ai

(V \ {f}). Sincef ∈ Rd
ai

(V), f ∈ Kd
ai→t.

Now for any link p→q ∈ Pd
t (V \ Kd

ai→t), 3 cases are
possible: (i)Kd

p→q 6= ∅; (ii) Kd
p→q = ∅ and Pd

q (V) =
Pd

q (V \ f); (iii) Kd
p→q = ∅ andPd

q (V) 6= Pd
q (V \ f). We

address each case separately below.

1w
w2

w3

w4

w5 w6

w7

8w w9

s d.

x y

f

a a ai n0

Fig. 3. A node failure scenario

Case i) Supposeu is the closest node to the destination
d among the nodes inKd

ai→t. By Lemma 2,Pd
ai

(V \
Kd

ai→t) = Pd
ai

(V \ {u}), soPd
ai

(V \ {u}) contains the
link p→q. By Lemma 4, nodeu should be the closest
node tod among the nodes inKd

p→q. So by Lemma 2,
Sd

q (Pd
t (V \ Kd

ai→t)) = Sd
q (Pd

t (V \ {u})) = Sd
q (Pd

ai
(V \

{u})) = Pd
q (V \Kd

p→q). Hence, no loop is possible since
both t andq forward consistently along the same path.

Case ii) According to case i, a packet destined ford
will be forwarded toq throughSq

t (Pd
t (V\Kd

ai→t)). Since
Pd

q (V) = Pd
q (V \ {f}), it will be forwarded fromq to d

throughPd
q (V \{f}). Clearly, the concatenation of paths

Sq
t (Pd

t (V \Kd
ai→t)) andPd

q (V \{f}) won’t cause a loop.

Case iii) Supposea0 is the first adjacent node off
visited by the packet froms to d. We show that the
packet will not visita0 again. SincePd

q (V) containsf ,
it also containsai(i ∈ {1, 2, ..., n}). When the packet
is forwarded toai, it will send the packet through the
pathPd

ai
(V \{f}). We prove that: (a)Pd

ai
(V \{f}) does

not containa0; and (b) there does not exist a nodey on
Pd

ai
(V\{f}) such thatPd

y (V) contains linka0→f .

Case iii.a) SupposePd
ai

(V\{f}) containsa0, then the
shortest path fromai to q in G\{f} isSa0

ai
(Pd

ai
(V\{f}))+

Sq
a0

(Pd
a0

(V\{f})). We know that the shortest path fromq
to ai is Sai

q (Pd
q (V)). SinceSai

q (Pd
q (V)) does not contain

nodef , Sai
q (Pd

q (V)) = Sai
q (Pd

q (V\{f})). This implies
thatSai

q (Pd
q (V\{f})) = Sa0

ai
(Pd

ai
(V\{f}))+Sq

a0
(Pd

a0
(V\

{f})), i.e., pathSai
q (Pd

q (V\{f})) contains nodea0. So
Sq

a0
(Pd

a0
(V\{f})) = Sa0

q (Pd
q (V)), which means thatp

forwards packets toq in case thatf is down, andp ∈
Rd

q(V). ThereforeKd
p→q containsf , which contradicts

Kd
p→q = ∅. HencePd

ai
(V\{f}) does not containa0.

Case iii.b) Let the failure scenario be as shown in
Fig. 3 wheref is the failed node. If nodey is onPd

ai
(V\

{f}) and Pd
y (V) contains linka0→ f , then we have:

1) w1 + w8 < w2 + w6; 2) w4 + w9 < w7 + w8; 3)
w2 +w5 < w1 +w4; 4) w6 +w7 < w5 +w9. If we sum
up the left and right hand sides of these four inequalities,
we have a contradiction as the left and right sides add
up to be same. Therefore, there does not exist a nodey
on Pd

ai
(V\{f}) such thatPd

y (V) contains linka0→f .

5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 50 100 150 200 250 300

av
er

ag
e

st
re

tc
h

number of nodes

node failure (FIFRN)
link failure (FIFRN)
link failure (FIFRL)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

4 5 6 7 8 9 10 11 12

av
er

ag
e

st
re

tc
h

average degree

node failure (FIFRN)
link failure (FIFRN)
link failure (FIFRL)

Fig. 4. Path length stretch under FIFRN : (a) varying number of nodes with average degree 6; (b) varying average degree with 200 nodes

Using a similar argument, we can prove that if a packet
is forwarded out byai, it will never be forwarded back to
ai. So, a packet at most traverses all the adjacent nodes
of f , then it is forwarded tod by an (wherean is the
last adjacent node off visited by the packet) along the
path Pd

an
(V \{f}). Thus, FIFRN guarantees loop-free

forwarding to all reachable destinations.

IV. PERFORMANCEEVALUATION OF FIFRN

Under FIFR, failures are known only to the adjacent
nodes and all other nodes are not aware. So, a packet
takes the usual shortest path till the point of failure and
then gets rerouted along an alternate path. Consequently,
in the presence of failures, FIFR may forward packets
along longer paths compared to the globally recomputed
optimal paths based on the link state updates. Letstretch
of a path between a pair of nodes be the ratio of the costs
of the path under FIFR and the optimal shortest path. For
example, when node5 is down, cost of the optimal path
from node1 to node6 is 6 while it is 8 under FIFRN ,
i.e., stretch is8

6 . In this section, we show that stretch
under FIFRN is quite insignificant.

The experiments are conducted on random topolo-
gies generated by the BRITE topology generator. We
generated topologies of varying number of nodes with
different average degrees. The costs of links are assigned
randomly between100 and300. The average stretch due
to FIFRN for theaffectedpairs of nodes in case of single
node failure and single link failure are shown in Fig. 4.
The stretch under FIFRL for single link failure is also
shown for comparison. Across all topologies, average
stretch under FIFRN is less than1.15 for a node failure.
In case of a link failure, stretch under FIFRN is quite
comparable to that under FIFRL. As expected, the stretch
reduces as the average degree of a node increases. These
results indicate that the penalty due to local rerouting and

inferencing of node failures under FIFRN is negligible
whereas its contribution to the enhancement of network
availability and stability is substantial.

V. CONCLUSIONS

In this paper, we described afailure inferencing based
fast rerouting (FIFRN) approach for local rerouting
around failed links and nodes without explicit link
state updates. We have proved that when a node fails,
FIFRN guarantees loop-free forwarding of a packet to
its destination if there exists a path to it without the
failed node. We have also shown that by inferring node
failures, FIFRN can handle link failures also without
any perceptible increase in the path length stretch. As
part of future work, we plan to evaluate the performance
of FIFRN using the traces of link and node failures in
operational networks. We will also be conducting packet
level simulations to further bolster the case of FIFRN .

REFERENCES

[1] Athina Markopulu, Gianluca Iannaccone, Spratik Bhattacharya,
Chen-Nee Chuah, and Christophe Diot, “Characterization of
failures in an IP backbone,” inProc. IEEE Infocom, Mar. 2004.

[2] C. Alattinoglu and S. Casner, “ISIS routing on the Qwest
backbone: A recipe for subsecond ISIS convergence,” NANOG
meeting, Feb. 2002.

[3] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local restoration
algorithms for link-state routing protocols,” inICCCN, 1999.

[4] Sundar Iyer, Supratik Bhattacharyya, Nina Taft, and Christophe
Diot, “An approach to alleviate link overload as observed on an
IP backbone,” inProc. IEEE Infocom, Mar. 2003.

[5] V. Sharma et al., “Framework for MPLS-based recovery,” IETF
Internet Draft, Jan. 2002, draft-ietf-mpls-recovery-frmwrk-03.txt.

[6] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford,
“Dynamics of hot-potato routing in ip networks,” inProc. ACM
Sigmetrics, June 2004.

[7] Sanghwan Lee, Yinzhe Yu, Srihari Nelakuditi, Zhi-Li Zhang, and
Chen-Nee Chuah, “Proactive vs Reactive Approaches to Failure
Resilient Routing,” inProc. IEEE Infocom, Hong Kong, 2004.

[8] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast
local rerouting for handling transient link failures.,” Tech. Rep.
TR-2004-004, University of South Carolina, 2004.

