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PLGAN: Generative Adversarial Networks for
Power-Line Segmentation in Aerial Images

Rabab Abdelfattah , Xiaofeng Wang , Member, IEEE, and Song Wang , Senior Member, IEEE

Abstract— Accurate segmentation of power lines in various
aerial images is very important for UAV flight safety. The complex
background and very thin structures of power lines, however,
make it an inherently difficult task in computer vision. This
paper presents PLGAN, a simple yet effective method based on
generative adversarial networks, to segment power lines from
aerial images with different backgrounds. Instead of directly
using the adversarial networks to generate the segmentation,
we take their certain decoding features and embed them into
another semantic segmentation network by considering more
context, geometry, and appearance information of power lines.
We further exploit the appropriate form of the generated
images for high-quality feature embedding and define a new loss
function in the Hough-transform parameter space to enhance the
segmentation of very thin power lines. Extensive experiments and
comprehensive analysis demonstrate that our proposed PLGAN
outperforms the prior state-of-the-art methods for semantic
segmentation and line detection.

Index Terms— Power-line segmentation, generative adversarial
networks, image segmentation, aerial images, line detection.

I. INTRODUCTION

WHILE unmanned aerial vehicles (UAVs) have been used
in many recreational, photography, commercial, and

military applications, their flight safety may be threatened
by the widespread power lines (PLs) [1]. Hitting a PL may
not only destroy the UAVs but also damage power grids and
electrical properties as well. Given their very thin structures,
however, PLs are prone to be missed by many detection
sensors. To enable UAVs to detect and localize PLs during
flight, this paper presents a new computer-vision approach
aiming to accurately segment PLs from aerial images that are
taken by the cameras mounted on UAVs.

PL segmentation from aerial images is very challenging.
From a bird’s-eye view, the background of aerial images can
be any place, e.g., desert, lakes, mountains, and cities, which
shows significant variety and complexity. Moreover, PLs and
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their surrounding background may share a very similar color
in many cases and, therefore, are difficult to distinguish from
local image information. Finally, PLs have very thin structures
and only cover a very small portion of the image, e.g.,
one- or few-pixel wide in aerial images. As a result, the PL
segmentation is vulnerable to being fragmented, leading to
poor segmentation performance.

There have been many deep-learning based algorithms
developed for achieving state-of-the-art performance on
general-purpose line-segment detection [2], [3], [4], [5], most
of which rely on the saliency of lines and joint inference
of junctions. Both of these properties, however, do not hold
for PLs in most aerial images. The recent AFM model [6]
detects line segments by constructing an attraction field map
instead of inferring junctions. Nevertheless, it cannot handle
complex backgrounds in aerial images, as validated in our
later experiments. PL segmentation can be treated as a kind
of semantic image segmentation, for which many advanced
deep neural networks, such as FCN [7] and DeepLab [8],
[9], have been developed with state-of-the-art performance
on public image dataset, such as Cityscape and PASCAL
VOC. However, without considering the shape and inter-
pixel relations, these semantic segmentation networks cannot
accurately capture very thin PLs with a similar color to the
surrounding background in aerial images.

To find the inter-pixel relations and enforce the global con-
sistency between pixels, in this paper, we propose employing
generative adversarial networks (GANs) as a backbone for PL
segmentation. The main motivation is to leverage the min-max
loss of GANs to help 1) generate a natural (real) image that
accurately reflects the relationship between adjacent pixels,
and 2) create a high-quality feature embedding for semantic
image segmentation. Specifically, this paper presents a new
PLGAN (PL Generative Adversarial Networks) to segment
PLs from aerial images by employing adversarial learning.
In the proposed PLGAN, we first include a multi-task encoder-
decoder network to generate an image with highlighted PLs.
Then, we extract the last feature representation (i.e., the one
right before the output layer) of the decoder network and
embed it in a semantic segmentation network to improve PL
segmentation. We define comprehensive loss functions, includ-
ing adversarial, geometry, and cross-entropy ones, for PLGAN
training. Furthermore, we include a loss function in the Hough
transform parameter space to highlight the long-thin nature
of PLs. Extensive experiments, including ablation studies and
comparison experiments with prior methods, on the public
TTPLA dataset [10] and Massachusetts roads dataset for road
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segmentation [11], validate the effectiveness of the proposed
method.

Our main contributions are summarized as below.
• A novel PLGAN network has been developed to segment

extremely thin lines, such as power lines (PLs) from aerial
images, under complex backgrounds. To the best of our
knowledge, this is the first generative adversarial network
(GAN) developed for line structure segmentation. The
novelty of this approach lies in utilizing PL-highlighted
images for the discrimination process and incorporating
a semantic decoder, which takes highly representa-
tive embedding vectors as inputs to generate semantic
images. The purpose of employing adversarial training
is to produce realistic PL-highlighted images that further
differentiate PL pixels from complex backgrounds. Lever-
aging the advantages of GANs [12], an embedding vector
can be produced through adversarial training to capture
the features and structural information of the input image,
followed by a semantic decoder to learn and perform
semantic segmentation based on this embedding vector.

• A new loss function is introduced in the Hough transform
parameter space. We use the Hough transform to map
each pixel in the segmentation image to a sinusoidal curve
in the parameter space. If a pixel on PLs is missing in the
segmentation-image space, multiple points on the related
sinusoidal curve will be missing in the parametric space.
The Hough transform loss is defined to penalize those
missing points in the parameter space, instead of one
missing pixel in segmentation-image space. By doing so,
the penalty for missing pixels in the segmentation-image
space will be amplified, which forces the model to
correct the flawed pixels. Meanwhile, the intersection of
sinusoidal curves at the same points in the parameter
space indicates that the associated pixels belong to the
same PL. If any curves are missing in the parameter
space, it will lead to a reduction in the intensity of the
intersection points. Such a reduction implies that some
pixels are missing in the segmentation-image space and
the network must be penalized to learn how to identify
and recover those missing curves. Thus, the proposed
Hough transform loss can enhance global consistency for
PLs in the segmentation-image space.

• Extensive experiments have been conducted to evalu-
ate the performance of PLGAN on the TTPLA dataset
and the Massachusetts Roads dataset. PLGAN outper-
forms the state-of-the-art semantic segmentation models
under most evaluation metrics. In particular, compared
with models with similar sizes, PLGAN achieves the best
scores under all metrics.

For the remainder of the paper, Section II provides a brief
overview of related work. Section III elaborates on describing
the proposed PLGAN. Section IV reports the experimental
results, followed by a brief conclusion in Section V.

II. RELATED WORK

The related work is discussed in four parts: power
lines (PLs), line segment detection, semantic segmentation,
and GANs.

A. Power Lines
Most existing PL-related datasets were designed with

specific properties to simplify PL detection, such as syn-
thetic PLs [13], manually cropping aerial images to obtain
sub-images focused on PLs [14], and capturing images from
ground [15], to name a few. Compared with these datasets,
the TTPLA dataset we use in this paper is more challenging
and practical. It includes aerial images with very complex
backgrounds and wide varieties in zoom levels, view angles,
time during a day, as well as weather conditions [10].

Most existing work on PL detection adopts traditional
computer vision methods [16], [17], [18], [19], [20], which
have multiple drawbacks. First, it is often assumed that the PLs
are parallel and straight so that context-assisted information
can be used to extract PLs [17], [19], while this assumption
may not hold in practice. Second, extracting edge maps with
traditional approaches requires good contrast between the PLs
and the surrounding background, which can only be achieved
in ideal cases [21]. In practice, the color of the PLs and the
background could be very similar in aerial images. Third, tra-
ditional methods usually rely on predefined hyper-parameters
to generate meaningful results. However, defining these
hyper-parameters is very challenging, especially for those
datasets with images taken in a wide range of conditions (e.g.,
different zoom levels, points of view, background, light, and
contrast).

Recently, deep-learning based methods were investi-
gated [13], [14], [22], [23], [24], [25], [26] for PL detection.
Yetgin et al. [22] proposed an end-to-end CNN architec-
ture with a randomly initialized softmax layer for jointly
fine-tuning the feature extraction and binary classification –
PL and non-PL background are classified at the image level.
Yetgin et al. further developed a feature classification method
for PL segmentation, where features are extracted from the
intermediate stages of the CNN. In [27], a CNN-based classi-
fier is developed to identify the input-image patch that contains
PL and then uses Hough transform as the post-processing
to localize the PLs in each patch. In [28], a deep CNN
architecture with fully connected layers is proposed for PL
segmentation, where the CNN inputs are histogram-of-gradient
features – a sliding window is moved over each patch to get
a classification of PL or not. In [29], a UNET architecture
is trained to segment PLs based on a generalized focal loss
function that uses the Matthews correlation coefficient [30]
to address the class imbalance problem. In [23], an atten-
tional convolutional network is proposed for pixel-level PL
detection, and it consists of an encoder-decoder information
fusion module and an attention module, where the former
fuses the semantic information and the location information
while the latter focuses on PLs. In [24], dilated conventional
networks with different architectures are tried to find the
best architecture over a finite space of model parameters.
Choi et al. [25] proposed a weakly supervised learning net-
work for pixel-level PL detection using only image-level
classification labels. However, besides the simplicity of the
datasets as mentioned before, most of these CNN-based works
formulate the problem as pixel-wise classification with con-
volutional neural networks (CNNs) and do not sufficiently
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consider global consistency in detection, which is essential
in detecting very thin structures [26].

B. Line Segment Detection

Significant progress has been achieved in line segment
detection using deep neural networks in recent years. Most
deep line detection approaches rely on junction information
to locate valid line segments: some methods jointly detect the
junctions and line segments [2], [3], while others detect only
the junctions and then employ sampling methods to deduce
the line segments [4], [5]. However, these methods are not
applicable to our task since PLs in aerial images may not
always be straight and often lack junctions.

C. Semantic Segmentation

Deep neural networks for semantic segmentation [31], [32]
rely on pooling layers to reduce the spatial resolution in the
deepest FCN layers. Consequently, predictions around seg-
mentation boundaries often suffer from inadequate contextual
information [26], [33], [34], [35]. Dilated convolutions have
been introduced to capture larger contextual information [8],
[31], [36], [37], [38], which, however, still cannot gener-
ate global context just from a few neighboring pixels [34].
Encoder-decoder structures have emerged to overcome the
drawbacks of atrous convolutions [39], [40], [41]. However,
the prediction accuracy is still limited when recovered from
the fused features [42]. In addition, the softmax cross-entropy
loss limits semantic segmentation performance [26], [33] by
ignoring the correlation between pixels. Many of these limi-
tations can be observed in segmenting very thin PLs, and we
will include several of the above methods in our comparison
experiments.

D. Semantic Segmentation Based GAN

Generative Adversarial Networks (GANs) [43] have been
widely used in image translation [44], [45], super-resolution
[46], inpainting [47], salient object detection [48], and image
editing/manipulation [49]. There are also models that utilize
GANs for creating semantic segmentation images. In the
early research presented in [50], the authors introduced an
approach that utilizes adversarial networks for performing
semantic segmentation for the colored input image. In [51],
the authors employ GANs and transfer learning for the seg-
mentation of biomedical cell images. Hung in [52] proposed
an adversarial learning scheme for semi-supervised semantic
segmentation. It is worth mentioning, however, that directly
applying GANs for segmentation may not be desirable for
two reasons: (i) GANs usually employ softmax loss at the
output layer, which prevents the networks from expressing
uncertainties when generating semantic images [53]; (i i) The
softmax probability vectors cannot produce exact zeros/ones,
while the discriminator requires sharp zeros/ones. As a result,
the discriminator may unnecessarily learn more complicated
geometrical discrepancies by examining the small, but always
existing, value gap between the distributions of the fake
and real samples. In this paper, we embed GAN-extracted

features for enhancing PL segmentation, instead of directly
discriminating the semantic images.

III. PLGAN APPROACH

Notations: Let Ir ∈ Rw×h×c denote the input image, where
w × h is the dimensions of the input image and c is the
number of channels. Let Îs ∈ Rw×h be the semantic output
of PLGAN as shown in Figure 1 and Îp ∈ Rw×h×c be the
PL-highlighted image (or “fake image”) projected from the
embedding vector Em(Ir ). For the ground-truth of the PL-
highlighted image, we simply set the intensity of PL pixels
in an image to zero. Is and Ip are the ground truth (GT) of
Îs and Îp, respectively. Let φ : Rw×h×c

→ Rh×w×c denote
the geometry transformation on an image. Given an image I ,
the transformed image is denoted as I t

= φ(I ). To ensure
that the transformed images have the appropriate dimensions
as the inputs to PLGAN, we assume w = h. Given a matrix
P , [P]i j denotes the entry at the i th row and the j th column
of P . Accordingly, given an image I , [I ]i j denotes the value
at pixel (i, j) in the image. Given two cascaded functions or
networks G and φ, G ◦ φ(·) = G(φ(·)). ∥ · ∥1 is the L1 norm
to calculate the absolute difference on each pixel.

A. PLGAN Structure (G P L )

Our objective is to develop a deep neural network that
predicts the semantic image Îs based on the input image
Ir . The proposed PLGAN structure consists of the PL-aware
generator, two discriminators, and the semantic decoder. The
discriminators are trained in an adversarial way against the
PL-aware generator and the semantic decoder. As shown in
Figure 1, the input image Ir is transformed into a latent
space by the Embedder network Em . The resulting embedding
vector Em(Ir ) contains context, appearance, and geometry
information. This vector is mapped back to the image space
through the output layer of the PL decoder and the semantic
decoder for the PL-highlighted image Îp and the semantic
image Îs , respectively. During training, PLGAN will learn
the features of the PL pixels and distinguish them from the
background pixels based on adversarial loss functions. During
testing, there are no additional overhead or post-processing
steps; only Em and S networks are used to generate semantic
images.

The PL-aware generator (G) consists of the encoder
and the PL decoder with the residual blocks [54] in the middle.
The encoder and the PL decoder are composed of a sequence
of convolution layers and transpose convolutional layers with a
stride of 2, respectively, both followed by batch-normalization
and ReLU activation, as shown in Figure 1.

The semantic decoder (S) outputs semantic images
Îs . At the same time, the discriminator focuses on the
PL-highlighted images and their GT, which are color images.
By doing so, the benefits of adversarial training can be fully
explored, which, as discussed in Subsection II-D, cannot be
achieved by directly applying GANs (PL-aware generator and
discriminator only). The semantic decoder consists of a set
of convolution, batch-normalization, leaky-ReLU layers, and
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Fig. 1. An illustration of PLGAN framework. PLGAN consists of the PL-aware generator G, two discriminators D and Dt , and the semantic decoder S. The
PL-aware generator contains the encoder and PL-decoder. The embedder network Em , included in the generator, consists of the encoder and the PL-decoder
except for the last output layer. The input to PLGAN is RGB image Ir and its transformed input image I t

r (They are applied individually, not at the same
time). The output of PLGAN is the semantic image for PLs Îs . The G, S, D, and Dt forms adversarial training to generate PL-highlighted image Îp from G
and the embedding vector from Em . The embedding vector, which carries the context, appearance, and geometry information, is used as the input to S. The
generated PL-highlighted images Îp and the transformed Î t

p are the inputs to D and Dt , respectively. The PL-aware generator and the semantic decoder are
jointly trained by the combination of adversarial, semantic, geometry, and Hough transform loss functions. There is no overhead during testing, only Em and
S networks are used to generate semantic images.

a nonlinear sigmoid layer as the output layer, as shown in
Figure 1.

The adversarial discriminator (D) is to distinguish the
PL-highlighted image Îp from its GT Ip. Notice that Îp is
very similar to the input image Ir , except that the PL pixels are
highlighted. The PL area in Îp has a high-frequency structure
because of sharp changes in intensity from the background
pixels to the highlighted pixels. Given this high-frequency
nature, the Markovian discriminator structure is used for
its efficiency in tracking high-frequency structures [44]. The
Markovian discriminator maps Îp at the patch level (i.e.,
patches are individually quantified to the fake or real value)
and considers the structural loss, such as structural similarity,
feature matching, and conditional random field, which will
help compensate the loss of Îp at low frequencies. With
these benefits, the discriminator is able to push the PL-aware
generator to create more natural PL-highlighted images [55].
Besides D, an additional discriminator (Dt ) is added to
discriminate the transformed PL-highlighted image Î t

p and
the GT I t

p, which has a similar structure to D as shown
in Figure 1. Particularly in cases with dark backgrounds,
the Markovian discriminator may struggle to distinguish the
high-frequency pixels of power lines from the background.
In these cases, the semantic decoder will help detect those
pixels by penalizing the prediction errors through semantic
and Hough transform loss, which plays a crucial role in
correcting the discriminator. Since the GAN (consisting of
both the generator and discriminator) and the semantic decoder
are trained together within an end-to-end framework, the

overall performance relies on the combination of these two
components, instead of GAN only.

B. Objective Formulation

The loss functions for different modules in PLGAN are
defined as follows.

1) Adversarial Loss: The adversarial loss is applied to
encourage G to fool the discriminator D by generating images
that look similar to the real images. While, D is trained to
distinguish between the real images (Ip) and fake images
( Îp). The least-square loss function is chosen for our training,
instead of binary cross-entropy [56], for more stable training
and convergence [57]. The adversarial loss is defined as:

Ladv(G, D; Ir , Ip)

=
1
2

EIp

[
(D(Ip))

2
]

+
1
2

EIr

[
(1 − D ◦ G(Ir ))

2
]

(1)

where EIp and EIr are the empirical estimated expectations.
The discriminator D is to maximize Ladv and G is to minimize
this loss, which formulates adversarial training.

2) Semantic Loss: The cross entropy loss between Is and
Îs is defined as follows:

Lspl(Em, S; Ir , Is)

=

∑
(i, j)∈N

(
[Is]i j log([ Îs]i j ) + (1 − [Is]i j ) log(1 − [ Îs]i j )

)
−|N |

(2)

Authorized licensed use limited to: University of South Carolina. Downloaded on December 16,2023 at 11:56:05 UTC from IEEE Xplore.  Restrictions apply. 



6252 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 2. Illustration for applying our proposed Hough Transform Loss on the
parameter space. The pixels located on the same line (red, green, and blue)
in the segmentation-image space should intersect at the same point in the
parameter space. The set of angles (θl ) in the parametric space is partitioned
into M pieces, resulting in M outputs for each pixel in the segmentation-image
space, i.e., the orange curve.

where N is the pixel set of interest (e.g., pixels belonging
to PLs), |N | is the number of elements in N , and Îs =

S ◦ Em(Ir ). It is worth mentioning that the semantic loss is
determined pixel by pixel, which may not be able to capture
the correlations between pixels. In this case, missing one PL
pixel may lead to spatially-disjoint object segments, given
that PLs are very thin in aerial images (e.g., 1 pixel width).
To address this issue, we introduce the Hough transform loss
function, which will be discussed next.

3) Hough Transform Loss: The motivation of using Hough
transform loss is to force PLGAN to find and correct the
flawed pixels along PLs so as to ensure global consistency
for each PL. Each pixel in the semantic image is mapped to
a sinusoidal curve in the parametric space by the modified
Hough transform as shown in Figure 2

HT ([Is]i j ) = pi j (i cos θ + j sin θ) (3)

where (i, j) is the pixel coordinate in the semantic image
Is , pi j ∈ [0, 1] is the confidence score at pixel (i, j) which
indicates the likelihood of the pixel belonging to the line,
θ ∈ [0, θmax) is the angle parameter, and θmax is the maximum
value of θ (e.g., θmax = π ). During training, pi j will eventually
approach the neighborhood of 1 or 0, indicating that (i, j)
belongs to the PLs or not, respectively. Otherwise, it will lead
to a large loss in the parameter space and force PLGAN to
refine its prediction. In practice, we partition the set [0, θmax)

into M pieces and therefore one pixel in segmentation-image
space will result in M outputs, yi j (θl), in parameter space,
where θl =

lθmax
M for l = 0, 1, · · · , M − 1. The motivation

for partitioning the Hough angle space into M segments is to
emphasize the penalty in Hough transform parameter space
when a pixel in power lines is missing in the segmentation-
image space. In practice, one pixel in the segmentation-image
space will result in M outputs in the parameter space, where
each output corresponds to a segment of the angle space.
By partitioning the angle space, missing one pixel on a
power line in the segmentation-image space implies missing
M points in the parameter space, which amplifies the penalty
M times in the parameter space. This forces the PLGAN to
correct the flawed pixels and recover the missing pixels in

the segmentation-image space. The Hough transform Loss is
defined as follows.

LHT (Em, S; Ir , Is) = EIr

[
∥HT (Is) −HT ( Îs)∥1

]
(4)

with Îs = S ◦ Em(Ir ), where [HT (Is)]i j = HT ([Is]i j ). From
the other point of view, the pixels belonging to the same PL in
segmentation-image space are intersected as sinusoidal curves
into the parameter space and accumulated as a value into
the same cell into the discrete parametric space. Therefore,
the intersection points have strong intensities as a result of
intersecting more than one curve into the same point in
the parameter space. Each intersection point includes two
specifics: –The intersection point represents multiple related
pixels belonging to the same PL in the segmentation-image
space. – If the intensity of the intersection point is reduced as
a result of missing one or more curves in the parameter space,
the network should be penalized to learn to find the missing
curves. Hence, the missing pixels in the segmentation-image
space are recovered. Consequently, our Hough transform loss
function enhances global consistency for the power lines in
the segmentation-image space.

It is worth noticing that our proposed HT loss function
differs from the HT loss function proposed in [58], although
both loss functions are applied on HT parameter space. The
HT loss function presented in [58] is restricted with two
assumptions, including a pre-defined number of lines in the
scenes, and a single lane line is predicted in each output
channel. The intersecting points are identified in the parameter
space for each channel separately, and the loss function is
calculated based on these intersection points. Additionally,
the HT loss function optimizes only when the predicted
probability of a segmented lane is larger than a specified
threshold which means that it may not be applied to all pixels
in the segmentation space. In contrast to our method, all
segmentation PL lines are predicted in a single channel and are
mapped into a single HT parameter space without constraints
on the number of power lines per scene. Moreover, our
proposed HT loss function is applied on the whole sinusoidal
curves in the parameter space and optimizes regardless of the
model’s confidence level.

4) Geometry Loss: According to [10], the PLs, on average,
take 1.68% of the total pixels in an aerial image. In addition,
the color of PLs in aerial images may be close to the
background. Both facts indicate that the visual evidence of PLs
is very weak. There is a possibility of generating trivial Îp that
is very similar to the background in colors and styles while
removing or decreasing the foreground. The discriminator may
not be able to correctly identify the flawed pixels in Îp from
the GT Ip due to the high similarity between Îp and Ip
at most pixels. To address this issue, we add penalties in
geometry space that force the training to correct failures in the
local regions of PLs after geometry transformation. Geometric
transformations refer to operations such as flip and rotation,
which do not change the image’s semantic structure [56]. If a
model is geometrically consistent, the output image generated
by the model in response to an input image should preserve
similar, if not exactly the same, features/structures to the
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output image in response to the geometrically transformed
for the input image. However, GANs alone usually do not
have this property because they do not have any constraints to
enforce geometric consistency. Therefore, inspired by the work
in [56], we introduce the geometry loss function to penalize
the difference between two output images (the PL-highlighted
image Îp = G(Ir ) output of the generator from the original
input image, and the output from the inverse of its transformed
image φ−1

◦ G ◦φ(Ir )), such that the model can be trained in
a way towards enhanced geometric consistency in the GAN
structure. In PLGAN, we also consider geometry consistency
between the semantic image Îs = S ◦ Em(Ir ) and the inverse
of its transformed semantic image φ−1

◦ S ◦ Em ◦ φ(Ir ). The
geometry loss is defined as follows:

Lpgeo(G; Ir )

= EIr

[
∥G(Ir ) − φ−1

◦ G ◦ φ(Ir )∥1

]
+ EIr [∥G ◦ φ(Ir ) − φ ◦ G(Ir )∥1]

Lsgeo(Em, S; Ir )

= EIr

[
∥S ◦ Em(Ir ) − φ−1

◦ S ◦ Em ◦ φ(Ir )∥1

]
+ EIr [∥S ◦ Em ◦ φ(Ir ) − φ ◦ S ◦ Em(Ir )∥1] .

With the penalty on the geometry loss, it is unlikely that G and
G◦φ both fail at the same location. Instead, they co-regularize
each other to keep geometry-consistency [56]. So do S ◦ Em
and S ◦ Em ◦ φ. Similarly, we can define the adversarial loss,
the semantic loss, and the Hough transform loss in the trans-
formed domain as Ladv(G, Dt

; I t
r , I t

p), Lspl(Em, S; I t
r , I t

s ),
and LHT (Em, S; I t

r , I t
s ), respectively, with I t

r = φ(Ir ), I t
s =

φ(Is), and I t
p = φ(Ip). Dt is the discriminator for the

transformed generated image I t
p.

The overall loss function can be defined as follows:

LG P L (G, D, Dt , S; Ir , Is, Ip)

= Ladv(G, D; Ir , Ip) + Ladv(G, Dt
; I t

r , I t
p)

+ λspl
(
Lspl(Em, S; Ir , Is) + Lspl(Em, S; I t

r , I t
s )

)
+ λHT

(
LHT (Em, S; Ir , Is) + LHT (Em, S; I t

r , I t
s )

)
+ λgeo

(
Lpgeo(G; Ir ) + Lsgeo(Em, S; Ir )

)
(5)

IV. EXPERIMENTS

The experimental results are presented in this section, with
comparisons to the state-of-the-art methods.

A. Datasets

TTPLA [10] is a public dataset that contains aerial images
for PLs from different zoom levels and view angles, collected
at different times and locations with different backgrounds.
TTPLA dataset contains 8,083 instances of PLs, which take
only 154M pixels, 1.68% of the total number of pixels in
this dataset [10]. This dataset contains about 1,100 images.
We used 905 training images, augmented by vertical/horizontal
flipping, and 217 images for the test set. Each instance of
PL is carefully annotated by a polygon using LabelME [63].
TTPLA also provides polygonal annotations of all the trans-
missions present in each image, and an instance of PL is

usually considered to be ended when it enters the annotated
polygon of the transmission tower, as shown in the second
column of Figure 3. Since there are few public PL datasets
available [10], [64], we also considered Massachusetts Roads
dataset [11] instead to further evaluate the performance of
PLGAN. Although Massachusetts Roads dataset has different
context and features compared to TTPLA, it shares some
similarities with PL datasets, such as: (i) It is still an aerial
dataset; (i i) It contains roads that are thin and take only a small
portion of the overall image (the pixels associated with the
roads are a small percentage of the total number of pixels in the
image). Thus, evaluating PLGAN on the Massachusetts Roads
dataset can still provide valuable insights into the model’s
ability to segment thin structures in aerial images, even when
the objects are not specifically PLs. This dataset is used for
road segmentation, consisting of 1,108 training and 49 test
images, including urban and rural neighborhoods with pixel-
level annotations.

B. Implementation Details

The proposed PLGAN is implemented using PyTorch. The
weights of all sub-nets are initialized based on normal distri-
bution using the Xavier method with zero mean and gain 0.02.
They are jointly optimized using Adam with the first and the
second momentum setting to 0.5 and 0.999, respectively. The
entire model is trained for 200 epochs with the image size of
512 × 512. The learning rate starts with 1 × 10−4 for the first
100 epochs and decays to zero during the second 100 epochs.
All models are trained from scratch. The ground-truth of
the PL-highlighted images is obtained by simply setting the
intensity of the PL pixels in the images to zero. PLGAN uses
ResNet as a backbone, following CyclicGAN, GcGAN, and
Pix2Pix GAN, and the training starts with a Gaussian distri-
bution (mean 0 and std 0.02). To ensure a fair comparison,
each semantic segmentation model is executed on an Nvidia
GeForce RTX 3090 GPU card.

C. Evaluation Metrics

We adopt a total of eight metrics to evaluate the detection
performance of our model. Precision, recall, and intersection-
over-union (IoU) are the widely used metrics in semantic
segmentation [65]. Also, we consider F score as an evaluation
metric which is the harmonic mean of average precision and
average recall. It is defined as Fβ =

(1+β2)Precision×Recall
β2 Precision+Recall ,

where we assign β with two values: β = 1 following [66] and
β = 0.3 to emphasize more precision over recall which follows
[67]. Furthermore, we investigate the completeness (comp.),
correctness (corr.), and quality as the evaluation metrics,
following the previous studies on thin-object detection [66],
[68], [69], [70], [71]. Under these metrics, the definition of true
positives can be extended to the case that allows the predicted
pixel to shift a certain distance from its ground truth. Correct-
ness and completeness represent the extended precision and
recall, respectively, while quality =

comp.×corr.
comp.−comp.×corr.+corr. .

In our experiments, we allow the shift to be 2 pixels under
these three evaluation metrics, following [66] and [71].
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TABLE I
QUANTITATIVE PL SEGMENTATION PERFORMANCE OF THE PROPOSED PLGAN AND THE COMPARISON METHODS ON TTPLA DATASET [10]. BOLD

REPRESENTS THE HIGHEST RESULTS AND UNDERLINE REPRESENTS THE SECOND-BEST

D. Comparison With Existing Methods on TTPLA Dataset

We compare the performance of PLGAN on TTPLA with
a number of existing methods that can be grouped into three
different categories. (i) Semantic image segmentation models:
LinkNet [60], UNet++ [61], FPN [59], DeepLabv3+ [9],
UNET [39], MaNet [62], AIFN [23] and Focal-UNet [29]
as reported in Table I; (i i) GAN-based architectures: Pix2pix
[44] and GcGAN [56] based on backbone 6 residual blocks
(ResNet-6). GANs are evaluated based on the semantic images
generated by assigning one to the pixels belonging to PLs
and zero otherwise; (i i i) Line segment detectors: AFM [6],
LCNN [5], and HAWP [3]. AFM uses UNET as the backbone
while the other two rely on stacked Hourglass network [72]
as the backbone. Since the line segment detectors require a
different type of annotation for their ground truth depending on
the start and end points for each line, which is not compatible
with our setting, we extend it to our problem to compare
with them by preparing line segment annotation of PL on all
the images in TTPLA, by following the general annotation
pipeline in [6] on the original polygonal PL annotations.

Table I shows the quantitative results of the proposed
PLGAN and all the above comparison methods on the test
set of the TTPLA dataset. Figure 3 shows the segmentation
results of sample images from both the proposed PLGAN and
the comparison methods.

1) Comparison With Deep Semantic Segmentation Models:
It is shown in Table I that PLGAN outperforms most of the
baselines. Compared with PLGAN, we found that those base-
line models produce more false positives in PL segmentation.
For instance, UNET and FPN (columns 3 and 4 in Figure 3)
misclassify many non-PL structures, such as sidewalks and
lanes, as part of PLs. This observation can be interpreted
from two aspects. First, most of these models are built upon
the encoder-decoder structures, while the decoders fail to
appropriately augment the complex background information
when making pixel-wise predictions from the low-resolution

feature maps generated by the encoder [42]. Second, the
networks are trained based on the Softmax cross-entropy loss
and ignore the interconnections between pixels as discussed
in context [26], [33]. Therefore, it is hard to preserve global
consistency [53]. Even though Focal-UNET [29] uses Focal
loss function instead of BCE loss function for addressing
the class imbalance in PL segmentation, it still suffers from
the same limitation by not capturing the relation between
pixels. We also notice that, although UNET++ and MaNet
using ResNet-34 outperform PLGAN in recall and correctness,
respectively, it is at the cost of many more parameters than
PLGAN.

2) Comparison With GANs: As shown in column 5 of
Figure 3, using pix2pix GAN to directly generate the semantic
segmentation images reduces the performance by missing
many PL pixels and generating false positives, resulting in
many gaps along the segmented PLs. This is also reflected
in the quantitative results shown in Table I. As discussed in
the Related Work Section, this is the inherent limitation when
generating/discriminating the semantic images directly: the
discriminator pushes the generator to produce semantic images
with sharp zeroes/ones and leaves a permanent possibility for
the discriminator to examine the small, but always existing,
value gap between the distributions of true labels and the pre-
dictions [53], which may hurt the performance of adversarial
training. As shown in Table I, instead of directly using GAN
to generate semantic images, the proposed PLGAN embeds
features from GAN to a semantic segmentation network and
can achieve much higher quality in PL segmentation.

3) Comparison With Line Segment Detector: As shown in
Figure 3 (column 6), most of the line detectors can capture
many PLs with very clean segmentation. This is totally reason-
able since PLs are very-thin line structures, and line detectors
fully take advantage of this geometry prior to ensuring the
global consistency in PL segmentation. However, in using
deep neural networks to boost the capability of line segment
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Fig. 3. Sample PL segmentation results produced by the proposed PLGAN and comparison methods on TTPLA dataset. The blue and red colors indicate the
missing and false predictions, respectively. Appearing both colors for the same line means that this line has slight curvature, which can not detected correctly.
Two pixels relaxation are used for all models to make the visualization more clear.

detection, most line detectors conduct spatial-region parti-
tioning for network computation and feature representation.
This inherently reduces the spatial resolution of features and
may cause dislocation between the segmented PLs and their
corresponding GTs. As a result, a group of lines can be
missing in Figure 3. In addition, the line segment detectors
cannot handle the curved power lines, as shown in the image
in column 6 and row 4. Therefore, while most line segment
detectors produce quite clean PL segmentation in some cases,
its quality is still much lower than our PLGAN, as shown in
Table I.

4) Comparison Considering Parameter Scale: It is impor-
tant to highlight the observation that our model employs
only half of the parameters used in the second-best models
on the TTPLA dataset. In addition, when comparing our
model (14.9M parameters) with models with similar scales
(10.6M-18.5M parameters), our model outperforms all these
models under every evaluation metric.

E. Comparison on Massachusetts Roads Dataset
Due to the lack of public PL datasets, we evaluate PLGAN

on Massachusetts roads dataset for road extraction, which has
the same nature as thin objects. We first follow the exper-
iment setting in [65] and evaluate PLGAN using precision,
recall, IoU, and F1 score. We compare the performance of
PLGAN with Rec-Middle [73], Rec-Last [74], ICNet [75],
Rec-Simple [66], and DRU [65]. The results are reported
in Table II. Then, we follow the experiment setup in [66]
to evaluate the completeness, correctness, and quality of
PLGAN. We compare our performance with Reg-AC [76],
MNIH [11], and Rec-Simple [66]. The results are reported
in Table III. In addition, we provide the results for Deeplab
V3++, LinkNet, MaNet, and Unet++ using Resnet-34 as the
backbone in both Tables II and III.

It can be found from both tables that PLGAN outperforms
the state-of-the-art methods under most evaluation metrics.
Our PLGAN achieves the highest precision, IoU, and F1 as
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Fig. 4. Road extraction by our proposed PLGAN on Massachusetts roads dataset. The blue and red colors indicate the missing and false predictions,
respectively. Two pixels relaxation are used for all models to make the visualization more clear.

TABLE II
COMPARISON ON MASSACHUSETTS ROADS DATASET BY PRECISION,

RECALL, IOU, AND F1 SCORE. BOLD REPRESENTS THE HIGHEST
RESULTS, AND UNDERLINE REPRESENTS THE SECOND-BEST

reported in Table II, and the best completeness and quality
in Table III. It is worth mentioning that UNet++ model in
Table II and MaNet in Table III achieve the second-best F1 and
quality, respectively. This is mainly because UNet++ and
MaNet use a significantly larger number of parameters (26.1M
and 31.8M parameters, respectively) than PLGAN (14.9M
parameters). Some segmentation testing samples are shown
in Figure 4.

F. Ablation Study

We conducted an ablation study on the TTPLA dataset to
evaluate the performance of different variants of our proposed
PLGAN and to demonstrate the usefulness of its various

TABLE III
COMPARISON ON MASSACHUSETTS ROADS DATASET BY COMPLETENESS,

CORRECTNESS, AND QUALITY. BOLD REPRESENTS THE HIGHEST
RESULTS, AND UNDERLINE REPRESENTS THE SECOND-BEST

components. For the first two variants, the PL-aware generator
directly generated semantic segmentation images instead of
PL-highlighted images since the semantic decoder was not
included. The results of the first variant, including a PL-aware
generator (G) with an adversarial loss function, are reported
in the first row of Table IV. As a second variant, we applied
the geometry loss function and reported the results in the
second row of Table IV. In the third variant, we used the
semantic decoder (S) to produce semantic images and used
the PL-aware generator to generate PL-highlighted images
(row 3 in Table IV). Next, we added the geometry loss
function (geo) and the hough transform loss function (HT )
separately, and the results are presented in rows 4 and 5,
respectively. Finally, we applied the geometry loss function
on top of the previous variant in row 6 of Table IV. Through
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TABLE IV
QUANTITATIVE ABLATION STUDY OF PLGAN VARIANTS

Fig. 5. Ablation study for different variant of PLGAN. The blue and red
colors indicate the missing and false predication, respectively.

our ablation study, we aimed to highlight the effectiveness of
each component in enhancing the performance of PLGAN.
As shown in Table IV and Figure 5, we notice that apply-
ing the PL-highlighted images helps the generator to build
the embedding vector as an input to the semantic decoder.
Therefore, the performance across all metrics is improved in
row 3. Additionally, we observe that Lgeo slightly enhances
the recall (row 4) while Lht improves the precision (row 5).
Finally, all the modules contribute to getting a higher F-score
and IoU of PLGAN (row 6). Based on these observations,
we conclude that our contributions are complementary, and
the experimental results validate the importance of building
end-to-end trainable models.

V. CONCLUSION

This paper introduces a novel GAN framework, PLGAN,
specifically designed for power line segmentation in aerial
images. PLGAN leverages adversarial training and effectively
captures context, geometry, and appearance information for
accurate prediction. In PLGAN, the generated PL-highlighted
images are utilized by the discriminator, which compels
PLGAN to emphasize power line regions within the images.
By learning a joint representation in a shared latent space
derived from the PL-highlighted image and the semantic
image, PLGAN can generate more precise semantic images
compared to state-of-the-art methods, as demonstrated through
comprehensive experiments. As we aspire to improve our
model in future work, it is worth mentioning that there
are only a few small datasets on thin objects available
in public, which may not be sufficient to fully train the
PLGAN. To address this issue, weakly supervised learning,
semi-supervised learning, or unsupervised learning techniques
are promising. For instance, the work in [77] considers a
region-to-region graph to capture spatial dependencies and
local context. The method in [78] integrates recurrent layers

to effectively capture temporal information and incorporates
attention mechanisms that allow the model to focus on relevant
regions. We will investigate these methods in our future work
to enhance PLGAN’s performance with limited data. Another
direction for future research involves extending the applica-
bility of PLGAN to diverse applications, such as video object
detection [79], and salient object detection [80], while also
exploring its potential to reduce the dependency on manually
annotated pixel-level saliency masks through the use of limited
pixel-level labeled data [48].
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