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Multi-Stage Edge-Guided Stereo Feature Interaction
Network for Stereoscopic Image Super-Resolution
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Abstract—Stereo image super-resolution (SR) aims to
simultaneously increase the resolution of stereo image pairs,
which benefits many downstream three-dimensional (3D)
multimedia broadcasting and stereo vision-related tasks, such
as 3D television broadcasting and stereo matching. A key insight
in convolutional neural networks-based stereo image SR is to
enforce stereo feature interactions between the two stereo views
to explore complementary cross-view features that can facili-
tate the SR in both views. To fully exploit the cross-view stereo
features, in this paper we propose a new multi-stage network,
cascaded by several stereo feature interactions, progressively
improving the SR quality from coarse to fine. In particular,
an edge-guided stereo attention mechanism is proposed to be
embedded into each stereo feature interaction to better cap-
ture consistent structure details of the cross-views. Followed
by stereo feature fusion and reconstruction modules, we finally
put together a multi-stage edge-guided stereo feature interaction
network (MESFINet) for stereo image SR. Comprehensive exper-
iments on KITTI2012, KITTI2015, Middlebury, and Flickr1024
benchmark datasets show that the proposed MESFINet achieves
superior performance against the state-of-the-art stereo image
SR methods and can be used to improve the accuracy of stereo
matching.

Index Terms—Super-resolution, stereo image, multi-stage
network, edge guidance.

I. INTRODUCTION

STEREO image pairs contain rich three-dimensional (3D)
geometric information of the real-world scene and play an

important role in many 3D display applications, such as stereo-
scopic 3D broadcasting [1], 3D reconstruction [2], [3], virtual
reality [4], etc. In practice, many of these applications [2], [3],
[4], [5], [6] desire stereo images to be of higher resolution –
besides better visual satisfaction, higher-resolution images can
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Fig. 1. 2× super-resolution of “motorcycle” in the Middlebury [11] dataset
by using StereoSR [12], PASSR [13], iPASSR [14], and our proposed method.
Top: left view; Bottom: right view.

also improve the performance of stereo matching, resulting in
more accurate disparity maps and depth estimation. However,
the resolution of stereo images is usually limited by the
adopted stereo-camera hardware and the media-broadcasting
bandwidth from the cameras to the data-processing center [7],
[8], [9], [10]. One way to solve this problem is to develop
effective stereo image super-resolution (SR) algorithms that
can recover a high-resolution (HR) stereo image pair from an
input low-resolution (LR) stereo image pair.

Owing to the advancement of deep learning, sig-
nificant progress has been made on single image
SR [15], [16], [17], [18] in recent years. A simple approach
for stereo image SR is to perform single image SR to the
left-view and right-view images separately. Nevertheless,
without considering the correlation and correspondence
between the cross views, those approaches do not exploit
the full potential of the stereo image pair for maximizing
the SR performance. To address this issue, recently several
deep learning-based methods [13], [14], [19], [20], [21] have
been developed exclusively for stereo image SR by exploring
the cross-view correspondence. A key step in these methods
is the stereo feature interaction between the two views to
transfer the information from one view to the other. Most of
these methods only perform stereo feature interaction once
in the network and we argue that it may not be sufficient
to fully exploit the shared and complementary information
between the two views. This motivates us to develop a new
multi-stage network and perform stereo feature interaction
at each stage, followed by a fusion over all the stages, for
high-resolution stereo image reconstruction.

As shown in Fig. 1 (a-c), existing stereo SR methods do
not pay enough attention to structural cues (e.g., edges and
textures) and generate disastrous structural details (pointed by
arrows), which also have a direct bearing on the performance
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of image SR. Furthermore, these structural details of stereo
images are essential for related stereo vision tasks (e.g., stereo
matching [6]) by providing accurate locations of discrimina-
tive image features. Based on this observation, we propose to
incorporate the edge priors to guide the stereo feature interac-
tions that are performed at multiple stages. By this way, we
can recover high-resolution stereo image pairs with consistent
structure details between the left and right views. As shown
by the sample results in Fig. 1 (d), the proposed method by
combining edge guidance and multi-stage feature interaction
can better capture consistent stereo SR image details between
the cross views.

More specifically, in this paper, we propose a novel
multi-stage edge-guided stereo feature interaction network
(MESFINet) for stereo image SR. It consists of multi-
stage stereo feature interaction modules, which are designed
by using an edge-guided stereo attention mechanism. In
this mechanism, we employ an edge-adaptive spatial fea-
ture transform to stress the structural details in the stereo
feature transformation by modulating the cross-view stereo
features with edge priors. Finally, we utilize a stereo fea-
ture fusion module to adaptively fuse the interactive stereo
features from multi-stage feature interaction modules for high-
quality image reconstruction. For experiments, we evaluate
the proposed method by conducting a series of ablation
studies, as well as comparisons against many existing state-
of-the-art methods on KITTI2012 [22], KITTI2015 [23],
Middlebury [11], and Flickr1024 [24] benchmark datasets.
We also evaluate the proposed method in the task of stereo
matching. In summary, the main contributions of this work
include:

• We propose a novel multi-stage edge-guided stereo fea-
ture interaction network (MESFINet) with several stereo
feature interaction modules to fully exploit complemen-
tary cross-view information for efficient and high-quality
stereo image SR.

• An edge-guided stereo attention mechanism is proposed
to stress the correspondence of structural cues between
the cross views to reconstruct more local image details
in SR stereo images.

• Extensive experiments show that the proposed MESFINet
achieves superior performance to existing approaches on
various public datasets, in terms of both stereo image SR
and stereo matching.

II. RELATED WORK

In this section, we briefly review the related works on single
image SR, stereo image SR, and edge guidance.

A. Single Image Super-Resolution

Recent state-of-the-art performances of single image SR are
achieved by various convolutional neural networks (CNNs)-
based methods that learn the complex mapping relation-
ship between low-resolution (LR) images and high-resolution
(HR) images with large-scale training datasets. In [26], a
three-layer full convolutional network was used to learn
the mapping between pre-amplified LR images and HR

images, achieving better performance than traditional SR
methods [27], [28], [29]. In [30], [31], [32], skip connection
and parameter sharing operations were used in the network
to further expand the receptive field for further improving
the SR performance. In [33], a sub-pixel convolution method
was proposed for HR image reconstruction, by verifying the
effectiveness of extracting features from LR images. More
recently, inspired by Resnet [34] and Densenet [35], a large
number of image SR methods [17], [18], [36], [37], [38],
[39], [40], [41], [42], [43] have been proposed by building
deeper networks and exploiting richer features from the ini-
tial LR image. For example, in [37], a deeper and wider
network was built by removing unnecessary batch normaliza-
tion (BN) and activation functions of SSResnet [15]. In [9],
[16], [43], [44], [45], [46], [47], [48], with an attention mecha-
nism, the correlation between spatial and channel features was
considered for improving the single image SR performance.
All these works only consider a single image for SR, which
differs from our proposed work on stereo image SR. As
mentioned earlier, while applying a single image SR algo-
rithm to two stereo images separately, the SR performance is
limited without considering the correlation between the two
views.

B. Stereo Image Super-Resolution

The core of stereo image SR lies in the usage of the spatial
complementary information between the left and right views.
Recently, various CNNs-based methods have been developed
for stereo image SR with remarkable success. In [12], the dis-
parity prior was used to improve the spatial resolution of stereo
images, which, however, is limited by a fixed maximum dispar-
ity (64 in the original paper). In [13], [49], a parallax attention
module (PAM) was proposed to learn the stereo consistency
of the global receptive field along the epipolar line. In [20], a
self and parallax attention mechanism (SPAM) was proposed
to integrate the intra-view image and its corresponding stereo
image information, and a training loss function was designed
to strengthen the stereo consistency constraint. In [19], it
directly inserted two stereo attention modules (SAM) into the
pre-trained SRResnet [15] and performs stereo feature trans-
formation at multiple stages. In [50], a domain-adaptive stereo
image SR network DASSR was proposed to integrate pre-
explicitly predicted disparity into the entire pipeline by using
feature modulation dense blocks. In [8], several interactive
modules were used in the network to utilize the cross-view
information. In [14], symmetric bi-directional PAM (biPAM)
and inline occlusion processing schemes were proposed for
the middle stage of the network to further improve the stereo
image SR performance. More recently, in [51], cross-view
space features were extracted in a global and local manner.
In [52], the disparity estimation task was combined in stereo
image SR to boost reconstruction performance.

Different from the aforementioned methods, we propose to
embed the edge priors in stereo feature interaction to high-
light the structural details of stereo feature transformation
and conduct multi-stage stereo feature interaction to achieve
high-quality stereo image SR.
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Fig. 2. An overview of the proposed multi-stage edge-guided stereo feature interaction network (MESFINet).

C. Edge Guidance

Edge information has been proven to be useful for many
computer-vision tasks. In [53], edge information produced by
an edge sub-network was integrated into the stereo-matching
network to recover missing details of disparity. In [54], two
tasks of edge detection and salient object detection were
jointly learned to achieve better image-segmentation results.
Most recently, in [55], edge priors were used to assist object
structure recovery to improve the performance of camou-
flaged object detection. In [56], the available edge information
was exploited to fill in missing pixels for generating high-
resolution images. Our approach differs from these works
in that the proposed edge-guided stereo attention mecha-
nism leverages the edge priors to guide multi-stage feature
interactions between cross-views in the stereo image SR
domain.

III. PROPOSED METHOD

In this section, we first briefly introduce the overall network
architecture. Then we explain the details of the proposed stereo
feature interaction module and the edge-guided stereo attention
mechanism. Finally, we describe the proposed stereo feature
fusion module in detail.

A. Network Structure

As shown in Fig. 2, the proposed multi-stage edge-guided
stereo feature interaction network (MESFINet) estimates the
SR stereo images ISR = {ISR

L , ISR
R } from the LR stereo images

ILR = {ILR
L , ILR

R }. Correspondingly, IHR = {IHR
L , IHR

R } denotes
the underlying HR stereo images. In detail, MESFINet con-
sists of four steps: 1) initial feature extraction, 2) cross-view
interaction, 3) stereo feature fusion, and 4) reconstruction.

Note that, the two branches for LR-left and LR-right are
weight-sharing to extract the features inside the left and right
views.

In Step 1), the edge priors of the left and right views,
i.e., multi-scale edge probability maps (in our experiments,
scale = 5), are detected by sending ILR to an edge detec-
tion network [25], as shown in Fig. 3. It can be observed
that edges maintain high stereo consistency between the two
views, which is a prerequisite for our work. A conditional
subnetwork with four convolutional layers takes edge prob-
ability maps of two views as input to generate edge-guided
features FE = {FE

L , FE
R} that is shared by the cross-view

interaction part. And we stint the receptive field of the con-
ditional network by using 1×1 kernels for all convolutional
layers to reduce interference from smooth regions to edge
regions. Concurrently, a 3×3 convolutional layer is used to
map the input stereo images to the high-dimensional initial
stereo features F0 = {F0

L, F0
R}. Then, F0 goes through global

residual learning to facilitate the feature learning and is sent
as input to the cross-view interaction part.

In Step 2), we include a sequence of M stereo feature
interaction modules (SFIMs) to explore complementary cross-
view information. In this multi-stage structure, SFIM takes
stereo features generated by the previous stage and edge fea-
tures as input to perform bidirectional feature interactions
between left and right views which will be elaborated in
Section III-B, and the interactive stereo features produced by
m-th SFIMs are denoted as Fm = {Fm

L , Fm
R }, m = 1, 2, . . . , M.

We thus have

Fm = HSFIM,m

(
Fm−1, FE

)

= HSFIM,m

(
HSFIM,m−1

(
. . .

(
HSFIM,1

(
F0, FE

))
. . .

))
, (1)
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Fig. 3. Examples of edge probability maps produced by BDCN [25]. First row: left LR images. Second row: right LR images. Third row: edge maps of the
left LR images. Fourth row: edge maps of the right LR images.

where HSFIM,m(·) indicates the feature-interactive operation
performed by the m-th SFIM.

In Step 3), stereo feature fusion (SFF) is exploited to make
full use of hierarchical stereo features from all the preceding
layers in a global manner. It is composed of global stereo
feature fusion (GSFF) and global residual learning (GRL).
Specifically, we can write SFF as

FSF = HSFF

(
F0, F1, . . . , FM

)
, (2)

where HSFF(·) denotes a composite function of SFF. FSF =
{FSF

L , FSF
R } represents the output stereo feature maps of SFF.

More details about SFF will be discussed in Section III-D.
In Step 4), the acquired global stereo features are sent to

the reconstruction part to amplify the feature maps and recon-
struct the features. Concretely, a sub-pixel convolutional layer
of ESPCN [33] and a 3×3 convolutional layer are used to map
LR stereo features to SR stereo images.

We adopt pixel-wise L1 loss in our work. Given a training
set {IHR

i = {IHR
L,i , IHR

R,i }, ILR
i = {ILR

L,i , ILR
R,i}}i=1,...,N , where N is the

number of training pairs, the loss function with the updated
parameters � is

LSR(�) = 1

N

N∑
i=1

∥∥HMESFINet
(
ILR

i | �
) − IHR

i

∥∥
1 (3)

where � represents the edge priors on which the condition
can be applied. HMESFINet(·) indicates the entire function of
the proposed MESFINet.

B. Stereo Feature Interaction Module

As shown in Fig. 2, the proposed stereo feature interaction
module (SFIM) contains several residual dense blocks
(RDBs) [17], an edge-guided stereo attention mechanism
(ESAM), and a local feature fusion operation. Specifically,

benefiting from RDB can produce abundant local features with
a large receptive field, which is verified to be contributed to
SR results [17]. In m-th SFIM, we utilize T RDBs to extract
the deep features from the feature-maps Fm−1 produced by
the (m − 1)-th SFIM. We then concatenate these features and
send them to ESAM for the stereo feature transformation.
Taking the m-th SFIM as an example, this process can be
formulated as

Fm
R→L, Fm

L→R = HESAM

(
Fm,C, FE

)
, (4)

where HESAM(·) denotes the ESAM, Fm
R→L and Fm

L→R repre-
sent the transformed stereo features of ESAM, and Fm,C =
{Fm,C

L , Fm,C
R } denotes the concatenated features from all the

RDBs. Details of ESAM will be described in Section III-C.
For the intra-view feature reusability, Fm,C ∈ R

B×TC×H×W

is fed into 1×1 convolutional layer to generate the reused
features Fm,R = {Fm,R

L , Fm,R
R } ∈ R

B×C×H×W , where B is the
batch size, C is the number of channels, H and W are the
height and width of the input image, respectively. For differ-
ent views, the features from the intra-view and transformed
features from another view are fed to a local feature fusion
operation to aggregate cross-view information. Taking the left
view as an instance, the concatenation of intra-view feature
Fm,R

L and transformed feature Fm
R→L is first sent to the 1 × 1

convolution layer to reduce the channel dimension and then
fed into a residual dense block (RDB) and a channel attention
layer (CALayer [16]) to obtain the local fusion features. This
way, we further have

Fm
L = HCA

(
HRDB

(
HConv

([
Fm,R

L , Fm
R→L

])))
, (5)

where Fm
L is the output of the left-view in m-th SFIM and [·, ·]

denotes the concatenation operation.
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Fig. 4. Our proposed edge-guided stereo attention mechanism (ESAM).

C. Edge-Guided Stereo Attention Mechanism

To leverage the edge priors to stress the details in stereo
feature transformation between the two views, we propose an
edge-guided stereo attention mechanism (ESAM) embedded in
SFIM to enhance the stereo consistency, as shown in Fig. 4.

Specifically, we first send the edge probability maps
obtained by the pre-trained BDCN [25] to a conditional sub-
network to produce edge-guided features FE = {FE

L , FE
R} ∈

R
B×C×H×W . Given FE and the input cross-view features

Fm,C = {Fm,C
L , Fm,C

R } ∈ R
B×TC×H×W , we then apply an edge-

adaptive spatial feature transform (EASFT) block to learn
new edge-aware representations of the cross-view features.
As shown at the bottom of Fig. 4, taking the left view as an
example, each EASFT block provides tailored parameters to
modulate the left-view feature Fm,C

L of multiple stages by shar-
ing the same left-view edge-guided feature FE

L . In detail, FE
L

is fed into two 1×1 convolutional layers to generate two mod-
ulation parameters αm and βm, which have the same feature
dimensions as Fm,C

L . Inspired by [57], these two parameters
are used as the scale factor and shift factor for modulating
Fm,C

L . The operation can be written as

Fm,M
L = (αm + I) � Fm,C

L + βm, (6)

where � means the element-wise product and Fm,M
L denotes

the modulated feature of the left view and I is a tensor with
the value of 1 and has the same dimension as Fm,C

L . The
computation of the modulated right-view feature Fm,M

R is the
analogous process, just replace the input edge-guided feature
and intra-view feature of EASFT with those in the right view.

Afterwards, Fm,M
L and Fm,M

R are first sent to a
ResBlock [37], and go through two 1×1 convolutional layers
with non-shared weights to generate a query feature map

Qm ∈ R
B×C×H×W and key feature map Km ∈ R

B×C×H×W .
We use horizontal axial attention [58] to compute the feature
similarity along the epipolar line to obtain a score map
Sm ∈ R

BH×C×W×W for stereo correspondence. Sm and (Sm)T

are sent to a softmax normalization to produce bi-direction
edge-guided attention EAm

R→L and EAm
L→R.

To achieve stereo features transformation guided by the edge
information, the left-view (and the right-view) features take
batch-wise matrix multiplication with the corresponding edge-
guided attention maps as

Fm
L→R′ = EAm

L→R ⊗ Fm,C′
L (7)

Fm
R→L′ = EAm

R→L ⊗ Fm,C′
R ,

where Fm,C′
L and Fm,C′

R are generated by Fm,C
L and Fm,C

R via a
1×1 convolutional layer, ⊗ denotes matrix inner product, and
Fm

L→R′ and Fm
R→L′ represent the transformed stereo features.

Afterwards, local residual learning is then utilized to facilitate
the information flow, which can be written as

Fm
L→R = Fm

L→R′ ⊕ Fm,C′
R (8)

Fm
R→L = Fm

R→L′ ⊕ Fm,C′
L ,

where Fm
L→R and Fm

R→L represent the output of the ESAM in
the m-th SFIM. ⊕ is executed by a shortcut connection and
element-wise sum.

D. Stereo Feature Fusion Module

After extracting local stereo features with a set of SFIMs,
we further utilize a stereo feature fusion (SFF) module to com-
bine hierarchical stereo features in a global way. As shown in
Fig. 2, our proposed SFF is composed of global stereo feature
fusion (GSFF) and global residual learning (GRL).

Specifically, GSFF is used to fuse the multi-stage interactive
stereo features from all the SFIMs to get the global stereo
features as

FGSF = HGSFF

([
F1, . . . , FM

])
, (9)

where HGSFF(·) indicates the combination of a 1 × 1 and
a 3 × 3 convolutional layers. To further enhance the re-
usability of initial features, GRL is used to process the features
before image up-sampling and this strategy has been shown
to be effective in [16], [17]. This way, we have the following
formula:

FSF = FGSF ⊕ F0 (10)

where F0 represents the initial feature maps. The final fused
stereo features FSF are used for reconstructing the SR stereo
images.

IV. EXPERIMENT

In this section, we first describe the datasets and network
training settings. We then verify the effects of different com-
ponents in the proposed network, and conduct quantitative
evaluation and qualitative comparison of the proposed method
with several state-of-the-art image SR methods on benchmark
datasets. Finally, we apply our method to facilitate stereo
matching.
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Fig. 5. PSNR performance when using different T , i.e., the number of RDBs,
in each SFIM. Here we set M, the number of SFIMs/stages, to be 4 and the
results are on Middlebury [11] with ×2 scale.

A. Experimental Settings

Datasets and metrics: In our work, 800 images from
the Flickr1024 [24] dataset and 60 images from the
Middlebury [11] dataset are used as training data to train
the proposed model. For evaluation, we use four widely used
datasets: KITTI12 [22], KITTI2015 [23], Middlebury [11],
Flickr1024 [24]. In order to make a fair comparison, we use
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) with the same settings as [13], [14], to evaluate our
results, and scaling factors of ×2 and ×4 are adopted for
training and testing.

Training settings: In each training batch, we use 36 pairs of
LR stereo image patches with a size of 30×90 as input, and
these patches are generated by bicubic downsampling the cor-
responding stereo HR images cropped in steps of 20. For data
augmentation, we perform random flipping and rotation on all
the patches before training. In the optimization process, our
models are optimized by Adam [59] with setting β1 = 0.9,
β2 = 0.99. The basic learning rate is set to 2 × 10−4 and
halved at every 30 epochs for 80 epochs in total. We imple-
ment our models using PyTorch, run them using two NVIDIA
GeForce GTX 2080 Ti GPU cards, and evaluate them using
MATLAB R2015b. Following the setting in [37], we use a
pre-training strategy – when training our ×4 model, we ini-
tialize the model parameters with the pre-trained ×2 model –
which can accelerate the convergence of the network.

B. Ablation Study

In this subsection, we analyze the performance of the multi-
stage stereo feature interactions, the edge guidance, the global
stereo feature fusion, the modulation scheme, and the edge
probability map.

1) Multi-Stage Stereo Feature Interaction Modules: We
first investigate the impact of the number of RDBs (T) in each
SFIM/stage on the network. Figure 5 depicts the PSNR and
Parameters trade-off study of SFIM with different RDBs where
the number of SFIMs/stages (M) is set as 4. We can see that

TABLE I
THE 2× SR PERFORMANCE OF MESFINET WITH DIFFERENT M (THE

NUMBER OF SFIMS/STAGES), TRAINED ON MIDDLEBURY [11]

TABLE II
ABLATION STUDY OF EDGE GUIDANCE AND

GSFF FOR 4× SR ON FLICKR1024 [24]

a larger T brings us better PSNR performance by extracting
more features inside the two views. However, a larger T also
leads to more parameters.

In addition, we change the SFIM/stage number M of
MSFINet to analyze its effect. The results are shown in
Table I. It can be observed that, setting T = 2, the performance
improves steadily as the SFIM/stage number M increases
by exploiting and extracting more stereo information for
image reconstruction. Considering a balance between the SR
performance and the number of parameters, we finally set
T = 2 and adopt a 4−stage MSFINet as our stereo image
SR model.

2) Edge Guidance: We validate the effectiveness of edge
guidance by adding EASFT to the baseline, i.e., the cross-view
stereo features sent to ESAM are modulated by edge-guided
features, and then fed to the subsequent stereo feature transfor-
mation. It can be seen from Table II that the guidance of edge
priors can improve the baseline performance (PSNR/SSIM of
+ 0.13 dB / 0.0043 for ×4 SR on Flickr1024 [24]) and we also
observe that, without the edge guidance, the performance of
the proposed model suffers from a decrease – PSNR and SSIM
decrease by 0.16 dB and 0.0085, respectively. Additionally, to
further validate the contributions of edge-guided feature inter-
actions on the model performance, we apply different numbers
of EASFT from back to front on the baseline, ranging from 0
to 4. As shown by the results in Table III, the more EASFTs,
the better performance, which verifies that the more edge-
guided feature interactions, the better SR performance. These
quantitative results prove the benefit and effectiveness of using
edge priors to guide the stereo image SR.

3) Global Stereo Feature Fusion (GSFF): In this study, we
show the effectiveness of fusing multi-stage interactive stereo
features by adding GSFF to the baseline – the stereo features
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TABLE III
ABLATION STUDY OF MESFINET WITH DIFFERENT NUMBER

OF EASFTS FOR 4× SR ON FLICKR1024 [24]

TABLE IV
ABLATION RESULTS OF MODULATION SCHEME SELECTIONS FOR 2× SR

ON KITTI2015 [23], TRAINED ON MIDDLEBURY [11]

TABLE V
THE 2× SR PERFORMANCE OF MESFINET WITH

DIFFERENT EDGE DETECTORS

output by multi-stage SFIMs are concatenated together and
sent to a 1×1 convolutional layer and a 3×3 convolutional
layer before the reconstruction part. As shown in Table II, with
the GSFF module, the proposed model can steadily improve
the PSNR from 23.35 dB to 23.47 dB on Flickr1024 [24].
Correspondingly, the performance suffers from a decrease
(PSNR: –0.13 dB, SSIM: –0.0079 for ×4 Flickr1024 [24])
if GSFF is removed in our model. These comparisons show
that the fusion of multi-stage stereo features indeed improves
the performance of stereo image SR.

4) Modulation Scheme: For the edge guidance, we try dif-
ferent modulation schemes with edge priors, as shown in the
first column of Table IV, and compare it with our proposed
scheme, i.e., Eq. (6), in the proposed ESAM. From the quanti-
tative results in Table IV, it can be seen that the use of custom
parameters α and β with edge priors is crucial for the spa-
tial modulation of cross-view stereo features, and the proposed
modulation scheme, shown at the last row, achieves the best
performance.

5) Edge Probability Map: To analyze the impact of the
quality of the edge probability maps, we use different edge
detectors to generate edge probability maps for image SR, as
shown in Table V. Figure 6 shows the edge probability maps
of different edge detectors on challenging examples. It can
be learned from Table V and Fig. 6 that the better the qual-
ity of edge priors, the better the SR performance. Meanwhile,
since the difference between different edge probability maps
is not obvious, the different detectors have a limited impact

Fig. 6. Examples of edge probability maps produced by Canny, Sobel, and
BDCN [25]. Top: left view; Bottom: right view.

Fig. 7. Trade-off between the 2× SR performance and the number of
parameters on Flickr1024 [24].

on SR performance with a PSNR margin of 0.02 ∼ 0.04 dB
on Middlebury [11].

C. Comparison With State-of-the-Art Methods

In this subsection, we compare our model with 11 state-
of-the-art image SR methods: 1) single image SR methods:
VDSR [30], EDSR [37], RDN [17], and RCAN [16]; 2)
stereo image SR methods1: StereoSR [12], PASSRnet [13],
SRRes+SAM [19], IMSSRnet [8], BSSRnet [21], iPASSR-
net [14], and SSRDE-FNet [52]. Moreover, the results of the
IMSSRnet [8] and BSSRnet [21] are directly cited from its
paper, and all compared methods are trained on the same
training datasets as our method to make a fair comparison.

Quantitative Results: The quantitative results of PSNR and
SSIM of 2× and 4× SR are shown in Table VI, and the num-
ber of model parameters is also shown in Fig. 7 for a intuitive
observation. We can see from Table VI that, our MESFINet
achieves the best average results on most datasets for both
2× and 4× stereo image SR against the comparison methods.
Specifically, our MESFINet performs better than the popular

1SPAMnet [20] and DASSR [50] are not compared with our method
because their evaluation scheme is different from all these comparative meth-
ods listed in this section, and their codes are not available. And we do not
include NAFSSR [60] for comparison because it uses several training tricks
to improve performance, such as data augmentation and large image patch
size, and requires more memory cost.
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TABLE VI
QUANTITATIVE EVALUATION OF STATE-OF-THE-ART SR ALGORITHMS, IN TERMS OF THE AVERAGE PSNR AND SSIM FOR SCALE

FACTORS 2× AND 4×. RED INDICATES THE BEST AND BLUE INDICATES THE SECOND BEST PERFORMANCE. ‘*’ INDICATES THAT THE

RESULTS OF THE METHODS ARE DIRECTLY CITED FROM THE ORIGINAL PAPERS AND WE DO NOT DEMONSTRATE

2× SR RESULTS OF SRRES+SAM [19] SINCE THEIR MODELS ARE UNAVAILABLE

Fig. 8. Visual comparison of 2× SR on the KITTI2015 [23] and Middlebury [11] datasets. (Zoom in for the best view).

stereo image SR algorithm iPASSRnet [14] with a compara-
ble number of parameters (the average PSNR gains of ×2
and ×4 SR on Middlebury [11] are 0.70dB and 0.26dB,

respectively), and obtains better results than the large and
deep single image SR networks, e.g., EDSR [37], RDN [17],
RCAN [16], by using fewer parameters. Furthermore, for the
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Fig. 9. Visual comparison of 4× SR on the KITTI2012 [22] and Middlebury [11] datasets. (Zoom in for the best view).

Fig. 10. PSNR v.s. running time on Flickr1024 [24] for 4× SR.

scaling factor ×4, the SSIM of our MESFINet surpasses
previous SSRDE-FNet [52] by 0.0027, 0.0017, 0.0013, 0.0037
on Middlebury [11], KITTI2012 [22], KITTI2015 [23] and
Flickr1024 [24], respectively. This verifies the effectiveness
of the proposed MESFINet.

Qualitative results: Figures 8 and 9 provide the visual com-
parison of 2× and 4× stereo image SR, respectively. From
the zoom-in area in Fig. 8, both the single image SR and
the stereo image SR methods produce blurry artifacts and
incorrect edges. On the contrary, our MESFINet can restore
sharper and clearer edges, e.g., the slogan on the billboard
in the image “00002.png” of KITTI2015 [23], and produce
more faithful details, e.g., the strings on the guitar in image
“piano.png” of Middlebury [11]. A similar phenomenon can
be observed in Fig. 9. This is mainly because our MESFINet
excels at capturing structural details through edge guidance in
multi-stage stereo feature interactions.

Running time: Figure 10 reports the trade-off results
between running time (tested with 128×128 input on a single

TABLE VII
QUANTITATIVE RESULTS ACHIEVED BY LEASTEREO [5] ON 4× SR

STEREO IMAGES. ALL THESE METRICS WERE AVERAGED OVER

THE TEST SET OF THE SCENEFLOW DATASET [61] AND

LOWER VALUES DENOTE BETTER PERFORMANCE

RTX 2080Ti GPU) and PSNR on Flickr1024 [24]. It can
be seen that our method achieves comparable running time
and the best PSNR value compared to other methods. From
Fig. 10, it can be informed that our MESFINet outperforms the
state-of-the-art model SSRDE-FNet with up to 2.16× speedup,
which indicates that our approach is practical and efficient.

D. Benefits to Disparity Estimation

High-quality stereo image SR can facilitate high-level stereo
vision tasks, e.g., stereo matching. We further verify the
effectiveness of our proposed MESFINet by using the recon-
structed SR stereo image pairs for stereo matching. Here, we
use the latest stereo matching algorithm LEAStereo [5] as
the evaluation model, and adopt the first 100 images from
flythings3D_image validation dataset of SceneFlow [61] for
evaluation. The original clean image is used to provide the
upper-bound result, and is downsampled 4× to generate LR
stereo images for image SR. We then use several state-of-
the-art SR methods, i.e., EDSR [37], RDN [17], RCAN [16],
SRResnet+SAM [19], iPASSR [14], to reconstruct SR images
for stereo matching. In particular, End-Point-Error (EPE) and
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Fig. 11. Stereo matching results of LEAStereo [5] by utilizing 4× SR stereo images obtained by the state-of-the-art image SR methods.

t − pixel error rate (> t pixel) are taken to evaluate the
accuracy of stereo matching. As shown in Table VII, dif-
ferent image SR methods lead to different stereo-matching
performances. In general, better image SR algorithms can
lead to a smaller error of the estimated disparity. And it
can also be seen that our method surpasses single image SR
and stereo image SR methods in terms of both EPE and
t − pixel error rate, since our method can better capture stereo
consistent details, e.g., edges and textures, that is important
for stereo matching. From the sample results in Fig. 11, our
method can produce faithful stereo-matching results by com-
paring them to the best ones obtained from the original clean
image.

V. CONCLUSION

In this paper, we proposed a multi-stage edge-guided
stereo feature interaction network, termed MESFINet, for
stereo image super-resolution (SR). Concretely, our MESFINet
is cascaded by several stereo feature interaction modules.
Enjoying a multi-stage learning strategy, MESFINet progres-
sively enhances the reconstruction quality from coarse to
fine. In addition, we proposed an edge-guided stereo atten-
tion mechanism and embed it into each stage of stereo
feature interaction for capturing more details of SR stereo
images. Experimental results have demonstrated the supe-
rior performance of our MESFINet over state-of-the-art
CNNs-based SR methods on the KITTI2012, KITTI2015,
MIddlebury, and Flickr1024 datasets. Impressively, SR stereo
results produced by our MESFINet also improve the
performance of stereo matching.
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