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Capture the Moment: High-Speed Imaging With
Spiking Cameras Through Short-Term Plasticity
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and Song Wang , Senior Member, IEEE

Abstract—High-speed imaging can help us understand some
phenomena that are too fast to be captured by our eyes. Although
ultra-fast frame-based cameras (e.g., Phantom) can record millions
of fps at reduced resolution, they are too expensive to be widely used.
Recently, a retina-inspired vision sensor, spiking camera, has been
developed to record external information at 40, 000 Hz. The spiking
camera uses the asynchronous binary spike streams to represent
visual information. Despite this, how to reconstruct dynamic scenes
from asynchronous spikes remains challenging. In this paper, we
introduce novel high-speed image reconstruction models based on
the short-term plasticity (STP) mechanism of the brain, termed
TFSTP and TFMDSTP. We first derive the relationship between
states of STP and spike patterns. Then, in TFSTP, by setting up the
STP model at each pixel, the scene radiance can be inferred by the
states of the models. In TFMDSTP, we use the STP to distinguish
the moving and stationary regions, and then use two sets of STP
models to reconstruct them respectively. In addition, we present
a strategy for correcting error spikes. Experimental results show
that the STP-based reconstruction methods can effectively reduce
noise with less computing time, and achieve the best performances
on both real-world and simulated datasets.

Index Terms—High-speed reconstruction, motion-dependent,
short-term plasticity, spiking cameras.

I. INTRODUCTION

CAPTURING the moment when time flies is not just about
creating amazing pictures, but also about extending our
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knowledge of the world. There are boundless potential appli-
cations for high-speed imaging, such as recording the fast-
changing processes in physics experiments, studying rapidly
moving particles in the chemical reaction, and researching risk
in autonomous driving. However, the traditional digital camera
records scenes with a constant shutter speed (e.g., 30 fps), which
loses much visual information and suffers from motion blur. The
most effective way to capture high-speed scenes with traditional
digital cameras is to reduce exposure time or reduce the spatial
resolution. The maximum imaging speed can reach hundreds
of thousands of frames per second for some digital cameras
(e.g., Sony IMX400). Despite these, the speed still cannot keep
up with the changes in many nanoseconds or microseconds
high-speed scenes, not to mention that most of these are actually
achieved through interpolation. This has led to the development
of ultra-high-speed cameras, such as the Phantom [1], [2], [3],
which can record millions of frames per second. However,
enormous memory demands are needed to store these images.
Moreover, high-speed cameras require specialized sensors that
are highly expensive, which cannot be widely used. In addition to
ultra-high-speed cameras, some new devices, like single-photon
avalanche diodes (SPAD) camera [4], [5]), and the correspond-
ing algorithms [6], [7], [8], [9] were proposed to improve the
imaging speed. These technologies can record tens of billions [5]
or even trillions [8] of frames per second, yet are cumbersome
to operate, and are vulnerable to produce blurred or glow-out
images if improperly operated.

Neuromorphic vision sensors have attracted much attention in
recent years [10]. Unlike traditional frame-based cameras, which
use a global shutter to control the exposure time of all pixels,
neuromorphic vision sensors mimic the sampling mechanism of
the retina and asynchronously generate spikes/events to repre-
sent the radiance change of each pixel. A commonly used neuro-
morphic vision sensors are dynamic vision sensors (DVS) (also
called event cameras), in which events are generated only when
the brightness change exceeds a certain threshold [11], [12],
[13]. Event cameras have distinctive advantages over traditional
frame cameras such as low-latency, low power consumption,
and high dynamic range (HDR), which have been applied to
optical flow estimation [14], [15], HDR imaging [16], [17],
and high frame-rate video synthesis [18], [19]. Despite these,
it is difficult for an event camera to reconstruct textures in
scenes as visual information of the static scenes is lost. Inspired
by the sampling mechanism of primate fovea located in the
retina center [20], [21], another retina-inspired camera named
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Fig. 1. Illustration of working mechanism for traditional cameras, event
cameras, and spiking cameras. Traditional cameras acquire images according
to the constant frame rate, event cameras generate asynchronous events for all
pixels when brightness changes exceed a certain threshold, and spiking cameras
continuously capture photons and generate asynchronous spike for all pixels
when the accumulated intensity reaches a predefined threshold.

spiking camera has been developed in recent years [22], [23].
Each pixel of the spiking camera continuously captures photons
and generates a spike when the accumulated intensity reaches
a predefined threshold. An intuitive illustration for traditional
cameras, event cameras, and spiking cameras is shown in Fig. 1.
In spiking cameras, the pixels sensed different scene radiance
fire spikes with different frequencies; the stronger the radiance,
the faster the spikes fire. Compared with event cameras, the
spiking camera retains high-speed spatio-temporal information
for both moving and static objects, which is ready-to-use for
scene reconstruction.

Recently, some scene reconstruction methods have been pro-
posed by estimating the firing frequency of each pixel, as the
photosensitive units that receive different scene radiance will
trigger spikes with different frequencies [24], [25], [26], [27].
However, these methods require a predefined length of the time
window, which often suffer from the problems of motion blur and
low image contrast if the window length is inappropriate [24].
Besides, complex optimization algorithms are utilized to sepa-
rate the motion and static areas or to align motion pixels so as to
make it impossible to reconstruct images in real-time [25], [26].
Therefore, how to estimate firing frequency of each pixel without
a predefined time window and reconstruct the texture with high
image quality and low latency is still unclear. In addition, due
to the influence of dark current and discrete readout spikes, the
spiking cameras contain much noise, which will further affect
the quality of reconstructed images.

In order to take advantage of the low-latency and low-power
consumption of spiking cameras, and obtain high-quality ultra-
high-speed reconstructed images without introducing too much
computational complexity, we introduce the short-term plastic-
ity (STP) mechanism of the brain [28], [29]. By employing the
output spiking streams as the input of spiking neural networks
with STP [30], we derive the relationship between the time-
varying firing frequency of each pixel and the dynamics of the

postsynaptic neuron, and further infer the scene radiance and the
pixel value of the reconstructed images. This method is referred
to as texture from STP (TFSTP). We analyze the influence of
different parameters in STP on the model dynamics, including
convergence time and convergence error. In the TFSTP, all pixels
are reconstructed using the same set of STP parameters. Hence
we need to make a trade-off between removing motion blur and
noise, making it inevitable to lose sight of the other. There-
fore, we propose a motion-dependent short-time plasticity re-
construction algorithm, termed texture from motion-dependent
STP (TFMDSTP). In TFMDSTP, we first detect the motion
pixels through the STP based on the characteristic that STP will
fluctuate in the changing radiance region, then use STP with
different parameter settings to estimate moving and stationary
pixels. Experimental results show that the proposed STP-based
image reconstruction algorithm can effectively decrease noise,
while the motion-dependent algorithm can reduce both noise
and motion blur.

This work is an extension of the paper [31] published on
CVPR. Compared with the work of the conference version, the
contributions of this paper are mainly in the following aspects:
� We propose a strategy to correct the inter-spike-interval

(ISI) error, which can effectively reduce the noise of ISI-
based reconstruction method, e.g., TFSTP.

� We analyze the effects of different parameter settings on
the convergence time and error of the STP model through
theory and simulation experiments. Based on this set of
analyses, the optimized parameters can be selected for
different pixels.

� We extend the previous reconstruction algorithm, TFM-
STP, by introducing the STP model in the motion area,
which can automatically switch the input to ISI or firing
rate according to the characteristics of the motion area.

� We expand experiments with multiple sets of the simulated
data, and achieve the best performance on the full-reference
image quality assessment.

II. RELATED WORKS

A. Event-Based Imaging

It is difficult for event cameras to reconstruct textures in scenes
as visual information of the static scenes is lost. Therefore,
some hybrid sensors combining event cameras and conventional
digital cameras, such as ATIS [32], DAVIS [33], RGB-DAVIS
imaging system [34], [35], and Celex [36], were developed
in recent years. Based on these sensors, the scene could be
reconstructed with a high frame rate and higher quality by
directly combining events and frames [36], [37], [38], [39], [40],
[41] or warping the events to images [42], [43], [44]. However,
the difficulty in achieving reliable temporal synchronization
between events and low-rate frames from traditional sensors
makes these methods inapplicable in capturing the high-speed
scene.

In recent years, generating high-speed and high dynamic
range videos with event cameras based on deep neural networks
(DNNs) has become a mainstream trend. Inspired by [45], [46],
Rebecq et al. [16], [18] trained a recurrent UNet architecture
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(E2VID) end-to-end with simulated data. These works were later
improved by introducing a temporal consistency loss [47] and
achieved the state of the art. Scheerlinck et al. [40] proposed
a FireNet, which can reduce the model complexity of E2VID
by 99% with minor trade-offs in reconstruction quality. Ex-
cept for using the recurrent architecture, generative adversarial
networks (GANs) [48] were used in [49], [50] to generate
frames from events. Taking advantage of the low latency and
high dynamic range of the event camera, Wang et al. [51]
and Mostafavi et al. [52] proposed a learning-based method to
solve the super-resolution problem by embedding event streams.
Han et al. [35] proposed a “upsampling and luminance fusion
network” to obtain high dynamic range images. Nevertheless,
the computational cost of DNNs is high and does not leverage
the low-power and low-latency of event cameras.

B. High-Speed Imaging Based on Spiking Cameras

Based on the temporal characteristic of spike streams gen-
erated by spiking cameras, some reconstruction methods have
been proposed [24], [25], [26], [27]. Zhu et al. [24] presented
“texture from inter-spike-intervals (TFI)” and “texture from
playback (TFP)” to rebuild the scenes according to the firing in-
terval and firing rate, respectively. As there is a trade-off between
removing the motion blur and improving the image contrast,
the length of the window needs to be carefully defined, which
will significantly influence the results. To solve this problem,
Zhu et al. [25] proposed a GraphCut-based method to extract
the motion area and reconstruct the static and motion area with
different methods. Nevertheless, the motion extraction based
on GraphCut needs to optimize the motion mask iteratively.
Such an energy-based optimized way is time-consuming that
diminishes the advantage of the low latency of spiking cameras.
Zhao et al. [26] improved the signal-to-noise ratio by utilizing
temporal correlations of signals to compensate motion, but it
only applied to the scenes with linear motion. Another method
is based on deep neural networks. Zhao et al. [27] proposed the
Spk2ImgNet, which takes a spike sequence as input and auto-
matically extracts features of different periods to form reference
frames and key frames. Besides, they introduced a pyramid de-
formable alignment (PDA) module to align reference frames to
key frames [53], [54]. This method achieves the state-of-the-art
results, but it is also time-consuming and does not preserve the
low latency benefit of the spiking cameras.

III. PRELIMINARIES

A. Spiking Camera

Fovea-Like Sampling Method: Inspired by the sampling
mechanism of primate fovea [20], [21], spiking cameras take
advantage of spike sequences to represent the brightness change
in the spatial-temporal domain [22], [23]. Specifically, the pho-
tosensitive units continuously capture photons and increase the
photodiode voltage. When the accumulated intensity exceeds
a given threshold, a spike is generated and the photodiode
voltage is reset to a predefined reset voltage. This process can

be formulated as:

A spike is generated at time tf if
∫ tf

tf−1

I(t)dt ≥ φ, (1)

where I(t) denotes the scene radiance, φ denotes the predefined
threshold, and tf−1 represents the firing moment of the last spike.
The spikes generated by spiking cameras can be represented
by a 3-tuple S : {x, y, t}, where {x, y} denotes the spatial
coordinates of the spikes in the photosensitive units, and t is
the spike firing timestamp.

Texture Reconstruction from Inter-spike-interval (TFI): Based
on the sampling mechanism of spiking cameras, the photosen-
sitive units receive different scene radiance will trigger spikes
with different frequencies. The inter-spike-interval decreases as
the scene radiance increases. Therefore, the pixel value (pro-
portional to scene radiance) can be estimated by the interval
between two neighboring spikes:

P̂TFI =
C

Δt
, (2)

where C refers to the maximum dynamic range of the spiking
camera, and Δt represents the inter-spike-interval.

Texture reconstruction from Playback (TFP): The TFP
method infers the pixel value by collecting the spikes in a moving
time window. By counting these spikes, we have

P̂TFP =
Nw

w
· C, (3)

where C is the maximum dynamic range of the spiking camera,
w is the size of the time window, and Nw is the total number of
spikes collected in the time window.

B. Short-Term Plasticity (STP)

Short-term plasticity (STP) refers to the short-term change of
synaptic strength, which is usually between tens to thousands of
milliseconds [28], [29]. STP is sensitive to firing frequency of
the presynaptic spikes and can transiently adjust postsynaptic
potential (PSP) amplitude accordingly. When a postsynaptic
neuron receives a sequence of action potentials (spikes) from
a presynaptic neuron, the PSP changes according to:

PSP(t) = A ·R(t) · u(t), (4)

where A denotes the maximum voltage value that an action
potential can trigger on a postsynaptic neuron, R(t) denotes the
remaining number of available neurotransmitters in the axon at
time t, and u(t) denotes the release probability of neurotrans-
mitter in the axon at time t. The following ordinary differential
equations define the dynamics of R(t) and u(t):

dR(t)

dt
=

1−R(t)

τD
− u(t−)R(t−)δ(t− tsp), (5)

du(t)

dt
=

U − u(t)

τF
+ C[1− u(t−)]δ(t− tsp). (6)

Here δ(t) represents Dirac delta function, C is a constant pa-
rameter that influences the change of u(t). (5) illustrates that
the amount of neurotransmitters R(t) decreases by u(t−)R(t−)
when a presynaptic spike releases at time tsp, and recovers to
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Fig. 2. The postsynaptic potential (PSP) and postsynaptic current (PSC)
generated by STP with received spike streams from a presynaptic neuron.
Left: The short-term depression dominated model, the parameters are τD =
750 ms, τF = 50 ms, U = 0.45, C = 0.3. Right: The short-term facilita-
tion dominate model, the parameters are τD = 50 ms, τF = 750 ms, U =
0.15, C = 0.15.

1 with a depression time constant τD. Note, the notation t−

denotes that these functions should be computed in the limit
approaching the spike release time from below. (6) indicates
that the release probability u(t) increases by C[1− u(t−)] once
a presynaptic spike fires, and decays back to baseline release
probability U with facilitation time constant τF . Similar to PSP,
the postsynaptic current (PSC) is formulated by:

dPSC(t)
dt

= −PSC(t)
τs

+A ·R(t−) · u(t) · δ(t− tsp). (7)

Intuitively, the dynamics of R(t) and u(t) (5) and (6) can be
seen as two low-pass filters of the input spikes, and their cutoff
frequencies are inversely proportional to time constants τD and
τF . There are two types of STP named short-term depression
and short-term facilitation, respectively. Short-term depression
and short-term facilitation have opposite effects on synaptic
efficacy, which are illustrated in the middle and bottom of Fig. 2.
Through changing the four parameters STPθ = {τD, τF , U, C},
STP can have forms being either short-term depression domi-
nated or short-term facilitation dominated. STP has effects on
information transformation and network dynamics, including
temporal filtering [55], [56], gain control [57], [58], induction
of instability or mobility of network state [59].

IV. METHODOLOGY

A. Overview of the Method

Previous works mainly reconstruct the scenes by estimating
the firing frequency of each pixel [24], [25], [26]. Fig. 3 illus-
trates the reconstruction results of TFP [24] with different time
windows. One can find that a short time window leads to lower
contrast and less motion blur, while the long one has higher
contrast and more motion blur. Thus, it requires an appropriate
predefined time window to estimate the firing frequency accu-
rately, to make the texture relatively high contrast, and avoid
motion blur.

To mitigate the weakness of the setting of the time window,
we set up the STP model at each pixel of the spiking cameras to

Fig. 3. Example results of the TFP [24] with different length of time window.
Images in the blue dotted box are recovered with w = 8, and images in the red
dotted are recovered with w = 32.

Fig. 4. (a) The dynamic of PSP regulated by STP. The dotted lines with differ-
ent colors refer to spike trains with different frequencies, from 5 Hz to 30 Hz.
The short-term facilitation and depression model has a mixture of properties
of both short-term depression and short-term facilitation. (b) The steady value
of PSP, the number of neurotransmitters R, and the release probability u with
respect to different input frequencies. The results are obtained with a short-term
facilitation and depression model.

record the temporal regularity of spikes implicitly. The dynamics
of PSP regulated by STP is shown in Fig. 4(a). It can be find that
PSP will converge to a steady value if the firing frequency of the
input spike streams is fixed, no matter what type of STP is used.

Moreover, the steady value of PSP, the number of vesicles R,
and the release probability u are all monotonically increasing
functions of firing frequency (shown in Fig. 4(b)). As mentioned
above, the firing frequency of the spike streams triggered by
each photosensitive unit is proportional to the received scene
radiance. Intuitively, we can estimate the scene radiance and
the pixel value of the reconstructed images, as well as detect
the motion area based on PSP. The details of our approach are
presented in the following sections.

B. Texture Reconstruction Through STP

1) Estimation of the Firing Frequency With STP: By setting
up the STP model at each pixel of the spiking cameras to record
the output spike stream, we derive the equation between the
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Fig. 5. Difference between STP dynamics of dark and bright area. (a) Spike raster and the corresponding STP dynamics of dark area (green circle in (b)).
(b) Scenes reconstruction via Algorithm 1. (c) Spike raster and STP dynamics of bright area (red circle in (b)).

time-varying firing frequency of each pixel and the dynamics of
postsynaptic neuron. For the sake of derivation, and numerical
implementation with simplicity and efficiency, the dynamics of
R(t) and u(t) (5) and (6) can be rewritten as the following
difference equations by integrating between spikes n and n+ 1:

Rn+1 = 1− [1−Rn(1− un)] exp

(
−Δtn

τD

)
, (8)

un+1 = U + [un + C(1− un)− U ] exp

(
−Δtn

τF

)
, (9)

where Rn and un denote the value of R and u between spikes n
andn+ 1,Δtn denotes the interval between spikesn andn+ 1.
Similar to [60], we set C = U . If the spike rate ρ keeps constant,
R and u will converge to their steady-state values R∞(ρ) and
u∞(ρ):

R∞(ρ) =
1− exp(− 1

ρτD
)

1− [1− u∞(ρ)] exp(− 1
ρτD

)
, (10)

u∞(ρ) =
U + (C − U) exp(− 1

ρτF
)

1− (1− C) exp(− 1
ρτF

)
. (11)

Conversely, assuming that the spike rate ρ keeps constant and
R and u have already converged to their steady-state values, we
can estimate ρ from R and u separately through (10) and (11):

ρR = − 1

τD ln
(

1−R
1−R(1−u)

) , (12)

ρu = − 1

τF ln
(

u−U
C−U+u(1−C)

) . (13)

As the firing frequency of each pixel is proportional to the scene
radiance, the estimated pixel value is a weighted average of ρR
and ρu:

P̂stp ∝ w1 · ρR + w2 · ρu. (14)

By varying the weighted parameter w = {w1, w2}, we can
control the contribution of ρR and ρu to the constructed image.

Fig. 5 compares the STP dynamics {ρR, ρu, R, u} for dark
and bright area with different scene radiance. In the dark area
without moving objects (green circle in Fig. 5(b)), the spikes
generated by a spiking camera have a nearly constant frequency.
Hence the corresponding STP dynamics will converge to the
steady value rapidly. When the car in the scenes moves across
the bright areas (red circle in Fig. 5(b)) between 0–3.5 ms, there
are some small-range fluctuations of the STP dynamics, but the
overall trend is still converging towards the corresponding state
of the bright place.

2) Spike Interval Correction.: The spiking camera utilizes
the row scanner to read out the spike streams, and the time
resolution (minimum sampling time) is T = 25 μs. If the true
interval is not a multiple of 25 μs, spike intervals from the
raw spike data will jump between two adjacent integers, which
causes the salt-and-pepper noise in the reconstructed image. An
example is illustrated in Fig. 6. To reduce the noise, we need to
correct the possibly wrong spike intervals to better reflect the
changes in light intensity. We propose the following scheme to
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Fig. 6. Illustration of spike interval correction. In this example, as the true
interval, 2.6 T , is not a multiple of T , the spike intervals from the raw spike
data will switch between 2 T and 3 T , which differ from the true spike interval.
If we replace each interval with the average of five neighboring intervals, all
intervals will be corrected to 2.6 T .

Algorithm 1: Texture From STP (TFSTP).
Input: Spike streams Sij .
Output: Estimated pixel value P̂ij .
1: Initialize the parameters of STP, {τD, τF , U, C}, R

and u, and the weight parameter w.
2: Compute inter-spike-intervals Δtn.
3: Detect the wrong intervals and correct wrong intervals

to Δt′n using (15) and (16).
4: Update Rn+1 and un+1 using (8) and (9).
5: Estimated the firing frequency ρR and ρu using (12)

and (13).
6: Estimate the pixel value using (14).

detect wrong intervals:

Δtijn is wrong ⇐⇒ max{Δtijk | k ∈ (n− nr, n+ nr)}

−min{Δtijk | k ∈ (n− nr, n+ nr)} = 1, (15)

where Δtijn denotes the interval between nth spike and n+ 1th
spike on location (i, j), and nr is used to decide how many
neighboring intervals of Δtijn are used to infer whether Δtijn is
wrong or not. When the difference between the maximum value
and the minimum value of the five intervals equals 1, Δtijn needs
to be corrected. Here we propose a moving average interval to
correct this error interval:

Δtij′n =

∑n+nr

k=n−nr
Δtijk

2nr + 1
. (16)

In this work, we set nr = 2, i.e., five intervals are used to
correct Δtijn . The steps of this method (texture from short-term
plasticity, TFSTP) are summarized in Algorithm 1.

Fig. 7 shows four qualitative comparison results of TFI and
TFSTP, with and without spike interval correction. It can be seen
that the images reconstructed through TFSTP are less noisy than
TFI. Besides, spike interval correction can also reduce the noise
of the reconstructed images. When TFSTP and spike interval

Fig. 7. The reconstruction images of the “viaduct-bridge” dataset. (a) recon-
structed through TFI, without spike interval correction. (b) reconstructed through
TFI, with spike interval correction. (c) reconstructed through TFSTP, without
spike interval correction. (d) reconstructed through TFSTP, with spike interval
correction. To the right of each reconstructed image is the closeup.

TABLE I
PARAMETER SETTINGS OF THE SHORT-TERM PLASTICITY MODELS. T = 25μs

IS THE TEMPORAL RESOLUTION OF SPIKING CAMERA

correction are combined, the reconstructed images achieve sig-
nificantly lower noise, higher contrast, and higher dynamic range
than those using TFI.

C. STP Model Analysis

In order to further improve the quality of reconstructed
images, we analyze the dynamic characteristics of STP here,
including the steady state of R and u, convergence speed and
noise after convergence. We used both theoretical analysis and
simulated data analysis to explore the relationship between the
properties of STP model and two time constants τD and τF in
(8) and (9).

Theoretically, τD and τF can change arbitrarily in R+ × R+,
but we do not discuss this arbitrary change in the following
analysis. Here we discuss two types of change in τD and τF :

1. The magnitude of τD and τF . We will use a scale factor A
to make τD and τF change proportionally.

2. The ratio of τD and τF , which will determine the dynamics
of STP.

Specifically, we explore five types of STP, whose ratio of τD
and τF are shown in Table I. In the following, we will explore
the dynamic properties of these five types of STP in relation to
the scale factor A. For brief description, we use T = 25μs, the
sampling temporal resolution of the spiking camera, as the time
unit.

1) Theoretical Analysis: For steady values ofR and u shown
in (10) and (11), by simple monotonicity analysis, we can deduce
that when we set C = U < 1, R∞ is a monotone decreasing
function of ρτD and u∞ is a monotonically increasing function
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Fig. 8. The steady value of R (left) and u (right). Note that the steady value of
R is related to both τD and τF , so different STP type leads to different steady
value of R even if ρD is kept unchanged, which contributes to the five different
curves in the left subfigure. Nevertheless, the steady value of u has no relation
to τD , hence the right subfigure has only one curve.

of ρτF . The diagram of the steady value and the ρτ in Fig. 8 also
demonstrates the monotonicity of R∞ and u∞.

For convergence speed, since the convergence of R and u
requires constant spike rate, we can safely assume that spike
rate ρ and spike interval Δt = 1

ρ keep constant, then from (8)
we have:

Rn+1 −R∞ = (1− u∞) exp

(
−Δt

τD

)
(Rn −R∞) (17)

Hence Rn converges Q-linearly with rate rR = (1−
u∞) exp(−Δt

τD
). Since R only takes value between [0,1], we

have R0 −R∞ < 1, so it takes at most ln ε
ln rR

steps for Rn to
converge with error no more than ε. The convergence time TR(ε)
for R with error ε is:

TR(ε) =
ln ε

ln rR
·Δt =

ln ε−1

ln(1−u∞)−1

Δt + 1
τD

(18)

Using Δt = 1
ρ , we have:

TR(ε) =
ln ε−1

ρ ln(1− u∞)−1 + 1
τD

(19)

By (19), when A increases, i.e., τD and τF change propor-
tionally, the first term in the denominator increases since u∞
increases with τF , but the second term 1

τD
decreases, resulting

the nonmonotonicity of TR(ε). When STP changes toward a
more facilitative type, i.e., τD decreases and τF increases, both
the first term and the second term in the denominator increases,
so convergence time TR(ε) decreases and vice versa.

Similarly, we can get the convergence time of u with error ε:

Tu(ε) =
ln ε−1

ρ ln(1− C)−1 + 1
τF

(20)

In (20) shows that Tu(ε) is a monotonically increasing func-
tion of τF , so both decreasing A and making STP type more
depressive can decrease the convergence time of u, and vice
versa.

2) Simulated Data Analysis: In addition to theoretical analy-
sis, we use a simulated spike data composed of several long spike
intervals Δt1 = 20 T followed by several short spike intervals
Δt2 = 5 T to further analyze the convergence time and noise
of R and u in different STP settings. Since the spike interval
is inversely proportional to the scene radiance, this setting can
simulates a pixel moving from dark area to bright area. Besides,

Fig. 9. A demonstration of our simulated data. In this figure, the spike interval
change from Δt1 = 20 T to Δt2 = 5 T at T0 = 0, and change from Δt2 =
20 T to Δt2 = 5 T at T1 = 400 T . The red, blue, and green lines represent the
actual firing rate and those estimated from R and u of the STP model, respectively.

we also introduce some gaussian noise to the simulated data
simulating the noise in real spike data.

For each STP parameter setting, we compare ρR and ρu with
the real spike rate ρreal to get the convergence time and noise of
R and u. Fig. 9 shows the spike firing rate estimated by the STP
model against the real spike frequency during the change in the
spike interval. In Fig. 9(a), ρR has a shorter convergence time
but higher noise, while ρu have a longer convergence time but
lower noise, and in Fig. 9(b), ρu only needs one spike to switch
to different states that close to the real firing rate.

In our analysis, we define T0 as the moment that spike interval
turn to short, i.e., the pixel moves into the bright area. The
convergence time T e

R(ε) and T e
u (ε) are the difference between

T0 and the first time after T0 that ρR and ρu get into the
ε-neighborhood of ρreal:

T e
R(ε) = min{t : t > T0 ∧ |ρR(t)− ρreal| ≤ ε} − T0,

T e
u (ε) = min{t : t > T0 ∧ |ρu(t)− ρreal| ≤ ε} − T0. (21)

Besides, the noise after convergence N e
R and N e

u are defined
as the mean square error between ρR, ρu and ρreal after spike
intervals have turned to short and R and u has converged:

N e
R =

1

Tmax − Tmin

Tmax∑
t=Tmin+T

(ρR − ρreal)
2,

N e
R =

1

Tmax − Tmin

Tmax∑
t=Tmin+T

(ρu − ρreal)
2, (22)
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Fig. 10. Illustration of dynamics of the STP models under different settings.
(a)–(b) The number of spikes required for the convergence of R and u against
the change of the scale factor A. (c)–(d) Relationship between the noise after R
and u convergent and the scale factor A. The light gray shaded area represents
those when inter-spike interval changes fromΔt1 = 20 T toΔt2 = 5 T , while
the dark shaded areas denote the cases from Δt2 = 5 T to Δt1 = 20 T .

where Tmin must be chosen after R and u have converged, and
Tmax is the maximum simulation time. Here, we choose Tmin =
200 T and Tmax = 1000 T in our simulation.

As shown in Fig. 10, the convergence time of R increases
and then decreases as the scale factor A increases, but it keeps
decreasing monotonically when STP type changes from strong
depression to strong facilitation, which is consistent with the
theoretical analysis in this section. Nevertheless, the noise after
convergence ofR almost shows an opposite trend to convergence
time of R, first decreasing and then increasing as A increases
and keeps increasing as STP type turns more facilitative. Con-
vergence time of u shows a monotonically increasing trend as u
increases, i.e., A increases or STP type turns more facilitative,
which also agrees with the theoretical analysis. As for noise of
u, it monotonically decreases as A increases or STP type turns
more facilitative.

D. Texture Construction From Motion-Dependent STP

For most scenes, the TFSTP method proposed in Section IV-B
works pretty well. Nevertheless, for high-speed scenes with
limited illumination, it may suffer from motion blur caused
by rare spikes in the dark area, and not timely updated STP
status. Interestingly, we find that STP can also be used to detect
the motion area, and propose another texture reconstruction
method (texture from motion-dependent short-term plasticity,
TFMDSTP). Specifically, we first analyze the change of STP
status on each pixel to detect and extract the motion area and
then reconstruct the motion and static area via STP with different
parameters, separately.

1) Motion Determination: If there exists motion in the area,
the STP value will vary around the steady value corresponding

to the scene radiance (Fig. 5). Therefore, it is able to detect
the motion area by evaluating the STP dynamics, e.g., R, and
u, which updates according to (8) and (9). The reconstruction
process of TFMDSTP is shown in Fig. 11, it begins with motion
determination via STP. We use the change ofu at the pixel within
a short time Δt to determine whether a pixel belongs to the
motion area or not:

Mi,j,t =

{
1, |u(i, j, t)− u(i, j, t−Δt)| ≥ θ
0, |u(i, j, t)− u(i, j, t−Δt)| < θ

, (23)

where Mi,j,t denotes whether pixel(i, j) belongs to the motion
area at time t, and θ = 0.01 is a predefined threshold.

2) Area Refinement: Except for finding the motion pixels,
places along the moving trajectory of objects are also regarded
as motion areas in our methods, which is achieved by feeding
the Mi,j as the input voltage to a locally connected network
consisted of leaky integrate-and-fire neurons. The membrane
potential v(t) of this neuron changes according to:

τm
dv(t)

dt
= −[v(t)− vrest] + Ii,j(t), (24)

where τm is the membrane time constant, and vrest is the resting
potential. The current Ii,j of the neuron is the integrated result of
neurons that locally connect to it, which is calculated as Ii,j =∑

x Mx (x is the location of neurons in the corresponding and
8-neighborhood of neuron at (i, j)). In our cases, τm equals the
minimum sampling time (T = 25 μs) of the spiking cameras.
The leaky integrate-and-fire neuron will release spikes when
the membrane potential exceeds a certain threshold ϑ, and the
membrane potential is reset to the resting potential. The state of
the leaky integrate-and-fire neuron is changed as:

χi,j =

{
1, v ≥ ϑ
0, v < ϑ

(25)

After that, areas with χ = 0 are regarded as static pixels
while those ones with χ = 1 refer to motion pixels. In Fig. 12,
we show some example results obtained when detecting the
brightness change with our proposed method. With continuous
input of spike streams, the STP dynamic of each pixel gradually
converges to a steady state, and only the motion area has state
change (i.e., Mi,j = 1 in Fig. 11).

3) Texture Estimation: Although the TFP method with short
sliding windows can effectively decrease motion artifacts caused
by the untimely update of the inter-spike intervals, the short-
window statistics also make noise inevitably introduced. There-
fore, in order to take into account the reduction of noise and
motion artifacts, we also introduce the STP model for pixel
estimation in the motion area. For CCD/CMOS-based vision
sensors, the main factors related to motion blur are motion
speed, exposure time, image size, and field of view (FOV) [61].
The relationship between motion blur within a pixel and these
factors is:

Blur in Pixels = (Line Speed · Exposure Time)

·
(
Image Size

FOV

)
. (26)
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Fig. 11. Illustration of the reconstruction process based on distinguishing the motion and static pixel through STP.

Fig. 12. Examples of the motion areas obtained during the process of the
TFMDSTP.

Since speed of the moving objects is uncontrollable and the
image resolution is fixed, we usually shorten the exposure time
or increase the FOV to reduce the pixel blur. The effective way
to shorten the exposure time is to increase the illumination, so as
to shorten the time required to update the pixels. Increasing the
FOV will increase the imaging angle and reduce moving pixels.
Inspired by this relationship, if one wants to capture high-speed
moving objects, it needs to accumulate enough photons in a short
time, and the smaller the proportion of pixels of the moving
object, the better.

Therefore, in the TFMDSTP, in order to reduce motion ar-
tifacts, the input of the STP model in the motion area will be
determined by the motion area and the average firing rate of
motion pixels. If the area of the motion pixels is large and the
firing rate in the area is very low, the reciprocal of the firing
rate accumulated in the local short window will be used as the
input of the STP model; for other cases, the input of the STP
model is still the inter-spike interval. The switched threshold
between firing-rate-based TFSTP (FR-TFSTP) and ISI-based

Fig. 13. Illustration of the switch threshold between ISI-TFSTP and FR-
TFSTP.

TFSTP (ISI-TFSTP) in the motion area is shown in the Fig. 13.
When the motion area occupies over 10% of the image plane
and the firing rate in this area is lower than 0.125, we will use
FR-TFSTP to estimate the motion pixels (orange shading area).
In other cases, the motion pixels will be reconstructed by the
ISI-TFSTP method (green shading area).

In TFMDSTP, We use three sets of parameters based on the
analysis of STP in Section IV-C for motion detection, motion and
stationary pixels estimation, respectively. For motion detection,
we want to be able to detect changes in the input sensitively by
the state of the STP, such as the change in the steady-state value
of u in Fig. 8; for motion pixels, we want the STP to converge
quickly to the states corresponding to different motion pixels,
i.e., the shorter the convergence time, the better; for stationary
pixels, we want the noise to be as less as possible. The detailed
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Algorithm 2: Texture from Motion-Dependent STP
(TFMDSTP).

Input: Spike streams Si,j .
Output: pixel value P̂ ′

i,j , motion state chii,j .
1: Initialize the three sets of parameters of STP (STPθ1:

static pixels estimation, STPθ2: motion pixels
estimation, STPθ3: motion detection).

2: Obtain the corrected intervals Δt′n using (15) and (16).
3: Update R1, u1, R2, u2, u3 using (8) and (9).
4: Use the change of u3 to obtain Mi,j,t with (23).
5: Refine the motion area and get χi,j with (24) and (25).
6: Compute the area and average firing rate of motion

pixels.
7: Determine the input of STP θ2.
8: Use R1 of STPθ1 to estimate static pixel P̂ ′

χ=0 with
(12), and use u2 of STPθ2 to estimate motion pixel
P̂ ′
χ=1 with (13).

parameter settings will be given in the experimental section. All
steps of TFMDSTP are summarize in Algorithm 2.

V. EXPERIMENTS

In this section, in order to better compare the reconstruc-
tion methods for spiking cameras, we will first introduce six
non-reference image quality metrics to quantitatively compare
the pros and cons of different methods, and compare the re-
construction results qualitatively. Then, simulated spike data
with higher spatial resolution, including ego-motion of cameras
and moving objects, will be used to compare the reconstruction
images with reference.

A. Parameters Selection

Based on the analysis of convergence time and noise after
convergence of R and u in Section IV-C, we select parameters
based on the priority of refactoring for different regions. For
static area, low noise is more important than short convergence
time, so we choose τ1D = 100 T and τ1F = 10 T (i.e., A = 200
and weak depression, shown in the two red stars in Fig. 10), and
use ρR for static area reconstruction, which has an almost lowest
noise and acceptable convergence time. For motion area, short
convergence time is more important than low noise, therefore
we choose τ2D = 0.25 T and τ2F = 2.5 T (i.e., A = 5 and weak
facilitation, shown in the two magenta stars in Fig. 10), and use
ρu for static area reconstruction. For motion detection, since we
need to detect the change in R or u at each pixel, we choose
an appropriate τD or τF to make steady value of R or u change
smoothly as spike rate ρ changes. As shown in Fig. 8, when
ρτF is in range [2,20] (highlighted by two dark green dash lines
in Fig. 8), steady value of u almost changes linearly as ρτF
changes logarithmically. In custom spike datasets, most of the
spike intervals lies in [2 T, 20T ], which indicates that the spike
rate mostly lies in [0.05/T, 0.5/T ]. Hence we choose τ3F = 40 T
and use ρu, so that ρτF will mostly lie in range [2,20], which
is most suitable for motion detection. However, in the TFSTP

method, in order to considerate both moving and static pixels,
the parameters of TFSTP are set as STPθ0 : {τD = 1 T, τF =
10 T,C = U = 0.15}.

B. Real-World Scenarios

The real-world scenarios contains eight sequences captured
by the spike camera with a sampling rate of 40,000 Hz, which
can be divided into two categories: high-speed scenes with the
object’s motion (Class A) and high-speed scenes with camera’s
ego-motion (Class B) [25]. Class A includes “Balloon,” “Car,”
“Rotation1,” “Rotation2” and “Rotation2x”. Among them, “Bal-
loon” records a balloon filled with water being punctured by a
needle, “Car” describes a car traveling at a speed of 100 km/h,
“Rotation1” describes a disk with 2000 rpm (revolutions per
minute), “Rotation2” and “Rotation2x” depicts a rotating fan
with 2600 rpm. Class B includes “Forest,” “Railway,” “Train”
and “Viaduct-bridge”(V-b). These four sequences are recorded
by a spiking camera in a high railway with a speed of 350 km/h.

As shown in Fig. 14, compared with other methods, the
reconstruction results of our method are less noisy, and they
also effectively retain the texture information of high-speed
moving objects. Furthermore, to quantitatively verify the effec-
tiveness of the proposed methods on real-world data, we employ
three no-reference image quality assessment (NR-IQA) metrics,
namely BIQI [62], two-dimensional (2-D) entropy [63], standard
deviation (STD). 2-D entropy uses both the gray value of a
pixel and its local average gray value to evaluate the amount of
information carried by the image, and a larger 2-D entropy means
more information. Standard deviation evaluates the contrast of
the image, and a larger standard deviation means higher contrast.
BIQI considers JPEG quality, JP2K quality, noise, motion blur,
and fast fading of the image. Different from the former two
metrics, a lower BIQI score indicates higher image quality.
The quantitative comparison results are reported in Table II. As
shown in Table II, our methods achieve better results than other
methods in almost all three metrics, which is consistent with
the subjective observation in Fig. 14. TFSTP can achieve the
best performance results with these no-reference image quality
indicators on most sequences. However, as described in Sec-
tion. V-A, for scenes with high-speed moving objects and static
background, the selection of parameters in different regions
during reconstruction has different tendencies. In TFSTP, only a
set of STP parameters are used for reconstruction, and we need to
make some trade-offs between removing the noise in the static
area and the motion blur in the dynamic area. Except for the
three methods of TFMDSTP, TFMSTP, and TFP, other methods
all have motion artifacts on the two sequences of Rotation2 and
Rotation2x.

Fig. 15 shows the firing rate and the size of moving area in the
real scenes. The motion area indicates that there is an area where
the gray value changes. The motion area indicates an area where
the gray value changes. For the dataset of Class B and the Car
sequence,the motion area is much larger. However, these scenes
are shot outdoors with sufficient light (sunlight). Hence, the high
spike firing rate can ensure that even if the gray value of the mov-
ing area keeps changing, the spike firing state of the moving pixel
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Fig. 14. Reconstruction results of TFP (w = 8), TFI [24], TVS [25], TMC [26], TFSTP, TFMSTP and TFMDSTP.

TABLE II
COMPARISON AMONG DIFFERENT RECONSTRUCTION METHODS. DOWNWARD ARROW DENOTES “THE LOWER THE BETTER,” AND UPWARD ARROW DENOTES “THE

HIGHER THE BETTER”

can be updated to the pixel (e.g., ISI). Therefore, using ISI-based
reconstruction can effectively capture the high-speed motion of
these five scenes. For the Class A scene that only contains object
motion, except for the Car sequence, they are all shot indoors, so
the firing rate of these four sequences is relatively low. However,
the motion speed in Balloon and Rotation1 is slower, and the
proportion of motion pixels is small. Using ISI-based methods
can also effectively remove motion blur. In the rotation2 and
rotation2x sequences, the area of motion is relatively larger, and
the amount of spike emitted is also low, resulting in the use
of ISI to update and still have motion artifacts. Therefore, for
rotation2 and rotation2x that fall in the switched zone (gray area

in Fig. 15), the TFMDSTP method will automatically select the
FR-TFSTP to reconstruct the motion area, while other sequences
use ISI-TFSTP.

Besides, as shown in Fig. 14, although the use of short window
TFP can effectively remove some motion artifacts (TFMSTP),
the difference between the dynamic range of the moving area
and the static area is too large because the length of the spike-
integration window is too short. As a result, there is a larger
grayscale gap at the boundary of the motion area, and there
is also more noise. The boundary between moving and static
regions of TFMDSTP is smoother. Fig. 16 shows some results
of the four methods of TFI, TFSTP, TFMSTP and TFMDSTP
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Fig. 15. Firing rate and motion area of the real-world spike sequences. The
gray shaded area indicates the switched zone to use the FR-TFSTP in motion
area.

Fig. 16. Comparison among different reconstruction methods on the scenes
of “Rotation2x”. Below each row of the reconstructed images is the zoomed-in
3D surface view of characters “B,” “C” and “D”.

on the rotation2x sequence. It can be seen that the TFMDSTP
is less noisy than other methods, while maintaining low motion
blur.

In addition to comparing with other methods, we quantita-
tively measure the image quality gains brought by the improve-
ment strategies proposed in this work. In the comparison of the
above results, the ISI-based methods (TFI, TFSTP, TFMSTP and
TFMDSTP) are all added with corrected error spike intervals. In

this work, we compare six non-reference image quality assess-
ment metrics, of which the better the image quality, the lower the
BIQI, NIQE [64], BRISQUE [65] and PIQE [66] indicators, and
the higher the STD and 2-D entropy. The non-reference quality
evaluation results of TFP, TFI, TFSTP, and TFMDSTP with and
without error correction are shown in Fig. 17. Fig. 17(a)–(f) show
the comparison results of indicators on different sequences,
and the dots with different colors indicate the method that
obtains the best result on the sequence. It can be seen that as
different assessments have different emphasis on image quality
evaluation, different optimal methods will appear on different
measurements. However, TFSTP and TFMDSTP achieve the
best results for most sequences (the dark green and dark blue
points in the figure appear more frequently). Note that TFP
shows abnormally high standard deviation on dataset “Rota-
tion1” and “Rotation2,” which is caused by the high noise in the
reconstruction image (see the first row of Fig. 14). Fig. 17(g)
shows the average value of different indicators in all sequences.
The red star indicates the method to obtain the best indicator
result, and the blue star indicates the method to obtain the second
best result. On PIQE, TFMDSTP obtains the best results, and
TFSTP sub-optimal results. Other indicators are that TFSTP
achieves the best results, and TFMDSTP achieves sub-optimal
results. In addition, the error correction has also significantly
improved the reconstruction methods based on spike interval
(TFI, TFSTP and TFMDSTP), of which the quality of TFI has
been improved the most. The corresponding numerical results
are in Table S1.

C. Simulated Scenarios

In the results of the previous section, we find that when
evaluating the reconstructed image quality of the real-world
dataset, the results of the no-reference image quality assessment
metrics have great volatility, making it difficult to evaluate the
quality of the results comprehensively. For example, in Fig. 16,
the results of TFMDSTP on rotation2x is obviously the best, but
instead, TFSTP achieves the best performance with BIQI and
STD, and TFI achieves the best on NIQE, BRISQUE, PIQE and
2-D entropy. Therefore, in this section, we use the data generated
by the spiking camera simulator to evaluate the quality of the
reference image. The simulation scene mainly uses various sky
or aerial view of city as the background, plus some suspended
foreground objects, such as chairs, helicopters with complex
textures, etc. The resolution of the generated data is 800× 500,
which is four times the 400× 250 of the real data sequence.
In this section, we mainly compare the results of the TFP, TFI,
TMC [26], TFSTP and TFMDSTP. In addition, we focus on
comparing the impact of the improvement strategy proposed
in this work on image quality, that is, error correction and the
TFMDSTP.

Fig. 18 shows the reconstruction results of these four meth-
ods on the generated data and the corresponding ground-truth.
Fig. 18(a) is the result of simulating the 80FPS frame-based
camera to collect the same scene, in which blur degree can
reflect the movement speed of different objects and cameras.
Fig. 18(d)–(f) are results of TFI, TFSTP and TFMDSTP based on
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Fig. 17. Comparison among different methods with no-reference image quality assessment. Different color curves in (a)–(f) correspond to different methods
as indicated by the legend at the top. The different colored dots in (a)–(f) indicate the method to obtain the best performance. (g): the average value of different
indicators on all sequences. The red star indicates the optimal result, and the blue star indicates the sub-optimal result. The better the image quality, the lower the
BIQI, NIQE, BRISQUE and PIQE, and the higher the STD and 2-D ENTROPY.

corrected error spike intervals. It can be seen that the result of TFI
reconstruction is still more noisy than TFSTP and TFMDSTP.
And TFMDSTP can take into account the removal of noise and
the blur of high-speed moving objects. Table III shows the PSNR
and SSIM results of several methods on the generated data,
where TFMDSTP achieves the best results on each sequence
and the proposed error correction can effectively tune up the
performance.

D. Computational Complexity

Here we evaluate the computational complexity of our meth-
ods. For comparison, we consider the problem of reconstructing

a K-frame video with a size H ×W . For each pixel, the TFSTP
method only needs to updateR,u, ρR, ρu when a spike generates
at that pixel. Therefore, it needs at mostK updates for each pixel.
The time complexity of the TFSTP method is O(HWK). Note
that writing a H ×W ×K video into the memory also takes
O(HWK) time, so our reconstruction method has reached the
minimum asymptotic time complexity in theory.

Different from TFSTP, the TFMDSTP method needs extra
steps to determine whether a pixel belongs to the motion area
or not with (23). However, this only takes constant time for
each pixel. It does not affect the asymptotic time complexity. In
comparison, the GraphCut-based method (TVS) in [25] takes at
least O(H3 W 3) time to implement graph cut for each frame,
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Fig. 18. Comparison of different methods on the synthesis dataset.

TABLE III
REFERENCED QUANTITATIVE EVALUATION USING SIMULATED DATA

thus it takes at leastO(H3 W 3 K) time to reconstruct aK-frame
video. The OF-based method (TMC) in [26] takes O(H ·W ·
K · T · iter) time to reconstruct a K-frame video.1 Therefore,
our methods achieve a significantly lower time complexity than
other methods.

VI. CONCLUSION

In this paper, we propose novel bio-inspired image recon-
struction methods for spiking cameras. The proposed methods

1T denotes the size of the time window used in their method, and iter denotes
the number of iterations in computing the optical flow.

are able to infer the scene radiance and the pixel value of the
reconstructed images. We analyze the impact of parameters
settings on the convergence time and error of STP, and design
a motion-dependent reconstruction method based on this anal-
ysis, which can jointly reduce the motion blur and background
noise. The theoretical analysis and experimental results show
that our methods can reconstruct high-quality images with low
computational complexity.

The binary stream output by the spiking camera is simi-
lar to the action potential that transmits information in the
brain. The STP model we adopted here is to simulate the dy-
namic characteristics of synapses in neuroscience. It has good



ZHENG et al.: CAPTURE THE MOMENT: HIGH-SPEED IMAGING WITH SPIKING CAMERAS THROUGH SHORT-TERM PLASTICITY 8141

convergence properties and can gain control over the input spike
streams. The Short-term plasticity is input-specific [67] and can
memory previous states that are robust against perturbations. If
using a sliding window to average the spike frequency, it will
face the same problem as the TFP reconstruction algorithms.
Too short a window is susceptible to noise spikes, making the
appearance of noise as a region of motion. However, too long a
window will make the changes hard to be perceived sensitively,
similar to the motion blur in TFP. Moreover, as seen from the
analysis in Section IV-C, we can adjust the dynamic properties
exhibited by the STP model to different requirements. Unlike
black-box models such as deep neural networks, the parameters
of our proposed model have clearer meaning and more flexible
adjustability.

The experimental results show that under the condition of
sufficient lighting, high-quality reconstruction results can also
be obtained by using TFI with the proposed error correction
mechanism if the raw spike data is corrected. Therefore, we
believe that in future work, we can dig deeper into the spatiotem-
poral information of the spike sequences to obtain higher-quality
reconstructed images without too much computation.
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