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Abstract. This paper introduces a new benchmark study of evaluating
landmark-based shape correspondence used for statistical shape analy-
sis. Different from previous shape-correspondence evaluation methods,
the proposed benchmark first generates a large set of synthetic shape in-
stances by randomly sampling a specified ground-truth statistical shape
model. We then run the test shape-correspondence algorithms on these
synthetic shape instances to construct a new statistical shape model. We
finally introduce a new measure to describe the difference between this
newly constructed statistical shape model and the ground truth. This
new measure is then used to evaluate the performance of the test shape-
correspondence algorithm. By introducing the ground-truth statistical
shape model, we believe the proposed benchmark allows for a more ob-
jective evaluation of the shape correspondence than those that do not
specify any ground truth.

1 Introduction

Statistical shape models have been applied to address many important appli-
cations in medical image analysis, such as image segmentation for desirable
anatomic structures [1,2] and accurately locating the subtle difference of the
corpus-callosum shapes between the schizophrenia patients and normal controls
[3]. Accurate and efficient shape-correspondence algorithms [4,5] to identify cor-
responded landmarks are essential to the accuracy of the constructed statistical
shape models. However, how to objectively evaluate the results produced by
these shape-correspondence algorithms is still a very difficult problem. One ma-
jor reason is the unavailability of a ground-truth shape correspondence: given
a set of real shape instances, say the kidney contours from a group of people,
even the landmark points identified by different experts may show substantial
difference from each other [6].

To address this problem, Davies and Styner [6] introduce three general mea-
sures to describe the compactness, specificity, and generality of the statistical
shape model constructed from a shape-correspondence result and suggest the
use of these three measures for evaluating shape-correspondence performance.
However, without introducing the ground truth, these three measures may not
be reliable in some cases [7]. For example, according to these measures, we prefer

N. Ayache, S. Ourselin, A. Maeder (Eds.): MICCAI 2007, Part I, LNCS 4791, pp. 507–514, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



508 B.C. Munsell, P. Dalal and S. Wang

a shape correspondence that leads to a statistical shape model with high com-
pactness (or smaller shape variation space), which may not be true for certain
structures.

In this paper, we present a new benchmark study with ground truth to more
objectively evaluate the shape correspondence for statistical shape analysis.
Specifically, the statistical shape analysis chosen for this paper is the widely used
point distribution model (PDM) [1]. For simplicity, this paper focuses on the 2D
case, where a point distribution model (PDM) is a 2m-dimensional Gaussian
distribution with m being the number of landmarks identified from each shape
instance. In this benchmark, we start with a ground-truth PDM by specifying
a 2m-dimensional mean-shape vector and a 2m × 2m covariance matrix. We
then randomly sample this PDM to generate a set of synthetic continuous shape
instances. A test shape-correspondence algorithm is then applied to correspond
these shape instances by identifying a new set of landmarks. Finally we construct
a new PDM from the corresponded landmarks and compare it with the ground
truth PDM to evaluate the accuracy of the shape correspondence.

2 Problem Description

Given n sample shape instances (or continuous shape contours in the 2D case) Si,
i = 1, 2, . . . , n, shape correspondence aims to identify corresponded landmarks
from them. More specifically, after shape correspondence we obtain n corre-
sponded landmark sets V̂i, i = 1, 2, . . . , n from Si, i = 1, 2, . . . , n, respectively.
Here V̂i = {v̂i1, v̂i2, . . . , v̂im} are m landmarks identified from shape contour Si

and v̂ij = (x̂ij , ŷij) is the jth landmark identified along Si. Landmark corre-
spondence means that v̂ij , i = 1, 2, . . . , n, i.e., the jth landmark in each shape
contour, are corresponded, for any j = 1, 2, . . . , m.

In practice, structural shape is usually assumed to be invariant to the trans-
formations of any (uniform) scaling, rotation, and translations. Therefore, shape
normalization is applied to V̂i, i = 1, 2, . . . , n to remove such transformations
among the given n shape contours. Denote the resulting landmark sets to be
Vi = {vi1,vi2, . . . ,vim}, i = 1, 2, . . . , n, in which the absolute coordinates of
the corresponded landmarks, e.g., vij = (xij , yij), i = 1, 2, . . . , n are directly
comparable.

Finally, we calculate the statistical shape model by fitting the normalized land-
marks sets Vi = {vi1,vi2, . . . ,vim}, i = 1, 2, . . . , n to a multivariate Gaussian
distribution. Specifically, we columnize m landmarks in Vi into a 2m-dimensional
vector vi = (xi1, yi1, xi2, yi2, . . . , xim, yim)T and call it a (landmark-based) shape
vector of the shape contour V̂i. This way, the mean shape vector v̄ and the
covariance matrix D can be calculated by

v̄ =
1
n

n∑

i=1

vi, D =
1

n − 1

n∑

i=1

(vi − v̄)(vi − v̄)T . (1)

The Gaussian distribution N (v̄,D) is the resulting PDM that attempts to model
the deformable or probablistic shape space of the considered structure.
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The accuracy of the PDM is largely dependent on the performance of shape
correspondence, i.e., the accuracy in identifying the corresponded landmarks V̂i,
i = 1, 2, . . . , n. However, the performance of shape correspondence is not well
defined because in practice, a ground-truth shape correspondence is usually not
available and the landmarks manually labeled by different experts may be quite
different from each other [6].

3 Proposed Method

The proposed benchmark starts from a specified ground-truth PDM, from which
we can randomly generate a set of synthetic shape contours. A shape-
correspondence algorithm should be able to identify corresponded landmarks
from these shape contours and leads to a PDM that well describes the shape
space defined by the ground-truth PDM. As shown in Fig. 1, the proposed
benchmark consists of the following five components: (C1) specifying a PDM
N (v̄t,Dt) as the ground truth, (C2) using this PDM to randomly generate a
set of shape contours S1, S2, . . . , Sn, (C3) running the test shape-correspondence
algorithm on these shape contours to identify a set of corresponded landmark
sets, (C4) deriving a PDM N (v̄,D) from the identified landmark sets using
Eq. (1), and (C5) comparing the derived PDM N (v̄,D) to the ground truth
PDM N (v̄t,Dt) and using their difference to measure the performance of the
test shape-correspondence algorithm.
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Fig. 1. An illustration of the proposed shape-correspondence evaluation benchmark

We can see that, in essence, this benchmark evaluates the shape-correspondence
algorithm’s capability to recover the underlying statistical shape model from a
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set of sampled shape instances. This reflects the role of the shape correspondence
in statistical shape modeling. In these five components, (C3) and (C4) are for
PDM construction and have been discussed in detail in Section 2. The task of
Component (C1) is to specify a mean shape vector v̄t and a covariance matrix
Dt. Ideally, they can take any values only if Dt is positive definite. In practice,
we can pick them to resemble some real structures as detailed in Section 4. In
this section, we focus on developing algorithms for Components (C2) and (C5).

3.1 Generating Shape Instances

Given the ground-truth PDM N (v̄t,Dt) with k landmarks (k might be differ-
ent from m, the number of landmarks identified by shape correspondence in
Component (C3)), we can randomly generate as many sample shape vectors vt

i ,
i = 1, 2, . . . , n as possible. More specifically, with pt

j and λt
j , j = 1, 2, . . . , 2k

being the eigenvectors and eigenvalues of Dt, we can generate shape instances
in the form of

vt = v̄t +
2k∑

j=1

bt
jp

t
j , (2)

where bt
j is independently and randomly sampled from the 1D Gaussian distri-

bution N (0, λt
j), j = 1, 2, . . . , 2k.

Each shape vector vt
i , i = 1, 2, . . . , n in fact defines k landmarks {vt

i1,v
t
i2, . . . ,

vt
ik}. By assuming that these k landmarks are sequentially sampled from a con-

tinuous shape contour, we can estimate this continuous contour S′
i by landmark

interpolation. For constructing a closed shape contour, we interpolate the por-
tion between the last landmark vt

ik and the first landmark vt
i1. For constructing

an open shape contour, we do not interpolate the portion between vt
ik and vt

i1.
While we can use any interpolation technique to connect these landmarks into
contours, we use the Catmull-Rom cubic spline in this paper. If the ground-truth
landmarks are sufficiently dense to represent the underlying shape contour (this
is usually required for shape correspondence [8]), we expect that different in-
terpolation techniques do not introduce much difference in the resulting shape
contour.

For each synthetic shape contour S′
i, we also apply a random affine transfor-

mation Ti, consisting of a random rotation, a random (uniform) scaling and a
random translation. We define the resulting continuous contour to be the shape
contour Si. We record the affine transformation Ti, i = 1, 2, . . . , n and then pass
S1, S2, . . . , Sn (in fact, their control points) to the test shape-correspondence
algorithm. Note that the recorded affine transformations Ti, i = 1, 2, . . . , n are
not passed to the test shape-correspondence algorithm (Component (C3)). This
way, we test the capability of the shape-correspondence algorithm to handle
affine transformations among the different shape contours. If the test shape-
correspondence algorithm introduces further transformations, such as Procrustes
analysis, in Component (C3), we record and undo these transformations before
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outputting the shape-correspondence result. This ensures the corresponded land-
marks identified by the test shape-correspondence algorithm are placed directly
back onto the input shape contours S1, S2, . . . , Sn. Then in Component (C4),
we directly apply the inverse transform T−1

i , i = 1, 2, . . . , n, to the landmarks
identified on Si. This guarantees the correct removal of the random affine trans-
formation Ti before PDM construction in Component (C4).

3.2 Comparing a PDM Against the Ground Truth PDM

The goal of comparing the PDM N (v̄,D) derived in Component (C4) against
the ground-truth PDM N (v̄t,Dt) is to quantify the difference of the deformable
shape spaces that are represented by these two PDMs. However, directly com-
puting the �2 norms (or any other vector or matrix-based norms) between v̄
and v̄t, or D and Dt can not achieve this goal. In fact, in these two PDMs, the
number of landmarks identified from each shape contour can be different, i.e.,
v̄ ∈ R

2m, v̄t ∈ R
2k and m �= k, where m and k are the number of landmarks

along each shape contour in these two PDMs. The reason is that, when using
different shape-correspondence algorithms, or the same shape-correspondence
algorithm with different settings, we may get different number of corresponded
landmarks along each shape contour.

Therefore, in this paper we compare two PDMs in the continuous shape space
instead of using the sampled landmarks. For example, we can estimate the con-
tinuous mean shape contours S̄t and S̄ by interpolating the landmarks in v̄t

and v̄, respectively. In our experiments, we use the Catmull-Rom spline for this
interpolation. After that, we measure the difference of two continuous shape con-
tours using the widely used Jaccard’s coefficient, which is landmark independent.
More specifically, the mean-shape difference is defined as

Δ(S̄, S̄t) = 1 − |R(S̄) ∩ R(S̄t)|
|R(S̄) ∪ R(S̄t)| , (3)

where R(S) indicates the region enclosed by the contour S and |R| computes
the area of the region R. If S is an open contour, we connect its two endpoints
by a straight line to form a closed contour for calculating R(S) [8]. We can see
that this difference measure takes value in the range of [0, 1] with 0 indicating
that S̄ is exactly the same as S̄t .

However, Δ(S̄, S̄t) = 0 does not guarantee the shape spaces represented by the
two PDMs are the same. To evaluate the difference between the two shape spaces,
we use a random-simulation strategy: randomly generating a large set of N shape
vectors from each PDM using Eq. (2), interpolating these landmarks defined
by these shape vectors into continuous shape contours, and then measuring the
similarity between these two sets of shape contours. We denote the N continuous
shape contours generated from PDM N (v̄,D) to be Sc

1, S
c
2, . . . , S

c
N and the N

continuous shape contours generated from the ground-truth PDM N (v̄t,Dt) to
be St

1, S
t
2, . . . , S

t
N . When N is sufficiently large, the difference between these two

sets of continuous shape contours can well reflect the difference of the shape
spaces underlying these two PDMs.
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Given two continuous shape contours, we can measure their difference using
Eq. (3). Therefore, the problem we need to solve is to measure the difference
between shape-contour sets {Sc

i }N
i=1 and {St

j}N
j=1 with a given difference mea-

sure between a pair of shape contours, i.e., Δ(Sc
i , S

t
j), i, j = 1, 2, . . . , N . In this

paper, we suggest the use of the bipartite-matching algorithm to evaluate the
difference between these two shape-contour sets. In the bipartite-matching al-
gorithm, an optimal one-to-one matching is derived between two shape-contour
sets so that the total matching cost, which is defined as the total difference
between the matched shape contours, is minimal. Based on this, we define a
difference measure between these two PDMs as

Δb �
∑N

i=1 Δ(Sc
i , S

t
b(i))

N
, (4)

where Sc
i and St

b(i) are the matched pair of shape contours in the bipartite
matching. In this difference measure, we introduce a normalization over N so that
Δb takes values in the range of [0, 1]. Using the bipartite-matching algorithm,
the measure Δb assesses not only whether the two shape spaces (defined by two
PDMs) contain similar shape contours, but also whether a shape contour has
the same or similar probability density in these two shape spaces.

4 Experiments

In this section, we use the proposed benchmark to evaluate five 2D shape-
correspondence algorithms: Richardson and Wang’s implementation of an al-
gorithm that combines landmark sliding, insertion and deletion (SDI) [8], Thod-
berg’s implementation of the minimum description length algorithm (T-MDL)
[9], Ericsson and Karlsson’s implementation of the MDL algorithm (E-MDL) [7],
Ericsson and Karlsson’s implementation of the MDL algorithm with curvature
distance minimization (E-MDL+CUR) [7], and Ericsson and Karlsson’s imple-
mentation of the reparameterisation algorithm by minimizing Euclidean distance
(EUC) [7].

While, in principle, the ground truth PDM can be arbitrarily specified, we in-
tentionally construct it to make it resemble some real anatomic structures. The
basic idea is to collect real shape contours of a certain structure, apply any rea-
sonable available shape-correspondence algorithm on them and then construct
a PDM using Procrustes analysis and Eq. (1). In our experiment, this shape
correspondence is achieved by manually labeling one corresponded landmark
on each shape contour and then picking the others using a uniform sampling
of the shape contour. For open shape contours, such as kidney and femur, we
assume the endpoints are corresponded across all the shape contours and there-
fore manual labeling is not needed. We use these PDMs as ground truth for the
proposed benchmark. Specifically, in our experiments we collect kidney, corpus
callosum (callosum for short), and femur contours and construct three ground-
truth PDMs, all with 64 landmarks.
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From each ground-truth PDM, we randomly generate n = 800 sample shape
contours that are passed to the shape-correspondence algorithm for testing. In
the random simulation for Δb, we generate N = 2, 000 sample shape contours
from both the ground-truth PDM and the PDM constructed from the shape-
correspondence result. In addition, in evaluating each shape-correspondence al-
gorithm on each ground-truth PDM, 50 rounds of random simulations are con-
ducted to analyze the stability of Δb. For all five test shape-correspondence
algorithms, we set the expected number of corresponded landmarks to be 64
in Component (C3). For bipartite matching, we use the cost scaling push re-
labeling algorithm implemented by Goldberg and Kennedy [10] with a complex-
ity of O(

√
V E log(CV ), with V and E being the number of vertices and edges

and C being the maximum edge weight when scaled and rounded to integers.
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Fig. 2. Δb obtained from three ground-truth PDMs that resemble (a) kidney, (b) cal-
losum, and (c) femur, respectively. The x-axis indicates the round of the random sim-
ulation. The curves with dimond show Δb between each ground-truth PDM and itself.

The evaluation results are shown in Fig. 2, from which we can see that the
values of Δb do not significantly change over the 50 random simulations. It also
shows that, in general, the performance of T-MDL is lower than the performance
of SDI, E-MDL, E-MDL+CUR, and EUC on all three ground-truth PDMs. SDI
has a similar performance to E-MDL, E-MDL+CUR, and EUC for the ground-
truth PDM that resembles the kidney while has a lower performance than E-
MDL, E-MDL+CUR, and EUC for the ground-truth PDMs that resemble the
callosum and femur. In general, the performance of E-MDL, E-MDL+CUR, and
EUC are all similar to each other. Note that, different shape-correspondence
algorithms may be more suitable for different ground-truth PDMs. Also note
that, the choices of n and N depend on the variance of the ground-truth PDM:
if the ground-truth PDM has large eigenvalues along many principal directions,
we may need to choose larger values for n and N . In this paper, the ground-
truth PDMs resemble several real structures with limited variance. In fact, the
stability of the Δb value over 50 rounds of random simulations may indicate that
N = 2, 000 is sufficiently large. In addition, if a shape-correspondence algorithm
produces a Δb value that is close to the Δb value between the ground-truth PDM
and itself, this may indicate that n = 800 is sufficiently large.
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5 Conclusion

In this paper, we introduced a new benchmark for evaluating the landmark-based
shape-correspondence algorithms. Different from previous evaluation methods,
we started from a known ground-truth PDM and then evaluate shape corre-
spondence by assessing whether the resulting PDM describes the shape space
defined by the ground-truth PDM. We introduced a new measure to quantify
this difference. We applied this benchmark to evaluate five available 2D shape
correspondence algorithms.
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