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Abstract. The growing usage of statistical shape analysis in medical
imaging calls for effective methods for highly accurate shape correspon-
dence. This paper presents a novel landmark-based method to corre-
spond a set of 2D shape instances in a nonrigid fashion. Different from
prior methods, the proposed method combines three important factors
in measuring the shape-correspondence error: landmark-correspondence
error, shape-representation error, and shape-representation compactness.
In this method, these three important factors are explicitly handled by
the landmark sliding, insertion, and deletion operations, respectively.
The proposed method is tested on several sets of structural shape in-
stances extracted from medical images. We also conduct an empirical
study to compare the developed method to the popular Minimum De-
scription Length method.

1 Introduction

Most anatomical structures posses a unique shape, which plays a critical role in
modern medical image analysis. Statistical shape analysis (SSA) [2I58] is a very
powerful tool for identifying and representing the underlying shape information
of a certain structure. Particulary, SSA can construct a statistical shape model,
usually from a set of individual shape instances, to describe the deformation
space of the underlying shape. In 2D cases, each shape instance is in the form
of a continuous curve. For convenience, we refer to this ground-truth continuous
form of a shape instance as a shape contour.

Many researchers [6I3] have pointed out that the accuracy of the shape
correspondence greatly affects the accuracy of SSA. In addition, most current
SSA methods operate on a set of sparsely sampled landmarks along the shape
contours. Therefore, our goal of shape correspondence is to find a way to lo-
cate a small set of corresponded landmarks along each shape instance. As in
most SSA methods, landmarks discussed in this paper refer to a set of sampled
points along the shape instances and may not coincide with anatomically critical
points.

For the landmark-based shape correspondence, the following three impor-
tant factors are critical in order to correctly model the shape-correspondence
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error: landmark-correspondence error, representation error, and representation
compactness. In general, a small shape-correspondence error implies a small
landmark-correspondence error, a small representation error, and a high repre-
sentation compactness. Landmark-correspondence error should be small because
we use it as an approximation of the underlying shape-correspondence error. This
is a factor that has been widely considered in most prior shape-correspondence
methods [4UTJ6]. Small representation error is also important because the above
approximation is accurate only when the sampled landmarks well represent the
underlying shape contour. High representation compactness means that the land-
mark sampling should be as sparse as possible, which is desired in most SSA
methods. Clearly, small representation error and high representation compact-
ness are contradictory and require a balance.

With a set of roughly-corresponded landmarks, Bookstein [3] presents an
algorithm to move these landmarks along the tangent directions of the shape
contour to achieve a minimum landmark correspondence error that is defined
by the thin-plate bending energy. However, the resultant landmarks may not
be located on the underlying shape contour and, therefore, the representation
error may be large. Wang, Kubota, and Richardson [I1] address this problem
by adding a step of projecting the landmarks back to the shape contour. This,
however, is still not sufficient to achieve small representation error. Represen-
tation compactness is not considered in either of these two methods. Mini-
mum Description Length (MDL) [6] is arguably the state-of-the-art method
for landmark-based shape correspondence. The shape-correspondence error in
MDL is measured by the required bit-length to transmit these shape instances.
Genetic algorithms are usually used to locate the optimal landmarks in MDL.
Recent efforts have been made to incorporate the factor of representation error
into MDL [10/9].

In this paper, we develop a new method to explicitly consider the three factors
listed above. More specifically, the proposed method combines three operations:
landmark sliding, landmark insertion, and landmark deletion, which explicitly
address the above three factors, respectively.

2 Problem Formulation

In this paper, we consider 2D shape correspondence, i.e., each shape instance is
in the form of a shape contour, which can be open or closed. For simplification,
we describe the shape-correspondence algorithm based on closed-curve shape in-
stances, which can be easily extended to deal with open-curve shapes. Denote
the given set of closed-curve shape instances to be S = {51, 52,...,5,}. Each
shape instance S; is in the form of an arc-length parameterized curve s;(t;) =
(zi(t:),yi(t:)), 0 < t; < L;, where L; is the perimeter of S; and ¢; is the traversed
curve length from s;(0) to s;(¢;). The goal of the landmark-based shape corre-
spondence is to identify the same number m landmarks s;(¢;1), s;(ti2), - . -, i (tim)
along each shape instance S; such that for any k, the n landmarks s;(t;x),
1 = 1,2,...,n, are corresponded across these n shape instances. For brevity,
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we denote v;, = s;(tir) as a landmark and V; = {v;1,v42,...,Vvim} to be the
sampled landmark set along S;. For convenience, we further assume that the m
landmarks in V; are sampled sequentially along S;, as shown in Fig. [Ii(a).

As mentioned above, we need to define the measures for landmark-
correspondence error, representation error, and representation compactness to
fully model the underlying shape-correspondence error. For representation com-
pactness, the measure is simply the number of landmarks m, i.e., we desire the
number m to be as small as possible. The representation error measures the
error of using these m landmarks to represent the underlying shape contour. As
shown in Fig. [a), let R(V;, S;) be the total discrepancy area (shown as dark
gray regions) between the underlying shape contour S; and the polygon formed
by sequentially connecting the m landmarks in V; for shape instance i. We define
representation error as
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where R(S;) indicates the area enclosed by the shape contour S;. The normal-
ization keeps this measure invariant to the shape size.

Thin-plate models [7] have been widely used for biological shape analysis for
its capability of describing nonrigid shape deformations [2]. In this paper, we
use the thin-plate bending energy to model the landmark-correspondence error.
Specifically, we calculate the mean shape Vp = %Z?:l V; as the template and
the landmark-correspondence error from V; is defined as the thin-plate bending
energy [7] from Vr to Vg, i.e.,

B(Vr — Vg) = %(XgMTXq + ¥4 Mry,),
where x4, and y, are columnized vectors of z- and y-coordinates of landmarks in
Vy, and My is the bending matrix calculated from Vi [7]. One important prop-
erty of the thin-plate bending energy is its invariance to affine transforms. The
total landmark-based correspondence error can thus be defined as >_1" ;, 8(Vy —
V;). Since the landmark sets V;,i = 1,2,...,n are continually updated in our
algorithm, the template shape also needs to update accordingly.

Combining these three factors, we define the shape-correspondence problem
as identifying a set of m landmarks V; from the shape contours S;,i =1,2,...,n
such that: (a) Y, B(Vr — V;) is minimized; (b) a(V;, S;) < efori=1,2,...,n,
where € is a preset allowed representation error; (¢) m, the number of landmarks
in V;, is minimized given condition (b) is satisfied. In the next section, we develop
an algorithm to achieve these goals.

3 Algorithm

To solve the problem formulated in Section B, we propose an algorithm that
combines three operations: landmark sliding, landmark insertion, and landmark
deletion. To start the algorithm, we perform a landmark initialization that aims
to find an initial estimate of V;, i = 1,2,...,n. There are many ways to achieve
an initial rough landmark-based correspondence, like those successfully used for
shape recognition and retrieval [[I]. In this paper, we use the initialization
method in [I1]: uniformly sampling each shape instance into the same number
of landmarks and then finding the matching across them by minimizing the
thin-plate bending energy.

3.1 Landmark Sliding

In the landmark sliding, we slide the landmarks in V; along the shape contour
Sq so that the landmark-correspondence error with the template landmark set
Vr is minimized. The sliding operation consists of two steps: sliding and projec-
tion. In the sliding step, all the landmarks in V; are moved along the tangent
directions of S, so that the resultant landmarks V| have the minimal landmark-
correspondence error 3(Vy — VZ) Let ry; be the unit tangent direction at the
landmark v, then we have
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V;k = Vgk T Vqk " Tqk (1)

where v;k is the k-th landmark after sliding and 4 is the sliding distance which
we want to find. Note that V;k is usually not located on the shape contour S,.

In the projection step, the landmarks v;k, k=1,2,...,m are projected back
to S, to construct a new version of V; along S;. This projection is achieved by
updating the arc-length parameters for all landmarks:

tfzyléew) — tagk + Vqk- (2)

One important problem here is to preserve the shape topology, i.e., no landmark
is allowed to move across its neighbors along the underlying shape contour.
Therefore, we have the constraint on the sliding distance 4, k =1,2,...,m,

(tq’k+1 - tq,k)‘Lq — Yak + Yag,k+1 > 0, k=1,2,....m. (3)

The (m+1)-th landmark is the same as the first landmark and a|b is the modulus
operation; (tq k+1 — tq,k)|Lq represents the traversed distance vq , to v pt1.

From these, we can see that the sliding distance v, K = 1,2,...,m, should
minimize the landmark-correspondence error 3(Vr — V;), subject to the lin-
ear constraints of Eqgs. () and (). This is a classical quadratic-programming
problem that can be effectively solved.

3.2 Landmark Insertion and Deletion

Both the landmark-initialization and the landmark-sliding operations have no
guarantee that the obtained landmark set V, can represent the shape con-
tour S, within the allowed representation error e. We address this problem
by a landmark-insertion operation: If the shape-representation error a(Vy,Sy)
is larger than the allowed threshold e, we simply insert an additional land-
mark point at s4(0.5 - (tqx + tqx+1)), i.e., halfway between vy and vg i1,
which contributes most to the total representation error. To keep the corre-
spondence across shape instances, we insert an additional landmark along each
of other shape instances, including the template, i.e., inserting landmark s;(0.5 -
(tik + tik+1)) for each shape S;. We repeat this landmark-insertion operation
until all the shape instances are represented within the allowed error
threshold e.

Landmark deletion is the inverse process of landmark insertion that is used
to improve the representation compactness and avoid the over-sampling of the
shape instances. The basic idea is to delete k-th landmark from all the n shape
instances (including the template), if the remaining landmarks can still represent
all these n-shape instances within the allowed error threshold e. In practice, we
in fact set a larger allowed threshold ey for landmark insertion and a lower
threshold ey, for landmark deletion to reduce oscillation of the iterations and
improve algorithm speed. Combining all the operations, the proposed shape-
correspondence algorithm can be summarized as:
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Choose one shape instance as the template Vrp
Initialize the landmark sets V;, ¢=1,2,...,n
//Main loop
Repeat while Vi, k,|vik| > 0
Repeat while a(-) > eq
Landmark insertion
Update the template Vr
Loop over each shape instance
Landmark sliding
Repeat while a(-) <er
Landmark deletion
End

The stop condition of this algorithm is the convergence of all three operations,
ie, |vik| =0 and e¢;, < a(V;, S;) < em, Vi, k. In practice, we stop the algorithm
when all |y;;|’s are sufficiently small.

4 Experiments

We implement the proposed method in Matlab and test it on five data sets ex-
tracted from medical images. These five data sets are: (D1) 120 corpus callosum
shape instances; (D2) 24 metacarpal shape instances [10]; (D3) 50 cardiac shape
instances; (D4) 50 kidney shape instances; and (D5) 32 femur shape instances
[10], as shown in Fig. [I(b). Among them, D1 and D2 have closed-curve shapes,
D3, D4, and D5 have open-curve shapes. For comparison, we choose the MDL
implementation (also in Matlab) by Thodberg [9] and, in all experiments, MDL
was run with 8 active nodes optimized over 40 passes. We test MDL on each
data set with three settings where the number of landmarks along each shape in-
stance is set to 16, 32, and 64, respectively. The proposed method is also run with
three settings where the allowed representation error is set to match the average
representation errors F(«) from the respective MDL runs (¢;, = E(«a) — std(a),
eg = E(a) + std(a)). With similar representation error, we compare several
other error/accuracy measures for MDL and the proposed method.

While it is very difficult to have an objective and comprehensive evaluation of
the shape-correspondence performance, some quantitative measures have been
developed in recent years. In this experiment, we compare the following mea-
sures: (a) F(8) and std(3): the mean and standard deviation of the thin-plate
bending energy between the template and all the shape instances according to
the identified landmarks; (b) A1, A2, and As: the three principal eigenvalues of
the covariance matrix of V;,i = 1,2,...,n. In calculating the covariance matrix,
the Procrustes analysis [2] is applied to normalize the size and orientation of
all the shape instances. (¢) m: the number of landmarks sampled in each shape
instance, and (d) the total CPU time used for processing each data set, based
on the specific implementations. In general, with a similar representation error,
a good shape correspondence is expected to have small E(3), A1, A2, A3, and m.
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Table 1. Experimental results on D1(corpus callosum)

MDL | MDL | MDL Proposed | Proposed Proposed
Method Method Method
Measures |m = 16|m = 32|m = 64||er, = 0.1880|er, = 0.0199|er, = 0.0090
exg = 0.2669eg = 0.1442|exg = 0.0885
E(x) 0.2275 | 0.0819 | 0.0487 0.2214 0.0637 0.0164
std(a) 0.0394 | 0.0620 | 0.0397 0.0290 0.0090 0.0023
E(B) 1.0767 | 2.0420 | 2.4937 0.0661 0.2270 0.4063
std(B) 1.3434 | 1.8201 | 1.9548 0.0425 0.1509 0.1490
A1 0.0159 | 0.0155 | 0.0024 0.0150 0.0093 0.0016
A2 0.0016 | 0.0014 | 0.0017 0.0025 0.0016 0.0009
A3 0.0009 | 0.0010 | 0.0004 0.0014 0.0014 0.0004
m 16 32 64 16 32 64
CPU time(s)|| 1073.6 | 3853.0 {15448.0 340.2 541.4 1027.8
Table 2. Experimental results on D4(kidney)
MDL | MDL | MDL Proposed | Proposed Proposed
Method Method Method
Measures |lm = 17|m = 33|m = 65||er, = 0.0501 |ez, = 0.0331|er, = 0.0194
ex = 0.0977|eg = 0.0764|ex = 0.0663
E(x) 0.0739 | 0.0547 | 0.0428 0.0731 0.0366 0.0142
std(a) 0.0238 | 0.0216 | 0.0234 0.0089 0.0045 0.0020
E(B) 0.4295 | 0.9501 | 1.4099 0.1099 0.1470 0.2217
std(B) 0.1450 | 0.2841 | 0.3627 0.0654 0.1441 0.0992
A1 0.0031 | 0.0029 | 0.0028 0.0025 0.0024 0.0022
A2 0.0014 | 0.0014 | 0.0012 0.0015 0.0016 0.0016
A3 0.0010 | 0.0009 | 0.0008 0.0012 0.0012 0.0009
m 17 33 65 14 20 34
CPU time(s)|| 298.6 | 764.3 | 1396.2 140.4 211.1 294.8

For conserving space, we only show the experimental results on D1 and D4 in
Tables[[land 2l Figure[Ii(c) shows the identified landmarks along several sample
shape instances. We can see that, given similar representation error, the pro-
posed method produces much smaller mean bending energy E(3) than MDL.
This is reasonable since minimizing the bending energy is one of our explicit
goals. An interesting result is that, in all the experiments, the proposed method
produces a correspondence with A1, A2, and Az that are comparable to MDL (see
Table[D)), because minimizing the eigenvalues of the covariance matrix is a goal of
MDL but not of the proposed method. In addition, we found that the proposed
method usually runs faster than MDL, especially when the number of the shape
instances increases, as in the bottom graph of Fig. [[l(c). For the representation
compactness, we found MDL and the proposed method sample each shape in-
stance with similar numbers of landmarks given a similar representation error as
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in the top graph of Fig.[Dl(c). However, in the MDL implementation, m, the num-
ber of landmarks, is predetermined and kept unchanged in the algorithm, while
in the proposed method, m is automatically determined by landmark insertion
and deletion. We observed similar results on D2, D3, and D5.

5 Conclusion

In this paper, we developed a new landmark-based method for nonrigid shape
correspondence, a prerequisite of accurate statistical shape analysis (SSA). This
method considers three important factors in modelling the shape-correspondence
error: landmark-correspondence error, representation error, and representation
compactness. These three factors are explicitly handled by the landmark sliding,
insertion, and deletion operations, respectively. The performance of the proposed
method was evaluated on five shape-data sets that are extracted from medical
images and the results were quantitatively compared with an implementation of
the MDL method. We found that, within a similar allowed representation error,
the proposed method has a performance that is comparable to or better than
MDL in terms of (a) average bending energy, (b) principal variances in SSA, (c)
representation compactness, and (d) algorithm speed.
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