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Abstract

Using multiple moving cameras with different and time-varying views can significantly expand the capability of multiple
human tracking in larger areas and with various perspectives. In particular, the use of moving cameras of complementary
top and horizontal views can facilitate multi-human detection and tracking from both global and local perspectives. As a
new challenging problem that draws more and more attention in recent years, one main issue is the lack of a comprehensive
dataset for credible performance evaluation. In this paper, we present such a new dataset consisting of videos synchronously
recorded by drone and wearable cameras, with high-quality annotations of the covered subjects and their cross-frame and
cross-view associations. We also propose a pertinent baseline algorithm for multi-view multiple human tracking and evaluate
it on this new dataset against the annotated ground truths. Experimental results verify the usefulness of the new dataset and

the effectiveness of the proposed baseline algorithm.
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1 Introduction

Multiple object tracking (MOT), especially multiple human
tracking, is an essential task in visual intelligence and of
fundamental importance in video surveillance (Luiten et al.,
2020; Zhang et al., 2021; Zhu et al., 2022). Most of existing
works on MOT, including the datasets and the methods, are
focused on the videos captured by single-view or fixed cam-
eras. They suffer from the problems of limited area coverage,
frequent mutual occlusions, and short tracking durations. The
use of multiple moving cameras, such as mobile phone cam-
eras, the wearable cameras, and the drone-mounted cameras
can well address these problems. In this paper, we explore
the multiple human tracking on the videos taken by multiple
moving cameras.

Furthermore, we are specifically interested in the videos
taken by moving cameras from both top views, e.g., those
mounted to the drone with view direction largely perpen-
dicular to the ground, and various horizontal views, e.g.,
those worn by walking people on the ground. As shown in
Fig. 1c, top-view cameras from a high altitude can capture
a global distribution of all or most of subjects on the ground
while horizontal-view cameras can approach individual sub-
jects to observe more appearance details. Multiple human
tracking on such complementary views is highly desirable in
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Fig. 1 a Plan view showing the location and field of view (FOV) of
the cameras in DukeMTMC (Ristani et al., 2016). b Sampled multi-
view frames from the UC CAMPUS dataset (Xu et al., 2016). ¢, d
Sample frames from our new collected dataset, which are synchronously
taken by one top-view camera (¢) and three horizontal-view cameras (d—
f), respectively, with identical-color boxes indicating the same subject
across multiple views (Color figure online)

surveillance by providing information from both global and
local perspectives. With the above setting, a typical practical
use case is the air-ground collaborative moving camera sys-
tem for outdoor law enforcement. Imagine a scene where we
apply a flying drone with a mounted camera, together with
several officials with helmet cameras, to form a moving cam-
era system. Then, we can perform the collaborative human
detection, association and tracking, to obtain the global pic-
ture of the people crowd and clear trajectories, from the top
view in the air, and observe the details, e.g., pose, actions,
of some specific subjects, from the horizontal view on the
ground. This breaks through the limitation of the traditional
surveillance system that requires the pre-installed cameras
and has the inflexible coverage area.

With the above advantages, the complementary-view
moving camera setting also makes the cross-view subject
association and tracking a very difficult problem, e.g., the
top view of a human only contains the head top and two
shoulders without much useful appearance information to
match its horizontal counterparts, the joint optimization of
spatial-temporal subject association from uncertain cameras.
A couple of prior works (Ardeshir & Borji, 2018,b) lever-
age a non-vertical inclined angle for the top view to facilitate
the appearance-based association between complementary
views. Another prior work (Han et al., 2020a, 2022a) tries
to address both the association and tracking between the real
vertical top and horizontal views by exploring the spatial
distribution of the same group of subjects in different views.
But it only handles the case of two cameras: one for top view

and the other for horizontal view. In this work, we consider
the more general setting of one top-view camera and multi-
ple horizontal-view cameras—those horizontal cameras may
also show large view differences, as shown Fig. 1d-f.

To attract more attentions to the Complementary-view
Multi-Human Association and Tracking (CvMHAT) task,
one urgent problem is a public dataset that can be accessed
and used by different researchers to quantitatively evalu-
ate the developed algorithms. In this paper, we collect a
new dataset where videos are taken by synchronous cameras
mounted to drones and worn by people, as shown in Fig. 1c—
f. The new dataset is composed of a real-world dataset and
a synthetic dataset, which both contain 30 video groups, in
total 200 videos adding up to more than 100 min. For annota-
tion, we not only annotate the bounding box of each subject
on each frame, but also an identity for each annotated subject
such that the same subject in different frames and different
views bears the same identity number.

Compared to existing datasets for MOT, besides using
the multiple cameras that have been studied in several
works (Ristani et al., 2016; Xu et al., 2016, 2017), CYMHAT
has two peculiarities: (1) We use the moving cameras instead
of fixed cameras. Compared to fixed cameras as in Fig. la,
the moving cameras, e.g., GoPro, phone cameras, can flex-
ibly cover larger areas and are particularly useful in the
outdoor video surveillance at locations without pre-installed
cameras, e.g., occasional gathering and open-air concert. (2)
We leverage the complementary-view cameras rather than
the congeneric-view ones. Specifically, we apply a top view
taken by the drone-mounted cameras as show in Fig. lc.
Compared to the congeneric-view cameras, as shown in
Fig. 1b, with the similar coverage areas and observation
scales in most previous works, the complementary-top-
horizontal views have several unique advantages. First, the
top view can globally record the spatial distribution and tem-
poral trajectories of all the subjects in the scene, which is
the easiest form of MOT with respect to the perspective
of trajectory tracking performance. Meanwhile, the multiple
horizontal views can closely observe the local appearance
and pose of selected subjects. With the cross-view obser-
vation and association, the multi-view human appearance
or pose can be fused for addressing many higher-level
video applications, e.g., multi-view human action recogni-
tion (Zhao et al., 2020) and 3D pose estimation (Dong et al.,
2022) in various scenarios, e.g., outdoor party/show and out-
door law enforcement. Second, the top view can be taken as
a central pivot of the moving camera network to better coor-
dinate the collaborative analysis of the videos taken by the
horizontal-view cameras without calibration, which, mean-
while, can actively observe the scene of interest to obtain
more needed finer-grained information.

Based on the new dataset, we propose a baseline method
for CvMHAT. Specifically, we first formulate the CYMHAT
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as a generalized maximum (multi) clique problem (Zamir et
al., 2012), in which we measure the cross-view and over-time
subject similarities using appearance, motion features and the
spatial reasonings. With these similarities, for problem solu-
tion, we propose an efficient Alternating Direction Method
of Multipliers (ADMM) alike algorithm for optimization and
produce the desired CvMHAT results. Experimental results
show that the proposed method with relatively simple fea-
tures can provide much better results than previous MOT
algorithms with sophisticated deep features on our problem.
The main contributions of this paper are: @ We build a new
dataset of complementary top- and horizontal-view videos
taken by multiple moving cameras. The dataset exhibits good
varieties and consists of both real-world and synthetic data.
We also provide new metrics for evaluating CYMHAT per-
formance. ® We develop an effective baseline algorithm for
CvMHAT, and conduct a serious of experiments to evaluate
several existing related approaches and the proposed method
on CvMHAT dataset. We report their performance and show
the usefulness of this new dataset and the effectiveness of
the proposed baseline method. ® We have released the video
dataset, the annotations, the evaluation toolKit, as well as the
source code and trained networks of the baseline algorithm, to
the public at https://github.com/RuizeHan/MHATB, which
may help attract more researchers to work on the important
but challenging CvMHAT problem.

2 Related Work

Multiple Object Tracking (MOT) is a classical problem in
computer vision. An important issue in MOT is data asso-
ciation over time—MOT can be treated as the problem of
associating the object bounding boxes provided by a detec-
tor. Many different features have been used, while the most
commonly used are appearance and motion features. The for-
mer includes many hand-crafted appearance features such as
color histograms (Zamir et al., 2012; Dehghan et al., 2015)
and recent deep network based appearance features (Leal-
taixe et al., 2016; Chu et al., 2017; Zhu et al., 2018). The
latter includes both linear motion models, which assume
the target to have a linear movement with constant veloc-
ity for a period of time (Zamir et al., 2012; Dehghan et
al., 2015; Ristani & Tomasi, 2018) and nonlinear motion
models, which can better capture irregular movements and
produce more accurate motion predictions (Yang & Nevatia,
2012a,b). Following the above tracking by detection, also
called as separate detection and embedding (SDE) paradigm,
classical DeepSort (Wojke et al., 2017) and the state-of-the-
art StrongSort++ (Du et al., 2022) obtain the remarkable
performance on MOT task. Rcent works also try to achieve
object detection and tracking simultaneously using an end-
to-end joint detection and tracking (JDT) paradigm (Wu et
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al.,2021). For example, Tracktor++ (Bergmann et al., 2019a)
applies the regression and classification modules on a object
detector for the tracking task. CenterTrack (Zhou et al., 2020)
takes a pair of images as input, which localizes objects and
predicts their associations with the previous frame. Fair-
MOT (Zhangetal.,2021) presents a bunch of detailed designs
for balancing the detection and Re-ID tasks, which are crit-
ical to achieving good tracking results. Bytetrack (Zhang et
al., 2022) proposes to make use of the useful information
from the low-confidence human detection bounding boxes.
More recently, some trackers based on graph neural networks
(GNN), e.g., Bras6 and Leal-Taixé (2020) or transformers,
e.g., Meinhardt et al. (2022); Ma et al. (2022); Zhou et al.
(2022) are developed and obtain the promising performance.

Calibrated-Camera Based Video Analysis Most existing
multi-view video analysis focus on the videos taken by fixed
cameras, which can be mechanically calibrated in advance.
For the multi-view MOT, Xu et al. (2016, 2017) leverage the
given camera calibration and back-project each 2D bounding
box onto the 3D ground as the unified motion features across
different views. Another group of works (Kuo et al., 2010;
Ristani et al., 2016; Ristani & Tomasi, 2018) aim to track and
re-identify the humans in a large field, e.g., a campus, using
many cameras installed at many sites with little or no field of
view overlap. With prior calibrations, global trajectories of
multiple targets can be computed across different cameras.
Differently, in this paper, we employ multiple moving cam-
eras with indeterminate motions and they cannot be priorly
calibrated.

Multiple Moving-Camera Based Video Analysis Recently,
a series of works focus on the multiple moving-camera based
video analysis, e.g., cross-view person identification (Zheng
et al., 2017; Liang et al., 2018, 2019), human activity detec-
tion (Zhao et al.,, 2020; Lin et al.,, 2015; Zheng et al.,
2014), cross-view camera wearer identification (Ardeshir &
Borji, 2018, 2016, 2018b), and multi-human association
and tracking (Han et al., 2019, 2020a). Most of them use
the egocentric-view videos taken by multiple wearable cam-
eras. However, the multi-views in these works are mainly
the congeneric horizontal views with different view orien-
tations (Zheng et al., 2017; Liang et al., 2018; Zhao et al.,
2020; Lin et al., 2015). Currently, several works propose to
study the collaborative video analysis by combining top and
horizontal views. For example, in Ardeshir and Borji (2018,
2016, 2018b), horizontal-view camera wearers are identified
in the top view and then the same subjects between the top
and horizontal views are associated. However, they still use
the cameras with inclined angles and not very high altitude
for the top view. In (Han et al., 2020a), MHAT with a top
view largely vertical to the ground was addressed by combin-
ing different features, which is further extended to cross-view
detection of important persons (Han et al., 2020b). However,
both of them only consider two cameras—one for top view
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Table 1 Comparison with the existing MOT datasets from different aspects, including the number of video groups (# Gro.) and videos, overall
length, frame rate, number of subjects and cameras, camera settings, scene type and publication venues

Dataset # Gro # Vid Length (min) FPS #1D # Cam Calib Overlap Scene Publish
MOT 15 - 22 17 7-30 - 1 - - Both arXiv 15
MOT 17 - 14 8 14-30 - 1 - - Both arXiv 16
EPFL 5 30 96 25 7 4 4 v Indoor PAMI 08
PETS2009 1 8 8 7 30 4-8 4 v Outdoor IEEEW 09
USC Campus 1 3 75 30 146 8 X X Outdoor ECCV 10
Dana36 - 36 - - 21 36 4 X Both AVSS 12
CamNeT 1 8 240 25 50 5-8 X X Both WACV 15
DukeMTMC 1 8 680 60 2834 8 4 X Outdoor ECCV 16
UC CAMPUS 4 16 50 30 25 34 4 v Outdoor CVPR 16
PPL-DA 4 12 48 30 25 4 4 v Outdoor AAAI 17
MHT 15 30 13 30 30 2 X v Outdoor AAAI 20
CvMHAT-R (ours) 30 100 56 30 60 2-5 X 4 Outdoor -
CVvMHAT-S (ours) 30 100 48 30 100 2-5 X v Outdoor -
CVvMHAT (ours) 60 200 104 30 160 2-5 X v Outdoor -

and the other for horizontal view. Differently, the proposed
dataset and developed baseline algorithm can be used for the
videos taken by one top-view and multiple horizontal-view
cameras.

Multi-view MOT Datasets Several works focus on the
research of multi-view multiple object tracking (MVMOT).
Among them, the datasets in Kuo et al. (2010), Zhang et
al. (2015), Ristani et al. (2016) are proposed to handle the
human tracking and re-identification problem in a large non-
overlapped field using multiple surveillance cameras. The
cameras used in such datasets are pre-installed with limited
and fixed fields of view (FOV). Another series of works focus
on the collaborative analysis of a crowded scene using mul-
tiple cameras with overlapped area coverage (Fleuret et al.,
2008; Ferryman, 2009; Xu et al., 2016). For example, early
works propose to use multiple cameras to track the people at
indoor (Fleuret et al., 2008) and outdoor (Ferryman, 2009)
scenes, respectively. Recently, Xuetal. (2016, 2017) propose
a multi-view multi-object tracking dataset which include
multiple people with varied poses and different actions. The
dataset is annotated with the trajectory of every person inside
the scene (tracking), as well as their cross-view ID consisten-
cies (association). As discussed above, in Han et al. (2020a) a
relatively small-scale videos from two complementary-view
cameras, one for top view and the other for horizontal view,
are collected and used for CYMHAT evaluation. The data
size in Han et al. (2020a) is also quite small compared to
this work, which also does not provide the comprehensive
annotations and metrics. In this paper, we construct a new
dataset with much larger scale including one top view and
multiple horizontal views, all necessary annotations and a
baseline algorithm, for more general CvMHAT evaluation.

3 CVMHAT Benchmark
3.1 Problem Definition

Given a set of videos taken by temporally-synchronized com-
plementary views, the desired output of CvMHAT is the
over-time trajectory and the cross-view identification of each
subject. Without loss of generality, we denote the input videos
with the length of T as 7 = {1, ..., T'} that are taken from
multiple n time-varying views as V = {vy, ..., v, }, CYMHAT
problem aims to obtain the trajectory of each subject in all
views along the video, i.e., the multi-view over-time sub-
ject association among all views and along each video. More
specifically, the output of CvMHAT is the detected human
bounding box BV’ in all frames t € 7 of each view v € V,
with the unified and unique ID number for each person.

3.2 CvMHAT Dataset

We build the CYMHAT dataset, which is composed of a real-
world sub-dataset (CvMHAT-R) and a synthetic sub-dataset
(CvMHAT-S). The former contains the videos taken by the
drone and wearable cameras in the real-world scenes. The
latter contains the synthetic videos generated by virtual 3D
modeling. As shown in Table 1, we in detail compare our
dataset with two representative single-view datasets (MOT
15,17) and several existing multi-view MOT datasets. For
the data scale, the overall length of proposed dataset is
104 min with the frame rate of 30 fps. Different from the
other datasets that collect long-time videos in fixed scenes,
e.g., DukeMTMC contains 8 videos with the per duration of
85 min continuously taken by 8 cameras, CYMHAT contains
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60 video groups (i.e., several continuous videos taken from
multiple cameras at one site) and are taken in various outdoor
scenes. Each video group contains 2—-5 videos synchronously
taken by multiple complementary-view cameras at the same
multi-person scene.

3.2.1 Real-World Dataset

Data Collection To capture the complementary-view
videos, we use a bird’s eye view camera equipped on a fly-
ing Unmanned Aerial Vehicle (DJI Mavic 2) with a high
altitude (e.g., 20-30ms) to collect the top-view videos. We
use the GoPro (HERO 8) mounting over the head of per-
sons to take the horizontal-view videos. The output video
has a resolution of 1920 x 1080 and a frame rate of 30
fps. As shown at the top of Fig. 2, the videos are taken at
ten outdoor scenarios with different backgrounds, includ-
ing the square, playground, park, garden, the entrance of
teaching building and canteen, etc. In each scenario, there
are 10-15 subjects who walk, sit or stand as they want,
together with human-human interactions. We arrange some
subjects to wear the GoPro cameras overhead for collecting
the horizontal-view videos in which the mutual occlusions
are common. The number of camera wearers in each scenario
ranges in 1-4, and the recorded horizontal-view video(s)
together with the corresponding top-view video make up a
group of complementary-view videos.

Data Annotation and Statistics The top of Table 2 shows
the statistics of the dataset according to the number of
horizontal-view videos, i.e., | T(op) + X H(orizontal) views,
including the amount of video groups and videos, and the
number of frames and bounding boxes. We collect 30 groups
of videos, in total 100 videos, in CvMHAT-R dataset. We
manually synchronize these videos in each group such that
corresponding frames of them are taken at the same time.
The length of each video is from 300 to 1500 frames with the
average length of 910.5. In total, CMHAT-R dataset con-
tains 91,050 frames.

The bounding boxes of all the subjects are annotated by
outsourcing to a professional company. The subjects are
annotated in the forms of rectangular bounding boxes and
ID numbers: the same subject across different views in a
video group are labeled with the same ID number. Following
the previous works (Gan et al., 2021; Han et al., 2022a), we
annotate one frame for each five frames, on each of which
we manually annotate all the human bounding boxes and
the corresponding over-time and cross-view unified IDs. For
more accurate labels, we are not with the help of the auto-
annotation system. All the annotations are double checked
by the company and ourselves. Then we use the interpola-
tion method to obtain the annotations for all the frames. The
annotation generates 644,301 bounding boxes in total. Note
that, with such a large scale, the annotation for the dataset is
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Table 2 Statistics of the CYMHAT-R and CvMHAT-S

# Gro # Vid Len # Frm # Box
CvMHAT-R
1T+1H 10 20 760 15,200 111,483
1T+2H 5 15 750 11,250 78,233
1T+3H 10 40 740 29,600 213,359
1T+4H 5 25 1440 36,000 241,226
Full 30 100 910.5 91,050 644,301
CvMHAT-S
1T+1H 10 20 1000 20,000 181,470
1T+2H 5 15 1000 15,000 152,340
1T+3H 10 40 1000 40,000 546,730
1T+4H 5 25 1000 25,000 215,995
Full 30 100 1000 100,000 1,096,535

quite labor intensive given the difficulty in identifying per-
sons in the top-view videos.

3.2.2 Synthetic Dataset

Data Collection Considering the high cost of the real-world
data with burdensome data collection and annotation, we fur-
ther build a synthetic video dataset CYMHAT-S by simulating
the CYMHAT setting. It also has the advantage that we can
control and record the accurate experimental settings during
data capturing, e.g., the camera pose, human 3D location,
etc., that are not easy to obtain in the real-world data. If the
performance evaluation on synthetic data can reflect that on
the real-world dataset, we can use the former for algorithm
testing and evaluation, thus saving cost greatly. The effec-
tiveness of the synthetic data for MOT has been verified by
many previous datasets, e.g., Virtual KITTI (Fabbri et al.,
2021), MOTSynth (Gaidon et al., 2016) and JTA (Fabbri et
al., 2018) datasets, etc. To the best of our knowledge, this is
the first synthetic dataset for multi-view MOT task.

We adopt the famous 3D modeling engine Unity to build
the scenarios in CvMHAT-S dataset. We use the open source
toolkit PersonX (Sun & Zheng, 2020) to generate the humans
in our dataset. Similar to the real-world CvMHAT-R dataset,
we set a top-view camera to look vertically down to the
ground from a high altitude. We simultaneously set the cam-
eras to be mounted to the head of several subjects in the
scene as the horizontal-view camera wearers. The camera
wearer may stand still, rotate his/her head (together with the
camera) or walk freely in the scene. There are also 1 (top-
view) + X (horizontal-view) cameras (X = 1, 2, 3, 4) with
overlapped area coverage in CYMHAT-S dataset. As shown
in the bottom of Fig. 2, we select six different scenarios,
e.g., playground, running track, park, etc., and five groups of
videos are generated in each scenario. The number of sub-
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Real-World Data

Synthetic Data

jects in each scenario is set as 10-20 and all the subjects are
controlled to walk freely in the scene. Note that, we do not
require all the subjects to appear in all the views—we only
set the FOV of the camera to cover most of the subjects. To
ensure the reality of the synthetic dataset, we build the scene
and human following their scales in the real world, including
the human height, moving speed, camera coverage, etc. The
altitude of the top-view is set as 15-20ms in our dataset and
the moving speed of the human is set to 1-1.5 ms per second.
The synthesized video has a resolution of 1024 x 768 and a
frame rate of 30 fps.

Data Annotation and Statistics In each video of CvMHAT-
S dataset, the subjects are selected from 100 different subjects
with individual ID number. Benefiting from the simulation
environment, we can automatically obtain the bounding box
and label of each subject without manual annotation. Specif-
ically, the unique ID can be generated along with the subject
and the same subject across all views in a video group is
labeled with the same ID. We render one subject each time
without the other subjects and background disturbance and
apply a simple image cropping to get the bounding box,
where occlusions in horizontal-view videos do not affect
the correct bounding-box annotation. By repeating the above
operation, we get the automatically generated annotations for
all subjects including the bounding boxes and IDs for each
frame in the video. Note that, the labels for synthetic dataset
are more accurate compared to the manual annotations for
real dataset. For example, it is hard to annotate the real bound-
ing box of a subject mostly occluded by others on real-world
image, which can be achieved in virtual environment.

As shown in the bottom of Table 2, CMHAT-S dataset
contains 30 video groups, in total 100 videos, the same as

(b) Prediction Results

(a) Grounding Truth

Fig. 3 Illustration of the multi-view association metrics, V; indicates
the view of i-th camera

CvMHAT-R dataset. We set the video length as 1000 frames
for all videos and in total generate 100,000 frames with over
one million human bounding boxes.

3.3 Metrics for CYMHAT

Single-view Tracking Metric We take the widely used MOT
metrics for evaluating the single-view tracking performance
as in MOT Challenge (Leal-Taixé et al., 2015), including
the multiple object tracking precision (MOTP) and multiple
object tracking accuracy (MOTA) in CLEAR MOT Met-
rics (Bernardin & Stiefelhagen, 2008). A key task of MOT is
to identify and track the same subject along the video, which
is also very important in our problem. We also include the
ID switches (IDS), fragment (FM) in Bernardin and Stiefel-
hagen (2008) and the ID-based metrics (Ristani et al., 2016):
ID precision (IDP), recall (IDR), and F; measure (IDFy).
Multi-view Association Metric In this work, besides tem-
poral tracking, we also focus on the frame-by-frame multi-
human cross-view association. We associate all the subjects
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(a) Multi-view Video Streams (b) Multi-view Over-time Tracks

Fig. 4 Framework of the proposed baseline algorithm for CvMHAT.
We first split the multi-view videos into shot clips, and in each clip we
can obtain the single-view tracks. The main problem in this work is to

appearing in different views (by giving the same ID) dur-
ing the tracking, to obtain a multi-perspective observation of
each subject. This way, we propose the new metrics for espe-
cially evaluating the multi-view association results, which are
not generated and evaluated in the previous MOT problems.
Specifically, we define new metrics multi-view ID preci-
sion (mvIDP), ID recall (mvIDR), ID F; score (mvIDF;) and
multi-object matching accuracy (mvMHAA). Specifically,
mvIDP and mvIDR denote the multi-view subject associa-
tion precision and recall, respectively. Given the subject IDs
in all n views, we take two views each time and compute the
pairwise subject matching performance. Based on mvIDP
and mvIDR, the mvID F; is defined as

2 x mvIDP x mvIDR

mvIDF; =
VIR = 7 VIDP + mvIDR

ey

We then define three metrics, i.e., mvMS, mvFP, mvMM to
calculate the numbers of missed matches, false positives, and
mismatch pairs for multi-view subject association. Specif-
ically, for n views with in total N subjects, we first get
ground-truth and predicted matching matrix with the dimen-
sion of N x N for all the views. An example is shown
in Fig. 3. The metric mvMS counts the number of missed
ground-truth matching pairs, the mvFP counts the number
of falsely detected matching pairs, and the mvMM metric
counts the number of mismatches. After that, we define multi-
view multi-human association accuracy (mvMHAA) as

Zt (mVMS, + mVFPt + szMM[)

mvMHAA =1 —
Zt Ni

@

where mvMS;, mvFP;, mvMM; are the missed matches, false
positives, and mismatch pairs at time ¢, respectively. N; is the
total number of subjects for all views at time ¢.

@ Springer
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(c) Weight Matrix

(d) Adjacency Matrix

(e) Multi-view Trajectories

associate the tracks from adjacent segments in all views. We formulate
this task as a joint optimization problem, the solution of which can be
used to form the final multi-view trajectories

4 The Proposed Baseline Method

Existing multi-camera MOT methods mainly study the over-
time human tracking across the cameras but do not consider
the frame-by-frame multi-human cross-view association.
Also, existing methods mainly use the appearance features
for association across the cameras with similar viewing
angles. However, in our problem, we use top view, i.e.,
roughly vertical to the ground with a high altitude, as shown
inFig. 1c. This way, each subject s largely a small dark region
and the appearance is not very useful for the human associ-
ation between top and horizontal views. Therefore, existing
methods can not directly handle the proposed problem.

For addressing the above problems, in this work, we for-
mulate the CvMHAT as a classical generalized maximum
(multi-) clique problem. In this formulation, we construct the
spatial-temporal subject affinity matrix to build the subject
correspondence both over time and across views, in which
we apply the spatial reasoning for the affinity measurement
between the top and horizontal views. We also apply the
structural constraint conditions in our formulation, and the
ADMM alike algorithm for efficient solution. The generated
(multi) cliques form the spatial-temporal association rela-
tions in CvMHAT, which also consider the prior contained
in the constraints. Overall, the proposed method is a sim-
ple and effective baseline given its appropriate input/output,
structural constraints, and the reliable and efficient solution,
which is presented in detail in the following.

4.1 Formulation

For the CvMHAT problem, the desired output is the over-time
trajectories and the cross-view identification of each subject.
To achieve this, we first track the subjects over time for gen-
erating the single-view tracks and we also associate them
of the same subject across views to obtain the multi-view
trajectories. In this work, we formulate the above task as a
generalized maximum (multi) clique problem (Zamir et al.,
2012).
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Specifically, with the input videos that are taken from
multiple moving cameras V = {vy, ..., v,}. We first syn-
chronously split these videos into short (temporal) segments
with a fixed length, e.g., 10 frames, as shown in Fig. 4a, b.
In each video clip at view v,, and segment s;, we extract a
set of tracks for each subject using a simple strategy based
on spatial overlap, i.e., we connect two subjects between
two adjacent frames if their intersection over union (IoU)
of bounding boxes is larger than a threshold, e.g., a com-
monly used threshold 0.5 (Dehghan et al., 2015; Han et
al., 2022a). All we need is then is to associate the tracks
from different views and segments. Without loss of general-
ity, we consider the multi-view over-time track association
among all views, i.e., vy, ..., v, and between two adjacent
segments, i.e., s1, 52, as shown in Fig. 4. We handle this task
as a joint optimization problem. Specifically, we denote x;
as a subject track in segment s € {sq, s2} of view v € V),
where i € 7 denotes the index, i.e., i-th track among all the
tracks in all n views across two segments. We establish a
graph G = {N, A} with nodes A" = {x;"*|i € Z}, and adja-
cency matrix A = {a; ;|i, j € I}. Then, the multi-view track
association can be formulated as the following generalized
maximum (multi) clique problem

A* = argmax (W, A)

A

= arg max Z w,-ja,-j, (3)
Gi i jeT

st. AeS,

where (-) denotes the matrix inner product operation. We
use the adjacency matrix A = [a;;];,; € RIZI*II o repre-
sent the association relation over graph G with each element
a;,j € {0, 1} representing the connectivity from node (with
theindex) i tonode j, where a; j = ldenotes thatnodes i and
J represent the same person in different views or segments.
The weight matrix W = [w;;1];,; € RIZ*Zl is composed of
w;,;j € [0, 1] representing the affinity score from node i to
j. Here S denotes the internal constraint conditions that A
should satisfy, which is considered as follows.

1) Symmetric-Similarity Constraint The adjacency matrix
A should be a symmetric matrix, i.e.,

A=AT,

. “
with A, =L
This is not hard to get since if we have a;; = 1, i.e., subject
i and j denote the same person, we naturally obtaina;; = 1
and vice versa. Specifically for the sub-matrix at diagonal
block in A, we have A, = I, as the identity matrix, which
is shown in Fig. 4d.

2) Cycle-Consistency Constraint For a perfect associa-
tion, the same person appearing in different clips should be

connected as a cycle. Specifically, we denote I/ as the set of
subjects in all 2 clips (in n views across two segments). For
each two different clips m and n, we have A, = Al A,
where A% € RNmx ] denotes the binary permutation matrix
between the N, subjects in clip m and the human set /. For
all clips, we concatenate their permutation matrices row by
row and get A* € RIZI*UI Following previous works (Dong
etal., 2019, 2021), the cyclic-consistency constraint requires
that

A =AYAYHT, (5)

which implies that all the concatenations among the subjects
in different views form |/ | cycles representing the |{/| human
identifications. Note, the number of nodes in each cycle is no
more than 2n.

3) Zero—One Constraint This is a mandatory constraint for
assignment problem that a;; should be a binary value, i.e.,

aij €{0,1}, 1 <i,j <|Z]. (6)
4.2 Spatial-Temporal Affinity Measurement

We then consider the matrix W contains the affinity scores
between two tracks.

e Appearance similarity To measure the similarity between
two tracks, we extract the appearance feature using an effi-
cient re-id network structure (He et al., 2020). Following Han
et al. (2022a), by calculating the Euclidean distance of the
output features, we obtain the appearance similarity between
two over-time or cross-view tracks. The appearance feature
is only used for the track-similarity measurement in horizon-
tal views, but not across top and horizontal views. This is
because the appearance in the top view and horizontal view
has huge difference thus the appearance features are not use-
ful here. We will show more details about this in the later
experiments.

e Motion similarity We further apply the motion similar-
ity for over-time track similarity measurement. We use the
constant velocity motion model to predict motion similarity
as in most previous MOT methods. Given two tracks from
two adjacent clips in the single view, we first calculate the
forward and backward motion propagation errors using the
constant velocity motion model as in Zamir et al. (2012) and
then generate the motion aware over-time track affinity.

e Spatial reasoning For the subject similarity between the
top and horizontal views, both the appearance and motion are
not very useful given the large view difference. We instead
use a spatial distribution based method (Han et al., 2019)
to address this problem, which represents each subject as
a feature vector using their spatial layout and matches the
vectors of all subjects in the horizontal-view and top view
by a cost function for cross-view association. For a pair of
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Table 3 Overview of the feature selection

Part Appearance Motion Spatial
Cross-view top-hor X X v
Cross-view hor-hor v X X
Over-time top X v X
Over-time hor 4 4 X

video clips from the top view and horizontal view, respec-
tively, we first employ the spatial distribution based algorithm
to get the subject association results of the subjects frame
by frame. The result of cross-view subject association is to
identify all the matched subjects between two views that indi-
cate the same persons. With the frame-level subject matching
results, we then calculate the spatial-reasoning-aware track
similarity between the tracks from the clips in top and hori-
zontal views. This is achieved through a voting strategy by the
frames involved in the tracks with the frame-by-frame cross-
view association (Han et al., 2019). Therefore, we obtain the
similarity for two tracks across the complementary views.

We summarize where the appearance/motion/spatial fea-
tures are used for similarity measurement in Table 3.

4.3 Optimization

Combining all the similarity measurements, we generate the
weight matrix W as shown in Fig. 4c, where the weights
for each pair of clips are normalized into [0,1]. We then
discuss the solution of the constraint optimization problem
in Eq. (3) to get the adjacency matrix A. We first consider
the constraints S in Eq. (3), in which Egs. (4), (6) are the
explicit constraints on A, while Eq. (5) is implicit since A“
is unknown. We then provide the derivation of the constraint
transformation.

First, Eq. (5) requires the matrix A can be factorized as
A“(AY)T . According to the theory of matrices (Gantmakher,
1959), from the above constraint we can get that A should
satisfy that

A > 0, rank(A) < U], @)

where the former denotes A is a positive-semidefinite matrix
and the latter requires its rank is less than |I/|, which counts
the number of unique persons in the scene but is unknown in
practice. Inspired by Han et al. (2022b), we further transform
this constraint by using the nuclear norm ||A||..
Specifically, we denote the singular value of A as g;, g =
{1,2, ..., Q}. From the basic properties of matrix we get

1AL =g = liglh,
q

rank(A) = count(g, # 0) = [Igllo.

®)
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where g is the vector of singular values and the rank of A can
be computed by the count of nonzero elements in g. @ We
denote ¢, as the eigenvalue of A, and have g, = |e;| > ¢,
since A is a real symmetric matrix, where the symmetry is
constrained by Eq. (4). Then we can get ||All, = > 78q =
Zq e4. This way, minimizing the nuclear norm |[|A [, will
push g, i.e., |e4| and e, to close to each other, which is
equivalenttoe, > 0,i.e., A is positive semidefinite in Eq. (7).
@ For the second low-rank constraint in Eq. (7), from Eq. (8)
we get it is equivalent to minimize the /o norm of g. We know
that the /; norm is commonly used as the optimal convex
approximation of /o norm. This way, minimizing ||A||4, i.e.,
the /1 norm of g according to Eq. (8), also compels the low-
rank constraint.

This way, from Eq. (7), we can get the following optimiza-
tion problem

A* =argmin —(W, A) + AJA[
A 9)
s.t. AeS,

where A is a pre-set parameter and S denotes the constraints
in Eqs. (4) (6), which we will consider latter. To solve the
optimization problem with nuclear norm term, we employ
the Augmented Lagrangian Method (ALM) algorithm (Boyd
et al., 2011). We first construct the Augmented Lagrange
formulation as

Lp(A, B.H) = —(W,A) + A||B|«
+<H,A—B>+§||A—B||% (10)
s.t. Ae 3,

where we introduce an auxiliary variable B requiring A = B,
and H and p > 0 are the Lagrange multiplier and penalty
factor, respectively. The problem can be solved iteratively
using the ADMM (Boyd et al., 2011) technique. Each vari-
able has closed form solution by optimizing the following
three sub-problems

A®TD = argmin L,(A®, B® HW)
A

B*D = argmin L,(A®TD BO H®W) . (11)
B

H(k+1) — H(k) + p(A(k-H) _ B(k+l))

Sub-problem for A: We first extract the terms involving
the variable A in Eq. (10) and get

L,(A) = —(W,A)+ (H,A —B) + gHA B2 (12
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By solving % = 0, the optimal solution for A can be
obtained by
L 1
A*=—(W-H)+B. (13)
P

Sub-problem for B: Similarly, we extract the terms involv-
ing B and get

P
L,(B) =A||B||*+<H,A—B>+5||A—B||%, (14)

from which we can get the following equation by the formula
deformation and irrelevant item removal

ok 1 1.5
L,B)=—[B|.+ 5B - A+ —-H)]j3, (15)
P 2 P

where we denote IT £ A + %H.

Following the Singular Value Thresholding (SVT) Algo-
rithm in Cai et al. (2018), the optimal solution for B can be
obtained by

B* = D.(I1) = UD,(2)V', (16)

where D, (%) = diag({oy, — t}4), T = %, {-}+ denotes
to maintain the positive values and make others as 0. Here
D, (IT) in the SVT algorithm can be taken as applying a
soft-threshold rule on ¥ obtained by singular value decom-
position (SVD) of IT as
N =UxV', ¥ =diag({onhi<nzn), (17)
where U and V denote the left and right singular vectors
respectively, oy, is the singular value. More details about the
above deduction can be found in Cai et al. (2018).
Sub-problem for H: We finally solve the sub-problem for
H as

H* =H+ p(A —B). (18)

4.4 The Framework

We present the overall algorithm of the proposed method
in Algorithm 1, where we iteratively optimize the energy
function with ADMM by K iterations, e.g., 75 iterations, for
convergence, and use a threshold g (empirically set as 0.7)
to obtain the binary assignment matrix. The ratio param-
eters of appearance and motion similarities in over-time
horizontal-view association are 0.3 and 0.7, respectively. In
the next experiment section, we will justify the usefulness
of this baseline method and the high challenge of the pro-
posed CvMHAT problem and dataset. Benefiting from the

Algorithm 1: Complementary-view MHAT:

Input: Complementary-view videos from multiple moving
cameras.
Qutput: Subject trajectories with cross-view unified ID numbers.
1 Synchronously split the n videos, one from top view and n — 1
from horizontal views, into S segments.
2fors=1:Sdo
3 Implement human bounding box detection.
4 Get the single-clip short tracks in each view and segments s
ands 4 1.
5 Calculte the track similarity score as in Sec. 4.2, and compute
the weight matrix W in Eq. (3).

6 /I Solve A in Eq. (3) using ADMM algorithm.

7 Construct the Augmented Lagrange formulation as Eq. (10)
8 fork=1:K do

9 A =1 (W—H) +BinEq. (13)

10 B =UD,(X)V*inEq. (16)

11 H=H+ p(A —B)inEq. (18)

12 // To sitisfy the symmetry constraints in S

13 A=LA+AT)

14 // To obtain the zero-one association matrix

15 Do binarization on A with a threshold 8 and get A.

16 Get cross-view cross-segment middle trajectories from A.

17 /I Spatial-temporal subject association strategy if

ayy =1 (apy = 1) then

18 L Assign the ID number of T,; (H},) to 7!+l (H(;“),
respectively.

19 else if a,; = 1 then

20 L Assign the ID number of T/*+! to Hé“ .

21 else
22 L Assign the incremental ID to other subjects.
23 Stitch the middle trajectories along the whole video.

24 return Multi-view long trajectories with unified IDs.

complementary-view videos, we apply the spatial-temporal
collaborative subject association strategy for MHAT. This
makes use of the information from different views (espe-
cially the top views) while obtaining trajectories for each
view, for handling occlusion in horizontal view. Specifically,
as shown in Algorithm 1, we show how to assign the ID
for the track T;*! (top view) and H ;,H (horizontal view) at
segment ¢ + 1. For the temporal association, i.e., the single
view tracking, given the association matrix, if its element
ayy = 1, we associate tracks T,/ and T/ +! by transferring the
ID. We also consider the spatial (cross-view) association for
the tracks without temporal association. At segment ¢ + 1, if
dyg = 1, we assign the ID of the top-view track 7" to the
horizontal-view track th +1, Let’s explain it by an example.
In a horizontal view v, we assume a person P firstly appears
at time #1, then disappears at #>, and re-appears at 3. In this
case, at 11, we use Algorithm 1 to assign a new ID #D to P.
At 1, there is no track for #D, i.e., the subject P is notin view
v1, but in the top view the subject P continuously appears.
At t3, we can use the complementary-view subject associa-
tion results to renewedly track P in view vj, by assigning
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the ID #D from the top view to the re-appeared subject P.
For the traditional MOT, it is hard to continuously track P if
it disappears for a long time—P is usually assigned with a
new ID when it re-appears.

5 Experimental Results
5.1 Setup

Comparison Methods We evaluate some methods on the
CvMHAT dataset to verify the usefulness of the dataset.
Actually, given the large view difference between the top
and horizontal views and the multi-overlapped-view MOT
setting, we did not find existing methods with code that
can directly handle the proposed CvMHAT problem. There-
fore, we select several famous single-view MOT methods
for comparison.. The first category is separate detection
and embedding (SDE) paradigm, i.e., MDP (Xiang et al.,
2015), DMAN (Zhu et al., 2018), Tacktor++ (Bergmann
et al., 2019b), and StrongSort++ (Du et al., 2022). Among
them, MDP and DMAN are single object tracking (SOT)
based MOT trackers, where MDP uses a Markov decision
making process for data association and DMAN further
learns appearance features for similarity measurement with
a well-designed deep neural network. Tacktor++ achieves
the tracking by using an object detector framework with
the regression and classification branches. StrongSort++ is
a state-of-the-art tracker based on the DeepSort framework.
The second category is joint detection and tracking (JDT)
paradigm. We select three famous trackers, i.e., Center-
Track (Zhou et al., 2020), Trackformer (Meinhardt et al.,
2022), ByteTrack (Zhang et al., 2022) for comparison. The
above methods aim to jointly achieve the detection and track-
ing tasks. Note, all the comparison methods are implemented
on the single-view videos separately.

We also include two multi-view multi-human tracking
methods BIPCC (Ristani et al., 2016) and DeepCC (Ristani
& Tomasi, 2018) for comparison, which handle the human
tracking using multiple cameras covering different areas.
Besides, we include the method MHT (Han et al., 2020a)
for comparison, which is only used for two-view video pairs
thus cannot be directly applied to our dataset with multiple
horizontal views. This way, we divide our dataset into top-
horizontal-view video pairs and evaluate this method on each
pair.

Experimental Details Following the previous works (Han
et al., 2020a), for fair comparison, we use the same subject
detection results, generated by the famous YOLOvV3 (Red-
mon et al., 2016), for both the proposed method and the
comparison methods. We have also tried the recent version
YOLOX (Ge et al., 2021) as the detector in our method,
and report the corresponding human association and tracking
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results in the following section. For top-view subject detec-
tion, we fine-tune the pre-trained network using extra 800
top-view images that are not in our CvMHAT dataset. In the
ADMM algorithm, we set the parameters A and p in Eq. (10)
as 60 and 70, respectively. We fix the parameters for all exper-
iments without fine-tuning them on each dataset. We will also
show the stability analysis of parameters in the later experi-
ment section.

5.2 Results on CYMHAT Dataset

We first evaluate the single-view MOT performance (over
all views) using the standard MOT metrics on the real-world
CvMHAT-R dataset, as shown in the top-left block of Table 4.
We can see that the proposed CvMHAT baseline method out-
performs the comparison methods, i.e., MDP, DMAN and
Tracktor++, and gets the comparable results with the state-of-
the-art MOT method StrongSort++, on the ID related metrics,
i.e., IDP, IDR and IDF;. This can be explained from that
the multi-view joint optimization provides more constraints
to the temporal ID consistency. The proposed method also
achieves the comparable performance on MOTA with the
state-of-the-art comparison trackers. It should be added that
MDP outperforms Tracktor++ in this dataset. This may be
due to the following two reasons. First, MDP is a classical
Markov Decision Process based method, which do not use
the deep appearance features. Tracktor++ is a deep learning
based method using the pre-trained appearance model. How-
ever, the cross-domain gap between its training set and the
proposed dataset may make the model not very robust. Note
that, DMAN is based on MDP by integrating new deep fea-
tures. The slightly lower IDF; score of DMAN than MDP
can also verify the above point. Second, Tracktor++ uses
the framework with joint detection and tracking. For fair
comparison, we directly provide the public human detection
without the correction in Tracktor++. This may also decrease
the tracking performance.

Besides, we further evaluate the multi-view MOT perfor-
mance using the proposed multi-view association metrics as
shown in the top-right block of Table 4. For the compari-
son methods that only handle the single-view tracking, we
additionally provide the ground-truth ID matches of the sub-
jects among all views when they first appear in each view.
This way, the tracking on each view actually propagate the
subject IDs to later frames and from the IDs, we can match
the subjects across views over time. We can see that, even
with such additional information, all the single-view tracking
methods, e.g., MDP, DMAN and Tracktor++, including the
state-of-the-art MOT method StrongSort++, produce poor
performance for the multi-view association task. This is
because the cross-view subject matching fails once a sub-
ject is lost in one view. Previous multi-view multi-human
tracking algorithms, e.g., BIPCC and DeepCC, also produce
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Table 4 Comparative results of different methods on CYMHAT-R dataset
Box Method IDP IDR IDF; IDS FM MOTP MOTA mvIDP mvIDR mvIDF; mvMHAA
Detector MDP 614 621 617 16,838 8356 71.5 68.1 433 23.1 30.2 39.1
DMAN 60.5 625 615 12,013 9174 77.3 68.6 53.3 22.8 319 39.5
Tracktor++ 531 512 521 21,709 10,001 76.4 69.5 324 13.9 19.5 329
StrongSort++ 612 672 64.1 1769 8340 67.3 67.3 56.1 34.0 42.3 439
BIPCC 349 336 342 9533 9360 78.1 71.2 9.1 34 5.0 25.4
DeepCC 292 218 250 9092 8250 80.0 55.7 8.0 1.5 2.5 25.4
MHT 547 541 535 4239 20,141 717 49.3 58.6 47.8 52.7 51.7
Ours 654 626 640 3875 9797 78.1 70.7 727 62.7 67.3 73.2
Ours-X 646 60.1 623 3530 9495 81.2 70.9 72.5 61.2 66.3 73.2
Annotation ~ MDP 733  71.8 725 24867 4604 91.0 90.9 48.2 30.1 37.1 46.3
DMAN 66.1 66.6 6064 17,695 4276 93.9 89.7 51.6 27.3 35.7 41.0
Tracktor++ 624 599 6l1.1 24,285 5233 76.7 84.0 35.7 16.1 222 339
StrongSort++  77.7  80.6  79.1 1350 3394 99.0 94.7 63.5 46.4 53.6 57.4
BIPCC 526 505 515 4874 3900 97.6 95.3 10.2 5.0 6.7 29.0
DeepCC 413 337 285 4315 3792 98.2 68.3 10.0 2.8 44 27.8
MHT 745 707 72,6 2699 4401 97.2 87.7 75.0 68.0 71.3 74.8
Ours 815 782 798 2499 4413 97.6 94.1 752 72.8 74.0 85.7

Bold values indicate the best performance for each metric
IDP? (%), IDR1 (%), IDF1 1 (%), IDS |, FM{, MOTP* (%), MOTA? (%) are standard MOT metrics. mvIDP1 (%), mvIDR* (%), mvIDF; 1 (%),

and mvMHAA1 (%) are the new metrics for evaluating the cross-view MOT

poor association results on our benchmark. This is because
that these works aim to handle the long-ferm human track-
ing problem using multiple cameras covering different areas,
which is different from our setting of the multi-perspective
human association and tracking in the same scene using mul-
tiple complementary-view cameras. In our problem, we use
a global top view, i.e., roughly vertical to the ground from
a high altitude, that is different from most previous works
using only horizontal views or slope-angled views, e.g., those
in DuckMTMC (Ristani et al., 2016). Our top-view camera
only captures the top of each subject’s head and shoulders
from high altitude, as shown in Fig. 1c. This way, appear-
ance is not very useful for the human association between top
and horizontal views. In addition, without the camera calibra-
tion, the motion feature is also inconsistent across two kinds
of views. Since such methods (Ristani et al., 2016; Ristani &
Tomasi, 2018) rely solely on appearance and motion features
for cross-camera human association, they can not handle
our cross-top-horizontal-view subject association in the pro-
posed CvMHAT problem. The proposed method achieves an
acceptable association performance by considering both the
over-time and cross-view subject association. For our method
with different detectors, we can see that YOLOX has a more
accurate detection results, thus the corresponding ‘Ours-X’
providing a higher ‘MOTP’ and ‘MOTA’ scores. Although
there is performance difference, the gap is not large. This also
demonstrates that the proposed method is not very sensitive
to the detection algorithms.

Further, to eliminate the effects brought by the false detec-
tions, we use the annotated bounding boxes as detections for
tracking and the result is shown in the bottom of Table 4. We
can still observe better performance on the ID related met-
rics from the proposed method, including the IDF;, mvIDF;
scores. Note that, the MOTP and MOTA scores are generally
high for all methods because of the provided ground-truth
bounding boxes. The comparison method MHT performs
well with the bounding boxes of annotation but not well
enough when using the detector, which demonstrate that this
method is sensitive to the accuracy of detection.

We also compare with a series of most recent MOT meth-
ods, which are based on the joint detection and tracking (JDT)
paradigm. We select three famous trackers, i.e., CenterTrack,
Trackformer, ByteTrack for comparison. Note that, the above
methods aim to jointly achieve the detection and tracking
tasks, which mainly use the self-generated human bounding
boxes in their framework. Even we providing the input detec-
tion, they also filter the boxes by their own detection results.
This way, we directly provide the videos without detection
for these methods. However, these methods can not handle
the top-view videos in our dataset given the domain gap.
To compare with them as much as possible, we evaluate the
results in the horizontal-view videos in our dataset, as shown
in Table 5. We can see that Bytetrack produces the overall
good performance on all metrics because of the algorithm
robustness. Also, Bytetrack provides the best IDS and FM
scores and Trackformer provides the best MOTP score with
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Table 5 Comparative results of different methods on CYMHAT-R (horizontal view) dataset

Method IDP IDR IDF; IDS FM MOTP MOTA mvIDP mvIDR mvIDF; mvMHAA
CenterTrack 37.7 385 38.1 4598 7086 81.9 69.2 31.9 10.2 154 34.0
Trackformer 37.9 42.0 39.9 2363 4620 84.1 69.4 29.4 133 18.3 33.9
ByteTrack 554 66.1 60.3 1209 4607 82.0 69.1 55.4 66.1 60.3 46.3

Ours 66.7 64.5 65.6 3147 5459 82.8 759 80.7 69.5 74.6 67.8

Bold values indicate the best performance for each metric

Table 6 Comparative results of different methods on CYMHAT-S dataset

Method IDP IDR IDF,; DS FM MOTP MOTA mvIDP mvIDR mvIDF; mvMHAA
MDP 61.5 47.0 533 35,629 16,072 88.6 70.2 324 14.9 20.4 29.2
DMAN 59.8 49.3 54.1 26,045 15,685 87.3 69.1 42.6 12.6 19.5 27.8
Tracktor++ 48.0 354 40.8 30,661 25,577 73.4 62.2 29.1 9.1 13.9 26.0
StrongSort++ 69.5 76.0 72.6 1874 18,324 97.1 88.6 62.4 38.0 472 45.8

MHT 66.8 50.6 57.6 7336 8217 91.1 74.8 67.0 33.0 442 39.7

Ours 89.3 83.8 86.5 54,409 11,815 93.0 93.3 87.0 77.6 82.0 83.2

Bold values indicate the best performance for each metric

the precise detection results. For other metrics, the proposed
method outperforms the comparison methods, and especially
with a large margin on the multi-view association task.

Table 6 shows the performance evaluation on our syn-
thetic CvMHAT-S dataset, on which we use the automatically
generated human bounding boxes within the dataset. We do
not include the results of BIPCC and DeepCC (Ristani et
al., 2016; Ristani & Tomasi, 2018) on CvMHAT-S, because
the videos in which containing larger number of subjects
make the solving of the Binary Integer Program in Ris-
tani et al. (2016); Ristani and Tomasi (2018) difficult to
implement. We can see that our method outperforms other
algorithms obviously. From above results on both CvMHAT-
R and CvMHAT-S datasets, we can see that the proposed
benchmark is challenging and has the potential for further
development. We can also see that synthetic data is also chal-
lenging, which can reflect the performance on real data to
some extent.

5.3 Experimental Analysis
5.3.1 Subset Evaluation

As shown in Table 7, we evaluate the single-view tracking
performance on the top- and horizontal-view videos, respec-
tively. Experiments are implemented on CMHAT-R dataset
with the human bounding boxes generated by the detector.
We can first see that, for the previous works, the overall
performance in top view is better than that in horizontal
views. This is mainly caused by frequent mutual occlusions
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in the horizontal views. We can further see that, in top view,
the overall performance of our method is worse than the
comparison methods, without some well-designed tracking
techniques and tricks in previous works. On the contrary, the
proposed method achieves better tracking performance, e.g.,
IDP, IDR, and IDFj, in horizontal view using the joint opti-
mization with the top view. This shows that the top view can
provide complementary information for improving the track-
ing in the horizontal views, which verifies the importance to
study the problem of applying multiple and complementary
views for collaborative tracking.

5.3.2 Ablation Study

We conduct the ablation study of the proposed method.
First, we discuss about the track extracting in each segment.
Specifically, the segment is very short (i.e., 10 frames in our
experiment), in which we use the bounding box intersection
over union (IOU) to extract the track. We evaluate the perfor-
mance of the track generation result using precision, recall
and Fy score, which is shown in the Table 8. A track is taken
as a true positive if and only if it consistently connects the
bounding boxes of the same person across a segment. We
can see that the performance of single-view track generation
is good enough. However, the performance of the overall
tracking, as shown in Table 4, is relatively inferior. This is
mainly because the tracking scenarios in our dataset is not
easy with frequent occlusions, especially for the horizontal
views, as shown in Fig. 2. Given the irregular movement
and frequent occlusions of the subjects, the key challenge
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Table 7 Comparative results of different methods on the subsets of top-view videos and horizontal-view videos, respectively

Method Top view Horizontal view

IDP IDR IDF; IDS FM MOTP MOTA IDP IDR IDF; IDS FM MOTP MOTA
MDP 779 755 767 2011 3776  68.8 64.8 52.1 541 531 14,827 4580 823 70.1
DMAN 7712 758 765 844 4163  68.5 66.2 513 546 529 11,169 5011  82.1 70.1
Tracktor++ 737 703 72.0 2606 5439 634 61.5 41.0 397 403 19,103 4562 834 74.4
StrongSort++  76.1 758 76.0 397 3592 69.0 64.5 535 620 574 1372 4748 829 69.0
Ours 632 595 613 728 4338  69.3 62.1 667 645 656 3147 5459 828 759

Bold values indicate the best performance for each metric

is continuously to track the subject for a long time, i.e., to
associate the track over time and across views in our frame-
work. For this purpose, the most common scene is to associate
the track between two adjacent segments, which is handled
by the association matrix. Another scene is to associate the
track between the nonadjacent segments (long-term occlu-
sion). We addressed this problem through a spatial-temporal
subject association strategy in Algorithm 1.

We then discuss the usefulness of the feature and solu-
tion in our method. We remove the appearance and motion
features in single-view subject similarity measurement,
respectively. The results are shown in Table 9. We can see
that, although with some performance decline, the proposed
method is robust. This is benefited from the collabora-
tive framework using multiple views, which is not highly
depended on the sophisticated deep features. We can not
remove the spatial aware feature because it is necessary in our
framework, which will be discussed in Sect.5.3.3. To verify
the proposed problem formulation and optimization method,
we also compare our method with a clustering based method
used in Ristani and Tomasi (2018); Ng et al. (2002). Specif-
ically, given the weight matrix W, we optimize Eq. (3) by
the spectral clustering algorithm, which makes positive cor-
relation within the same cluster and the negative one among
different clusters. If a clustering group contains more than
two subjects from the same view, we preserve only one with
the highest (average) similarity with other subjects in this
group. We then construct the adjacency matrix A accord-
ing to the clustering. Similarly, we further use a self-tuning
spectral clustering (Zelnik-Manor & Perona, 2004) that can
automatically estimate the number of groups for compari-
son. We can see that the performance of these methods is not
good enough, since they can not include the constraints of
the proposed formulation in Eq. (3). The comparative results
demonstrate the effectiveness of the problem formulation and
optimization in our method.

Table 8 Single-view track extraction results using different features
(%)

Metric Horizontal view Top view
P R Fi P R F
Track 93.22 93.13 93.18 99.47 98.33 98.90

Table9 Comparative study of our method. ‘App.” and ‘Motion’ denote
the appearance and motion features in single-view subject similarity
measurement

Methods IDF; MOTA mvIDF; mvMHAA
w/o App 63.7 70.7 67.1 72.8
w/o Motion 63.3 70.5 66.5 72.6
w Cluster 57.0 56.4 54.8 55.2
w Self-tune 51.8 68.6 65.2 69.0
Ours 64.0 70.7 67.3 732

Bold values indicate the best performance for each metric
‘Cluster.” and ‘Self-tune.” denote that we use a clustering or Self-tuning
clustering algorithm for optimization (%)

5.3.3 Feature Usefulness Analysis

We clarify that the existing methods relying solely on
appearance and motion features can not handle our cross-
top-horizontal-view subject association in the proposed
CvMHAT problem. The key challenge lies in the limited
feature representation ability, for which we show some visu-
alized results in the following.

Appearance Feature Most tracking methods use appear-
ance features for association. In our problem, we use top
view, i.e., roughly vertical to the ground with a high altitude,
which is different from previous works that use cameras with
similar slope-angled views, e.g., those in DuckMTMC (Ris-
tani et al., 2016). Note, in top view, each subject is largely
a small dark region, as shown following Fig. 5a, in which
appearance is not useful for human association between top
and horizontal views. Specifically, we use the state-of-the-
art human re-identification method to extract the appearance
feature of the subjects in top and horizontal views, with which
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Fig.6 Illustration of the optical flow (generated by FlowNet2.0) in two views

we compute the similarity matrix. As shown in the follow-
ing Fig. 5c, we compute the appearance similarity matrix
between all the subjects in top view and those in horizon-
tal view, and show the corresponding ground-truth matching
results in Fig. 5d, where the darker denotes more similar. By
comparing these two matrices, we can see that the appear-
ance feature used in previous methods is inapplicable for the
cross-complementary-view subject association.

Motion Feature The motion features are also actually
not suitable for the cross-complementary-view association
for two reasons: (1) with roughly 90° cross-view difference
while without the camera calibration, the extracted subject
motion features, like optical flow, from top and horizontal
views, are not much related, e.g., subject! in different views
as shown in Fig. 6; (2) the unconstrained camera motions
(caused by the camera wearers’ random movement) reflected
in top and horizontal views are unmatched, which makes it
more difficult to match the motion features in different views,
e.g., horizontal viewerl~3 in Fig. 6.

Differently, in the proposed baseline method, the appear-
ance and motion features are used for the single-view
over-time but not for the cross-top-horizontal-view subject
association, for which we apply the spatial reasoning as dis-
cussed above.

5.3.4 Qualitative Analysis

We show the illustration of the complementary-view multi-
human association and tracking results in Fig. 7. For clarity,
we show the tracking trajectory in the top view and the
multi-view subject IDs in all views. We can see that the tem-
poral trajectory of each subject can be distinctly recorded in
the top-view video, while the multiple horizontal-view cam-
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Fig.7 Illustration of the CvMHAT results

eras observe the subjects from all-around perspectives with
the local details. This also demonstrates the potential of the
proposed CvMHAT for many applications, e.g., the outdoor
video surveillance, which aims to capture both global distri-
bution and local appearance details of the involved people.

5.3.5 Algorithm Speed Analysis

In this section, we further analyze the time consuming of our
baseline method. We also compare the algorithm speeds of
the proposed and other comparative methods.

As shown in Table 10, we record the running time of each
component in the proposed baseline method. In this table,
‘track” denotes the track generation, ‘app.’, ‘motion’ and
‘spatial’ denote the data similarity computation using dif-
ferent features, and ‘optimize’ denotes the solving of the
optimization problem. We can see that the computation time
is mainly taken by the track generation and appearance-based
similarity measurement. The final optimization only takes
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Table 10 Running time (second) of each component in our method

Part Track App Motion Spatial Optimize
Time 0.125 0.087 0.011 0.012 0.002
Ratio (%) 52.7 36.7 4.6 5.1 0.9
Table 11 Speed comparison of different methods (fps)

Tracker MDP DMAN Tracktor++ MHT Ours
Speed 1.08 1.94 1.19 1.74 4.20

550 550

== CUMHAT Rom o m CMHAT S, = CUMHAT-Rom o m CYMHAT-S

Fig.8 Illustration of the performance (IDF; score) variation tendencies
of our method with different parameters A and p on CvMHAT-R and
CvMHAT-S datasets

0.9% of total time. This denotes the efficiency of the pro-
posed problem formulation and optimization.

We also compare the overall speed of our method with the
comparison MOT trackers in Table 11. We can find that our
method runs faster than all the comparison methods with a
speedup of 2—4 times. Note that, our main program frame-
work, except the neural network for appearance extraction,
runs on a desktop computer using CPU only, which can be
faster with the GPU acceleration.

5.3.6 Usefulness of the Synthetic Dataset

1) Parameter Selection for Our Model To verify the useful-
ness of the proposed synthetic dataset as far as possible, we
provide the experimental analysis for parameter selection in
our model. Specifically, in the real-world application of our
model, we can not obtain the ground-truth results to fine-tune
the parameters in our model for the best performance. But
the ground-truth results in synthetic data are easy to obtain.
This way, if the parameters selected on the synthetic data per-
form well enough, the synthetic data is useful for our model.
This way, we select different parameter settings and test the
corresponding performance on the synthetic and real-world
data, respectively. As shown in Fig. 8, we investigate the
performance of our method by changing the parameters A
and p in Eq. (10), on the real-world CYMHAT-R and syn-
thetic CvMHAT-S datasets, respectively. We can see that the
variation tendencies of the performance on two datasets are
basically consistent. Note that, the impact of the parameter
adjustment to the proposed method is not very significant.
This is because that the parameter variation range here is

s

(

Fig.9 IDF; score (a) and mvIDF; score (b) for all the compared meth-
ods on CvMHAT-S and CvMHAT-R datasets

not very large and the proposed method is not very sensitive
to the parameter selection. The above experiments, to some
extent, verify that the synthetic dataset can help our method
for selecting the appropriate parameters to be applied to real-
world data.

2) Pre-training Data for Deep Learning Algorithms We
also conduct the experiments to show the effectiveness of
using synthetic data to obtain better performance on real
data. We therefore select a deep learning method to train
the model with and without the synthetic data and test it on
real data to verify how much the synthetic data helps. Specif-
ically, we selective a self-supervised learning method (Gan
et al., 2021), which can be used for the multi-view multi-
human association and tracking. However, this method only
focuses on the first-person-view videos. This way, we select
the multi-horizontal-view videos in our dataset to conduct
the experiments. Specifically, we first directly test the model
on the real-world dataset, whose results are shown in the first
row in Table 12. We then re-train the model using our syn-
thetic data and show the results in the second row. We can
see that the overall results are not very good, since this is
a self-supervised method and there exits a domain gap. By
comparing the results, We can still see that the training on
the synthetic data is proved to help the performance improve-
ment.

3) Testing Results for all Compared Methods We further
clarify that, even only considering the testing stage, the syn-
thetic data is useful to some extent. In Fig. 9, we show the
statistics of the performance for all the compared methods,
on the synthetic data (CvMHAT-S) and the real-world data
(CvMHAT-R), respectively. We can see that, these meth-
ods show the basically coincident relative performance on
these two datasets. In practice, for a real-world scene, we
can quickly build a synthetic scene following the real one
and collect the data, on which we can test the performance of
some methods. The results can reflect those on the real-world
data, which, however, is not easy to obtain and annotate.

6 Applications and Future Work

All-Around Surveillance System CvMHAT can be regarded
as a foundation for building the air-ground-synergetic video
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Table 12 Comparative results of the method in Gan et al. (2021) on the multi-horizontal-view videos in CvMHAT-R dataset

Method IDP IDR  IDF; IDS FM MOTP MOTA mvIDP mvIDR  mvIDF; mvMHAA
w/o train 33.0 378 352 31,008 17,952 83.0 53.2 20.2 12.2 15.2 159
w train. on CvMHAT-S  43.1 46.2 446 13,281 9633 84.5 69.6 30.8 17.3 222 32.6

surveillance system. Based on this, we can obtain the global
picture of the people crowd and clear trajectory of each sub-
ject from the top view in the air. We can simultaneously
observe the details, e.g., pose, actions, of some specific sub-
jects, from the horizontal view on the ground.

Multi-view Action Recognition/Person Localization With
multi-view MHAT as the basis for human scene analysis, it
can achieve the multi-view collaborative human action recog-
nition. As shown in Han et al. (2022b), a simple multi-view
integration strategy can help the action recognition task in a
crowded scene. This is because the multiple cameras are more
likely to capture the better FOV for recognizing the human
actions. Similarly, as discussed in Han et al. (2020b), we
can use the horizontal-view camera for the interested activity
perception and the top view as integration for the co-interest
person localization.

Other Potential Applications The proposed problem may
have other potential applications in the future, such as helping
the visually impaired people for route navigation and obstacle
avoidance, and developing the rough 3D reconstruction and
mapping for a large-scale scene.

In the future, based on this benchmark, we aim to develop
more effective features or techniques for the cross-view
subject association, especially for the cross-top-horizontal
views, e.g., those based on deep learning methods. Also, more
joint learning paradigms and frameworks for the cross-view
and over-time subject association and tracking are desirable.
We believe these can very hopefully benefit the read-world
applications in video surveillance, sport analysis, etc.

7 Conclusion

Complementary-view multiple human association and track-
ing (CvMHAT) is a relative new and challenging task. In this
paper, we have built a new CvMHAT benchmark for this
task, which contains both a real-world and a synthetic video
dataset. Compared to existing datasets, the CYMHAT bench-
mark adopts the moving cameras from one top view and
multiple horizontal views for data collection, with all the
required annotations, including subject bounding boxes on
each frame and consistent cross-frame and cross-view sub-
ject ID numbers. We further proposed a simple and effective
baseline method. Experimental results verified the usefulness
of this new dataset and effectiveness of the proposed baseline

@ Springer

method. We have released all the data and code to the public,
which we hope to bring convenience to other researchers to
work on this emerging topic.
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