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Abstract
The potential of video surveillance can be further explored by using mobile cameras. Drone-mounted cameras at a high
altitude can provide top views of a scene from a global perspective while cameras worn by people on the ground can provide
first-person views of the same scene with more local details. To relate these two views for collaborative analysis, we propose
to localize the field of view of the first-person-view cameras in the global top view. This is a very challenging problem due
to their large view differences and indeterminate camera motions. In this work, we explore the use of sunlight direction as a
bridge to relate the two views. Specifically, we design a shadow-direction-aware network to simultaneously locate the shadow
vanishing point in the first-person view as well as the shadow direction in the top view. Then we apply multi-view geometry to
estimate the yaw and pitch angles of the first-person-view camera in the top view. We build a new synthetic dataset consisting
of top-view and first-person-view image pairs for performance evaluation. Quantitative results on this synthetic dataset show
the superiority of our method compared with the existing methods, which achieve the view angle estimation errors of 1.61◦
(pitch angle) and 15.13◦ (yaw angle), respectively. The qualitative results on real images also show the effectiveness of the
proposed method.
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1 Introduction

Various mobile cameras can capture richer visual informa-
tion for high-performance surveillance (Han et al., 2022; Liu
et al., 2016). On one hand, cameras worn by people on the
ground, such as phone cameras and GoPro, can conveniently
approach and record the nearby people and events from a
first-person view (Lin et al., 2015; Zhao et al., 2020; Zheng
et al., 2017). On the other hand, aerial cameras, such as those
mounted to a drone, can capture a bird’s-eye top view of the
scene from high altitude, which is also widely used in many
civil and military scenarios (Barekatain et al., 2017; Li et
al., 2021; Perera et al., 2019; Singh et al., 2018; Zhang et
al., 2020). As presented in Han et al. (2022), the comple-
mentary view is defined as the combination of a top view
from the camera in air, and a first-person view from a camera
on the ground. Note that, the top view with a high altitude
can provide the global picture of a crowd scene, while the
first-person view provides the local details of interest with a
flexible field of view (FOV). Recent research has shown that
the collaborative analysis of these two complementary views
can significantly enhance the capability of video surveil-
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lance (Ardeshir & Borji, 2018a, b; Han et al., 2020b). For
example, in an outdoor scenario without pre-installed cam-
eras, we can associate the videos taken by the cameras on
a drone (top view) and worn by several law enforcement
officials (first-person views) for collaborative tracking (Han
et al., 2020a), individual/group activity recognition (Zhao et
al., 2020), important person identification (Han et al., 2020b)
and anomaly detection, etc. The above setting also becomes
more and more available in practice due to the widespread
use of drones and various wearable cameras.

To establish such complementary-view mobile camera
system and further explore comprehensive information, we
need to first build certain cross-view correspondence at the
pixel, region, structure, or object levels. Previous works
try to address or simplify this problem by making certain
assumptions, e.g., consistent view and motion directions of
the camera wearer (Ardeshir & Borji, 2018a, b), or zero
pitch angle of the first-person view camera (Han et al.,
2020b), but many of these assumptions may not hold in
practice. While a full relative pose calibration between the
two complementary-view cameras can thoroughly solve this
problem, it is very difficult given the indeterminate camera
motions and the significant view difference. In this work, we
attempt to address a weaker version of calibration – localiz-
ing the field-of-view (FOV) of the first-person view camera in
the global top view by estimating its relative yaw and pitch
angles. Here we do not consider the roll angle of the first-
person view camera, since the head tilt is not common for a
camera wearer in real-world applications. This weak camera
calibration can relate the two complementary-viewdirections
and help address many important surveillance tasks, such as
cross-view person identification (Han et al., 2019, 2020a)
and co-attention person detection (Han et al., 2020b), as dis-
cussed in later sections.

Relating the two complementary-view directions is still a
very challenging problem—the top view direction is largely
perpendicular to the groundwhile thefirst-person viewcanbe
parallel to the ground, as shown in Fig. 1a–b. Existing meth-
ods are mostly based on key-point detection and matching,
followed by estimating a multi-view geometry transform.
However, key-point features vary significantly and usually
cannot be correctly matched across the first-person and top
views. Identifying human body joints as key points is also
infeasible—in top view, each person on the ground can be
very small and only his/her head top and two shoulders are
visible. Gyroscopes integrated in the smart phones and cam-
eras cannot be used to solve the proposed problem either,
e.g., external disturbances produce random drift error in yaw
angle measurement all the time, especially when a magnetic
source is nearby.

In this work, we propose a new approach of leveraging the
sunlight and the human shadow vanishing point to address
the above problem. The vanishing point is generally defined

Fig. 1 An illustration of the proposed problem of relating a the first-
person view and b the synchronous top view of a real-world scene.
Illustration of the shadow vanishing point localization in the first-person
view (c) and shadow direction estimation in the top view (d) in the
simulation environment

as a point in the perspective drawing ontowhich parallel lines
appear to converge. In this work, we specifically adopt the
shadow vanishing point, i.e., the intersection point of lines
along the human shadows in the image taken by the camera.
The top view is nearly vertical to the ground, on which the
shadows keep parallel and the (shadow) vanishing point is
treated as intersecting at a point at infinity. In the first-person
view, the shadow vanishing point may be located within or
outside the image perimeter, and actually even at infinity in
the degenerate cases. In specific, as shown in Fig. 1d, given
sunlight source at infinity and largely vertical top-view direc-
tion, shadows of different people on the ground are parallel
to each other and have the same direction in the top view. In
the first-person view, the lines passing through these shadows
intersect at a common (shadow) vanishing point, as shown
in Fig. 1c. Based on this, we propose to use the sunlight
direction as a bridge to relate the first-person and the top
views. More specifically, after detecting shadows in both
views, we propose a simple yet effective Shadow Vanish-
ing Point Detection Network (SVPN) to simultaneously get
the shadow vanishing point in the first-person-view image
and the shadow direction in the top-view image. With them,
we build a geometric transformation based on the multi-view
geometry (Hartley & Zisserman, 2003) to estimate the first-
person view direction relative to the top view.

In the proposed method, we use a deep neural network for
the shadow vanishing point/direction detection task. This is
because the deep learning based method has shown superior
performance in various detection tasks. After that, we use a
classical geometric model for the (weak) camera calibration
task, since in which the deep-learned solutions are currently
not preferable over classical ones, especially for the comple-
mentary view in our problem with very limited overlapped
FOV for deep feature extraction. Note that, the proposed
method is only applicable to the scenes with the presence
of multiple (≥2) people and sunlight that casts shadows, as
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shown in Fig. 1. Other light interference shall be weak by not
producing shadows, and other objects and their correspond-
ing shadows are allowed in the scene.With these restrictions,
the applicable scenes are actually quite common for daytime
outdoor video surveillance – the goal of many surveillance
tasks is to detect, track and recognize the activities in multi-
person scenes.

The main contributions of this work are:
① We study a new problem of relating the view directions

of two complementary-view mobile cameras: one for the top
view from a high altitude and the other for the first-person
view on the ground. Although previous works have tried to
estimate the camera pose with large view difference or little
FOV (field of view) overlap. There are few existing work
studies to relate the camera pose with approximately orthog-
onal view angles and such far distance (a few tens of meters)
in this work. To the best of our knowledge, this work is the
first to specifically study this new and challenging problem,
which is a fundamental problem for the complementary-view
video collaborative analysis.

② We provide a new insight for camera calibration with
large view difference. Specifically, the proposed method
explores the sunlight direction (a common and stable nat-
ural phenomenon) as the cue to relate the complementary
views.We novelly adopt the (human shadow) vanishing point
detected in both views to build the multi-view geometric
transformation. We also establish a framework based on the
above insight to solve the proposed problem, in which we
integrate a deep network based vanishing point detection
module and a multi-view geometry based camera relating
module. This framework integrates both the generalization
of the deep network for detection task and the theory guar-
antee of the classical geometry for camera pose estimation
task.

③ We have built a benchmark including the control-
lable shadow generation tool ShadowX, dataset, annotation,
and evaluation metrics for this problem, which are released
at https://github.com/realgump/CVCR. We hope that these
resources can establish a research foundation for the com-
munity to study the proposed new yet important problem.

2 RelatedWork

Cameras Extrinsic Calibration Applications with multi-
ple large-view-difference cameras usually require extrinsic
calibration to determine their accurate relative poses and
many methods have been developed to solve this prob-
lem (Miraldo et al., 2015; Guan et al., 2021). In Liu et
al. (2014), high-precision measuring devices, such as laser
trackers and laser range finders, are adopted to help the
extrinsic calibration of cameras. In Dong et al. (2016),
Birdal et al. (2016), visual measuring instruments are

employed to bridge the gap between the FOVs of different
cameras. These methods require additional devices which
may not be available in many applications. In Micusik
(2011), Censi et al. (2013), different structure from motion
(SfM) (Schonberger & Frahm, 2016) methods are devel-
oped to track the movement of targets and establish the
FOV relationship between different cameras. These meth-
ods have difficulty to handle the complementary views
discussed in this work, especially the top view where
subjects are of very small size with little appearance
details.

Vanishing Point Detection Vanishing point detection is a
fundamental problem in computer vision (Magee & Aggar-
wal, 1984; Yang et al., 2016; Zhai et al., 2016). After the
initial work proposed by Barnard (1983), various methods
have been developed for finding different vanishing points in
2D images (Antunes & Barreto, 2013; Barinova et al., 2010;
Coughlan & Yuille, 1999; Kluger et al., 2017; Lezama et
al., 2014; Schindler & Dellaert, 2004; Vedaldi & Zisserman,
2012; Wildenauer & Hanbury, 2012a). One popular way for
vanishing point detection is to cluster the line segments fol-
lowed by different refinement procedures (Lezama et al.,
2014; Schindler & Dellaert, 2004; Tardif, 2009; Wildenauer
& Hanbury, 2012b). Many clustering algorithms include
RANSAC (Bolles & Fischler, 1981), J-linkage (Tardif,
2009), Hough transform (Hough, 1959), and EM (Kogecka
&Zhang, 2002) have been explored for solving this problem.
Recently, deep-learning methods have shown great success
in vanishing point detection (Borji, 2016). The key idea is
to extract the global image context using a deep convo-
lutional network and then use it to help select vanishing
points from a set of candidates under consideration. Kluger
et al. (2017) presented a CNN-based approach for detect-
ing vanishing points from a Gaussian sphere representation.
Lee et al. (2017) proposed a unified end-to-end network
that jointly handles the lane and road marking detection.
Recently, Zhou et al. (2019) present a simple yet effective
deep network with geometry-inspired convolutional opera-
tors for detecting vanishing points in images. Several works
also leverage the sun light or vanishing points for vision
based applications. Balcı and Güdükbay (2017) estimate and
utilize the sun position based on shadow length and uti-
lized this estimation to insert synthetic objects into a real
video with their shadows. Doğan et al. (2021) utilize the
vanishing points and an image-based camera configuration
method to automatically reconstruct navigable regions in
a crowd video to augment virtual agents seamlessly into
the real video. While all these methods focus on vanish-
ing points of parallel line structures like lanes, roads, and
buildings, in this work, we detect and use the vanishing
point of person shadows, which may show more complex
shape.

123

https://github.com/realgump/CVCR


International Journal of Computer Vision (2023) 131:1106–1121 1109

Complementary-View Camera Collaboration Recently, col-
laborative analysis of multiple videos taken from the top
view and the first-person view has drawn much attention in
the vision community (Ardeshir & Borji, 2016, 2018a, b;
Ardeshir et al., 2016; Han et al., 2019, 2020a, b). Ardeshir
and Borji (2016), Ardeshir and Borji (2018a) propose to
identify the egocentric camera wearer in the top view using
synchronized video pairs. In Ardeshir and Borji (2018b), it
is extended to simultaneously identify both the egocentric-
camera wearer and the other subjects in top views. These
works require the view direction of the first-person-view
camera to be consistent with moving direction of the camera
wearer, which may not hold when the wearer rotates head
or stands still. They also require the top-view direction to
be an inclined angle with less altitude for feature matching
between the top and the first-person views. In our paper, we
remove these requirements in our problem formulation and
solution. Another series of works (Han et al., 2019, 2020a, b)
try to obtain the cross-view human association and tracking,
by exhaustively searching for the first-person camera and
its yaw angle in the top view. In this work, we leverage the
shadows to more accurately estimate both the pitch and yaw
angles of first-person camera in the top view.

3 ProposedMethod

3.1 Overview

In this work, we propose a simple yet effective model to
relate view directions of complementary-view mobile cam-
eras. As shown in Fig. 2, given a pair of images from
synchronized first-person view and top view, respectively,
we first apply a shadow detector, e.g., LISA (Wang et al.,

2020) or MTMT-Net (Chen et al., 2020), to segment the
shadow regions in both images. We then propose a Shadow
Vanishing Point Detection Network (SVPN), in which the
shadowmaps of two views are fed into a two-stream network
with different loss functions in each stream. With SVPN,
we simultaneously detect the shadow vanishing point in the
first-person-view image and the shadow direction in the top-
view image. Finally, given the predicted vanishing point and
shadow direction in the two views, respectively, we perform
a geometric transformation to evaluate the view direction of
the first-person view in the top view. In the following sub-
sections, we will describe the proposed SVPN and geometric
transformation in detail.

As mentioned above, shadows of different people are
largely parallel in the top view, while the lines passing
through them usually intersect at a common vanishing point
in a first-person view after perspective projection. We unify
both of them as vanishing point detection by treating the
parallel shadows in the top view as intersecting at a van-
ishing point at infinity. In the first-person view, the shadow
vanishing point may be located within or outside the image
perimeter, and actually even at infinity in the degener-
ate cases. Considering that human shadows do not always
present explicit line features, we develop a CNN-based
shadow vanishing point detection network (SVPN) to locate
the vanishing points in both views.

3.2 ShadowVanishing Point Detection

First, we apply a shadow detector, e.g., Wang et al. (2020),
to predict the shadow map in each view, i.e., a binary map
segmenting the shadow region from the background, as
shown in Fig. 3. Without detailed appearance and texture
information, we only need to use a shallow network com-
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Fig. 2 Framework of the proposed complementary-view mobile camera view directions
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Fig. 3 An illustration of the SVPN architecture
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Fig. 4 An illustration of the model used for relating the top view and the first-person view in the proposed method

posed of the Convolutional Neural Network (CNN) layers
to extract features from the shadow map, followed by the
fully connected (FC) layers to regress the location of the
vanishing point, which is shown in Fig. 3. Specifically, the
SVPN network is built by two basic building blocks BC and
BF: BC(c1, c2) � {Conv(3 × 3, c1) − ReLU − Pool(c2 ×
c2)},BF(c) � {FC(c) − ReLU}, where Conv is 2D con-
volution layer, and c, c1, c2 are parameters. The structure
of the SVPN is {BC(16, 2) − BC(64, 2) − BC(128, 2) −
BC(256, 2) − BC(512, 2) − BC(1024, 3)}-{ BF(1024) −
BF(512) − BF(256) − FC(2)}. Both the top and first-person
views share the same network architecture but using different
loss functions.

Loss Function Given the shadow direction
−→
Spred∈ R

2 pre-
dicted in the top view and its corresponding ground truth
−→
Sgt∈ R

2, we use a cosine distance loss function

Ltop =
−→
Spred · −→

Sgt

‖ −→
Spred ‖‖ −→

Sgt ‖
. (1)

In the first-person view, given the predicted vanishing
point Vpred = (xpredv , ypredv ) and its ground truth Vgt =
(xgtv , ygtv ), a straightforward method for loss estimation is
to calculate the distance between Vpred and Vgt. However,
each coordinate of the vanishing point may take values in
the range of (−∞,∞). When the vanishing point far away
from the image center, a small error of the view direction
estimation may generate very large distance between Vpred

andVgt. This way, we use the angle error instead of the point
distance to help reduce the sensibility of loss. Specifically,
we first calculate the following two auxiliary angles

θ
pred
x = arctan

xpredv − xctrv

fx
,

θ
pred
y = arctan

ypredv − yctrv

fy
,

(2)

where O = (xctrv , yctrv ) is the center of the image, and fx , fy
are two focal lengths. We indicate a line between the (pre-

dicted) vanishing point and the camera optical center, and
another line between the image center point and camera opti-
cal center (i.e., center axis of camera that is perpendicular to
the image plane). Actually, θpredx and θ

pred
y denote the angle

between thees two lines along the x-axis and y-axis, respec-
tively. Note that, θpredx,y and θ

pred
x,y are normalized into the range

of [- 12π ,
1
2π ]. Similarly, we can get θgtx and θ

gt
y by replacing

xpredv and ypredv with xgtv and ygtv , in Eq. (2), respectively. Then,
we use Mean Square Error (MSE) function to define the loss

Lfp = 1

2

∑

i∈{x,y}
(θ

pred
i − θ

gt
i )2. (3)

3.3 View Direction Relating

As shown in Fig. 4a, we assume the view direction of top-
view camera is perpendicular to the ground. We set up the
world coordinate system on the ground with the origin at the
intersection point of the view direction of top-view camera
and the ground plane. The projection of the sunlight onto
the ground is taken as the positive direction of the Z-axis.
Following the right-hand rule, we can get the X-axis and
XOZ is the ground plane. In this section, for convenience the
light direction refers specifically to the direction of sunlight
projection on the ground plane.

Considering the challenge caused by the large view differ-
ence, we use light direction as an intermediate representation
to relate the first-person view and the top view, by solving
two sub-tasks: 1) Finding the included Euler angle A :=〈
0, 0, rolltop

〉
between the orientation of the top-view camera

and the light direction, 2) finding the included Euler angle
B := 〈

pitchfp, yawfp, 0
〉
between the view direction of the

first-person-view camera and the light direction. In this work,
for the first-person camera, we only consider the yaw angle
that describes the rotation parallel to the ground, and the
pitch angle that reflects the look-up or head-down, since yaw
and pitch are the most common transforms of the first-view
wearable cameras.

For sub-task 1), as shown in Fig. 4b, we can directly obtain
the relation between the light direction and the orientation of

123



International Journal of Computer Vision (2023) 131:1106–1121 1111

the top-view camera by calculating the angle between the

unit vector
−→
u , along the positive horizontal direction of the

top-view image (u-axis), and the predicted shadow direction
−→
Spred in the pixel coordinate system of the top-view image,
i.e.,

rolltop = arccos

⎛

⎝
−→
Spred · −→

u

‖ −→
Spred ‖‖ −→

u ‖

⎞

⎠ . (4)

For sub-task 2), the vanishing point in the first-person
view corresponds to a point at infinity, i.e., the intersection
of parallel lines, in the real world. Therefore, the shadow
vanishing point in the first-person imaging plane can reflect
the light direction in the real world. Combining the coor-
dinate system defined in Fig. 4a, we establish the relation
between the point at infinity on Z-axis, i.e., Z∞, and the
shadow vanishing point. Note that, two opposite light direc-
tions will produce the same vanishing point. In this section,
we only discuss the situation as shown in Fig. 4a and we
will show how to address the non-unique-solution problem
in Sect. 3.4. Specifically, given the homogeneous-coordinate
predicted vanishing point Vpred = (xpredv , ypredv , 1)� in the
first-person-view image, we have

zVpred = Kfp [R|t]Z∞, (5)

where z is a scalar factor,Kfp is the intrinsicmatrix of thefirst-
person camera, rotation matrix R ∈ SO (3) and translation
vector t ∈ R

3 are the extrinsic parameters of the first-person
camera, and Z∞ = (0, 0,−1, 0)�. Because the rotation R
can be represented as an equivalent form of

R = Rθ (pitch
fp)Rψ(yawfp)Rφ(0), (6)

where Rθ (pitchfp),Rψ(yawfp),Rφ(0) are

Rθ (pitch
fp) =

⎡

⎣
1 0 0
0 cos(pitchfp) − sin(pitchfp)
0 sin(pitchfp) cos(pitchfp)

⎤

⎦ ,

Rψ(yawfp) =
⎡

⎣
cos(yawfp) 0 − sin(yawfp)

0 1 0
sin(yawfp) 0 cos(yawfp)

⎤

⎦ ,

Rφ(0) = I3.

(7)

By combining the Eqs. (5)–(7), we have

z(Kfp)−1

⎡

⎢⎣
xpredv

ypredv

1

⎤

⎥⎦ =
⎡

⎣
sin(yawfp)

− sin(pitchfp) cos(yawfp)

− cos(pitchfp) cos(pitchfp)

⎤

⎦ . (8)

Hence, we can obtain the yaw and pitch components of the
Euler angle B as

pitchfp = arctan

(
ypredv − cy

fy

)
,

yawfp = arctan

(
(cx − xpredv ) cos(pitchfp)

fx

)
,

(9)

where fx , fy are two focal lengths and cx , cy are the coor-
dinates of the first-person camera’s principal point, in the
intrinsic matrixKfp. Note that, here we use the pinhole cam-
era model for convenience.

After getting the Euler angles A and B, we can map the
view direction of the first-person camera to the top view by

yaw = yawfp + rolltop, pitch = pitchfp, (10)

where yaw angle is between the view direction of the first-
person-view camera and the u-axis of the pixel coordinate
system of the top-view image, and pitch angle is between the
view direction of first-person-view camera and the imaging
plane of the top-view camera.

3.4 Implementation Details

Network Training As shown in Fig. 2, to train the proposed
SVPN,weuse the human shadowmaps as input, aswell as the

corresponding
−→
Sgt andVgt as output. Note that, in real-world

scenes, the ground-truth (human) shadow maps and vanish-
ing points are very difficult to obtain. This way, we develop
a controllable shadow generation tool ShadowX to automat-
ically get the accurate shadow maps and vanishing points
without manual annotation, which will be described in detail
in Sect. 4.2.Weuse the different shadowdetectors to generate
the shadow map for SVPN. Specifically, during training, we
first feed the ground-truth shadow segmentationmaps, which
are automatically generated by our ShadowX, into the SVPN
for pre-training.After that, we fine tune the pre-trainedmodel
by feeding the shadow maps generated by a state-of-the-art
shadow detection algorithm, i.e., LISA (Wang et al., 2020).
In the testing stage, we use the LISA algorithm to generate
shadow maps.

Strategy for Ambiguity Elimination In Sect. 3.3, we have
mentioned that a vanishing point (in the first-person view)
may be generated from two opposite candidate light direc-
tions, from which we have to ensure the unique light
direction. Therefore, we use a simple and effective strategy
based on the prior observation that the subject itself is always
located between the light and its shadow (in both the top-
and first-person view images). This way, in the first-person
view, we estimate the rough light location by the above prior
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observation and further select the unique light direction from
two candidates. Similarly, we should also ensure the unique
shadow direction in the top-view image, where we directly
feed the instance shadow detection results with the locations
of both the subjects and shadows to regress the shadow direc-
tion using the proposed top-view stream of SVPN, which can
be regarded as implicitly including the above prior obser-
vation by taking the relative position of the subjects and
shadows as input.

4 Proposed Dataset

We do not find publicly available datasets with top-view and
first-person-view images with ground-truth annotations of
shadow direction and camera directions. Actually, without
additional measuring devices, it is very difficult to get the
ground-truth view directions for such complementary views.
The vanishing point in the first-person view is also hard to
annotate accurately, especially when it is located far away
from the image center. Therefore, we instead develop a con-
trollable engine to generate a new synthetic dataset to ensure
the reliability and accuracy of the annotations, which also
facilitate more in-depth analysis.

4.1 System Configuration

Controllable ShadowGeneration Tool—ShadowX Webuild
the tool namely ShadowX for simulation data generation,
which is built on Unity 3D (Riccitiello, 2018). Specifi-
cally, we create a 3D controllable world with changeable
person models and scenes. The person models are from Per-
sonX (Sun & Zheng, 2019) project and the scenes are from
Unity Store. The virtual world is controllable on person posi-
tion, camera position, illumination and shadow rendering.
Thus, we can use ShadowX to build various and computable
environments and generate corresponding images with accu-
rate annotations.

All these configurations in ShadowX are editable, which
are described as below.

• Illumination: Illumination parameters in ShadowX can
be set freely. Light source can be directional light, spot light,
point light, etc. Other parameters, including the direction,
position, number, and intensity of lights, can be customized
and modified. Different combinations of these them make
shadow generation controllable and computable.

• Cameras: The intrinsic parameters of cameras, such as
field of view, resolutions, and focal length, and the extrinsic
parameters of cameras, such as transformation and rotations,
can also be accessed and modified in ShadowX.

• Subjects: The settings of subjects in each scene are con-
trollable, including the number of subjects, the initial position

of each person, and the moving direction of each person at
each time.

4.2 Synthetic Dataset

Specifications for Dataset Construction With ShadowX, we
generate a new synthetic dataset formodel training and quan-
titative performance evaluation of our method. We select
several lifelike virtual environments, e.g., the basketball
court, soccer field, city street and campus as the backgrounds
in our dataset and different backgrounds have impact on the
shadow detection.We use humanmodels from PersonX (Sun
& Zheng, 2019) as the people in each scene. In each image,
there are 2 - 10 persons walking in the scene, and one of
them wears a wearable camera overhead to observe the other
people. Six factors are set to be random to ensure the vari-
ety and diversity of the synthesized images: (i) the position
of the first-person-view camera, (ii) the pitch angle and yaw
angle of the first-person-view camera, (iii) the roll angle of
the top-view camera, (iv) the light direction, (v) the position
of each person, (vi) the moving direction of each person. We
employ a single point light source at infinity to simulate the
sunlight. The range of the pitch and yaw angle of the first-
person-view camera are set as 30◦ and 360◦, respectively.
The range of the roll angle of the top-view camera is 360◦.
Note that, all the factors are randombutwith rough balance in
terms of the number of synthesized images, to prevent from
undesired biases to certain factors. Some sample images are
shown in Fig. 5.

Dataset Statistics We generate in total 8000 images, i.e.,
4000 pairs of the top- and first-person views, of the reso-
lution of 968 × 545 for our dataset. We use ShadowX to
generate rich annotations including 3D coordinates the per-
sons and cameras, segmentations of human shadows, and
Euler angles between the light and the top/first-person view
directions. We further perform geometric transform to get
2D pixel coordinates of person and camera locations and the
vanishing points. We split the dataset into training data and
testing data by ratio 4:1 with no overlap.

Training Data Generation Shadow map generation: For the
shadowmaps, we first generate the images with shadows and
then create the images without the shadows by closing the
shadow rendering. This way, we can obtain the shadow map
through the difference between the images with and with-
out shadows. Vanishing point generation: We can also get
the ground-truth vanishing points in ShadowX. In specific,
with ShadowX, given the sunlight direction and the human
location in the world coordinate system, we can get the 3D
human shadow vectors of all the subjects on the ground (in
the world coordinate system), which are mutual parallel.
Also, with the intrinsic parameters and extrinsic parame-
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Fig. 5 Sample image pairs in the proposed synthetic dataset. Top: first-person view. Bottom: Top view

ters of the cameras, we can transform the shadow vectors
into the top-view and first-person-view images, respectively.
In the top view, the 2D human shadow vectors keep paral-

lel to each other. Then we can get the shadow direction
−→
Sgt

defined in Eq. (1). In the first-person view, we can also get
all the 2D human shadow vectors. Considering the properties
of perspective transformation, all these shadow vectors will
intersect into the vanishing point. This way, we get the loca-
tion of the vanishing point on the first-person-view image,
i.e., Vgt, by calculating the intersection of the 2D shadow
vectors.

4.3 EvaluationMetrics

We use MAE (Mean Absolute Error) score as the evaluation
metric in three tasks, i.e., Task I of first-person-view vanish-
ing point prediction, Task II of top-view shadow direction
prediction, and Task III of relating the first-person view and

the top view. MAE is computed as M =
∑n

i=1 |Δ(ŷi ,yi )|
n ,

where ŷi and yi are the predicted and ground-truth values
of the i-th image. In different tasks, Δ is defined differently,
including ΔV ,ΔS,ΔP ,ΔY as described below.

For Task I, on the first-person view, let Vpred =
(xpredv , ypredv , 1) and Vgt = (xgtv , ygtv , 1) be the homogeneous
coordinates of the predicted vanishing point and the ground-
truth vanishing point, respectively, and O = (xctrv , yctrv , 1)
be the center of the image. Cfp is the optical center of
the first-person-view camera. The coordinate-based error
between the predicted and the ground-truth vanishing points
are

−→
CfpVpred = (xpredv − xctrv , ypredv − yctrv , f ),

−→
CfpVgt = (xgtv − xctrv , ygtv − yctrv , f ),

(11)

where f is the camera focal length. As discussed above, we
combine them into an angle-based error metric by

ΔV (Vpred,Vgt)

= arccos

⎛

⎝
−→

CfpVpred · −→
CfpVgt

‖ −→
CfpVpred ‖‖ −→

CfpVpred ‖

⎞

⎠ ,
(12)

For Task II, in the top view, let
−→
Spred and

−→
Sgt be the pre-

dicted and ground-truth (normalized) direction vectors of the

shadows.We define the included angle between
−→
Spred and

−→
Sgt

as the error by

ΔS(
−→
Spred,

−→
Sgt) = arccos

⎛

⎝
−→
Spred · −→

Sgt

‖ −→
Spred ‖‖ −→

Sgt ‖

⎞

⎠ . (13)

For Task III, we first evaluate the relative pitch and yaw
angles between the two views as defined in Eq. (10), using the
errors ΔP and ΔY to be the difference between ground truth
and the prediction. We further define δP and δY to be a nor-
malized version of ΔP and ΔY as δP = ΔP

DP
× 100%, δY =

ΔY
DY

× 100% , where DP = 30◦ and DY = 360◦ are range
of the pitch and yaw angle, respectively, used in our data
generation. Then we compute average of δP and δY as the
overall error δA. Besides that,we also use 10%and20%as the
threshold for δA for each image to count for the true predic-
tions, and evaluate the corresponding accuracy as Acc@10
and Acc@20, respectively.

5 Experimental Results

5.1 Setup

We use Pytorch backend for implementing the proposed net-
work and run on a computer with RTX 2080Ti GPU. Before
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Table 1 Comparative results of different methods, where ‘–’ denotes the ablative results that are not influenced, and ’/’ denote the ablative results
that can not be obtained by the corresponding method

ΔV ↓(◦) ΔS ↓(◦) ΔP ↓(◦) ΔY ↓ (◦) δp ↓(%) δY ↓ (%) δA ↓ (%) Acc@10↑ Acc@20 ↑
D2-Net + 5 points / / 81.43 89.56 271.43 24.88 148.16 8.48 11.13

Samp. w prior 91.39 92.49 20.23 89.00 67.43 24.72 46.08 2.38 11.26

Shadow + direct. 83.90 89.07 21.59 88.67 71.96 24.63 48.29 27.95 29.80

w Eucli. loss 70.28 – 13.20 55.88 44.01 15.52 29.77 10.86 32.05

w/o select. – – – 59.77 – 16.60 11.17 61.85 72.32

w/o hum. in top – 26.06 – 36.67 – 10.19 7.96 75.89 87.55

w/o shadow for tuning 20.94 65.31 1.88 68.00 6.26 18.89 12.57 54.17 69.54

w/o GT shadow train. 20.45 67.84 1.90 72.41 6.34 20.12 13.23 53.38 65.96

w GT shadow test. 16.19 2.78 1.61 15.13 5.38 4.20 4.79 90.34 98.24

Ours 20.34 9.18 1.72 22.85 5.73 6.35 6.04 83.84 94.70

training, we resize the image into 300 × 300. Our network
is trained on 3200 image pairs for 50 epochs with the initial
learning rate 0.001. The inference time of our model is over
12 fps.

5.2 Results

Baselines We do not find directly related comparative
methods. Given the large view difference between the
complementary-view images, most methods for multi-view
camera pose estimation are not applicable here. We consider
the following three baseline methods.

• D2-Net + 5 points: We apply a recent feature point
detection method D2-Net (Dusmanu et al., 2019) on
the first-person-view and top-view images to extract the
keypoints. Then we use the classical five-point method
(Nister, 2004) to estimate relative pose between two cam-
eras to get the yaw and pitch angles.

• Sampling w prior: Supposing the view direction range of
the first-person-view camera wearer is known, we ran-
domly generate the vanishing point coordinate in the
first-person-view image and shadow direction in the top
view.

• Shadow + direct.: We first use Wang et al. (2020) to gen-
erate an instance shadow map, then we connect the lines
between the feet of the subjects and the center of corre-
sponding shadows, and compute the geometric center of
the intersections of each line pair as the vanishing point.

Ablation Study Weconsider severalmodel variants for abla-
tion study.
•wEucli. loss:UseEuclidean distance between the predicted
and ground-truth vanishing point as the loss function instead
of the one proposed in Eq. (2).

• w/o select.: In the first-person view, we randomly select
the light direction from two candidate directions without the
ambiguity elimination strategy using the prior as discussed
in Sect. 3.4.
•w/o hum. in top: In top view, we use only shadow detection
but without the human detection results as the input of the
proposed shadow vanishing point detection network.
• w/o shadow for tuning: Remove the fine-tuning stage of
using detected shadows for SVPN training as discussed in
network training part.
• w/o GT shadow for train.: In the training stage, we use the
predicted shadow map instead of the ground-truth shadows.
• w GT shadow for test.: In the testing stage, we use the
ground-truth shadow map instead of the predicted shadows.

Comparison Result Analysis As shown in the top of Table 1,
all the baselinemethods produce very poor results in our task,
which demonstrates that our problem is non-trivial. Tradi-
tionally, a common method for relative pose estimation is
based on the matched keypoint pairs. For example, we apply
an effective feature point extraction and matching methods
D2-Net and the classical camera pose estimation method 5
points algorithm. The results are very poor, since given the
huge view difference, it’s almost impossible to find any accu-
rately matched keypoint pairs.

Similarly, the comparative method ‘Shadow + direct.’
also generates a poor performance, which uses a straightfor-
ward approach for vanishing point detection using the human
shadows. The comparison of it with the proposed method
demonstrates the effectiveness of the proposed SVPN.

Ablative Analysis From Table 1, we can see that: (1) our
model using Euclidean distance loss has a poor performance,
which reflects the effectiveness of the proposed loss defined
in Eq. (2). (2) ‘w/o select.’ performs worse when relating
the first-person view and the top view, e.g., the performance
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Fig. 6 Qualitative results from the synthetic dataset

using the metric ΔY , which denotes the necessity of the
strategy for ambiguity elimination in the first-person view.
(3) ‘w/o hum. in top’ also provides a relatively poor result.
This indicates that the joint use of both human detection
and shadow detection results in top view as input (as dis-
cussed in Sect. 3.4) works better than only using shadow.
This is because the input of both human detection and shadow
detection makes use of the relative position of the subjects
and shadows, which can help to estimate the direction of
the shadow vector in the top view. (4) The accuracy of
shadow detection can not be guaranteed, especially in the
top view, which makes the predicted shadow to be of large
difference from the ground truth. As a result, performance
gets worse when excluding either the proposed predicted
shadow fine-tuning or ground-truth training. Therefore, we
train our model on ground-truth shadow maps and fine-tune
on predicted ones to promote the generalization ability of our
model. (5) The last row shows the results using ground-truth
shadow maps in testing stage, which naturally represents the
best performance.

Overall, fromTable 1wecan see that, the proposedmethod
outperforms the existing comparison methods by a large
margin, which demonstrates the superiority of the proposed
method. We can also see from Table 1 that the main compo-
nents in our method are effective.

5.3 Qualitative Analysis

Figure 6 shows the qualitative results on two cases in our
dataset. We can see that all the shown cases have an accurate
view-direction estimation results, where the errors are within
10 degrees. Note that, our method also works when other
non-person shadows are present, e.g., the shadow of the bas-
ketball stands in Fig. 6. Actually, the proposed method first
detects shadows and then use the shadow map as the input
of the following components and different image style and
background (even across the synthetic and real-world scenes)
only have impact on the shadow detection.

5.4 Applied Condition Analysis

We build the flexible configuration for simulation data gen-
eration, which makes the scene conditions controllable and

Fig. 7 Condition analysis of the number of subjects

Fig. 8 Condition analysis of the light direction

Fig. 9 Condition analysis of the angle between viewand light directions

Fig. 10 Condition analysis of the shadow length

various. This way, we can conduct the detailed experimental
analysis under different applied conditions. We then investi-
gate the performance of the proposed method under different
condition including the number of subjects, light direction,
angle between view and light directions and shadow length,
respectively.

Number of Subjects As shown in Fig. 7a, the performance
of our method gets worse when the number of subjects in
the scene is too large or too small. It can be explained that
when the scene is too crowded as in Fig. 7b, the mutual
occlusions in the first-person view may prevent the accurate
shadow detection. When the subject number is too small as
in Fig. 7c, there are insufficient instances of shadows for
accurate shadow direction prediction.

123



1116 International Journal of Computer Vision (2023) 131:1106–1121

Fig. 11 Examples from the real-world images. The cases are tagged
with various labels according the attributes of the scene, including Clear
shadow (CS), Broken shadow (BS), Disordered shadow (DS), Complex

background (CB), Open and clear area (OA), Uneven ground (UG),
Dense crowd (DC), Irregular shape (IS), Summer (SU), Winter (WI)

Light Direction We vary the light angle with the ground in
the data generation and evaluate its effect on the final results.
Two examples are shown in Fig. 8b, c—with a small light
angle, shadows are longer but the image is darker, while with
a large angle, shadows are shorter but the image is brighter.
The curve shown in Fig. 8b shows that with increased light
angle, the shadow region has better contrast, leading to more
accurate shadow detections and better performance in relat-
ing two views.

Angle between view and light directions As shown in
Fig. 9a, the angle between the first-person view direction
and the light direction also influences the results. When this
angle approaches 90◦ as shown in Fig. 9b, shadows are par-
allel to the imaging plane and the shadow vanishing point is
at infinity. In this case, the MAE reaches the highest. When
this angle is further away from 90◦, as shown in Fig. 9c, the
shadowvanishing point can be detectedwith higher accuracy,
leading to lower MAEs.

123



International Journal of Computer Vision (2023) 131:1106–1121 1117

Shadow Length in Image The effects of the shadow length
on the final results are shown in Fig. 10. We can see that
either overly long or overly short shadows will hurt the final
accuracy. A possible reason is that overly short shadows are
prone to bemissed in shadow detection, as shown in Fig. 10b,
while overly long shadows introducemoremutual occlusions
or overlaps, as shown in Fig. 10c.

From the above analysis, we can see that, although with
minor performance fluctuations, our method is effective
under different conditions, which shows the robustness of
the proposed method.

5.5 Real-World Case Analysis

We further apply the proposed method for the real-world
practical scenarios with various factors. We consider the fac-
tors about the quality of the human shadow, background
of scene (color and flatness of the ground, clutters on the
ground), density of crowd, season and weather, etc. We pro-
vide different labels according to these factors, which are
assigned to each real-world case as shown in Fig. 11. The
labels are defined as below.

Clear shadow (CS): The shadows are easy to be detected
and the predicted shadow maps are clear.

Broken shadow (BS): The predicted shadowmaps are bro-
ken since themutual occlusions in the image or the prediction
errors of the shadow detection algorithm.

Disordered shadow (DS): The human shadows are disor-
dered by the shadows of the other objects appearing in the
scene, e.g., trees, buildings.

Complex background (CB): The background is complex
with various objects on the ground.

Open and clear area (OA): The scene is openwithoutmany
clutters.

Uneven ground (UG): The ground is uneven with ups and
downs.

Dense crowd (DC): The crowd on the ground is relatively
dense.

Irregular shape (IS): The human shape is irregular, e.g,
with an umbrella, bag, etc. This makes the human shadow is
also irregular.

Summer (SU)/Winter (WI): The images are taken in the
summer time or winter time.

Figure 11 shows the results on several pairs of real
images by applying the proposed method. Note that, we
can not conduct the quantitative evaluation since the accu-
rate ground-truth results for our problem are very difficult to
obtain. We have tried the gyroscopes integrated in the smart
phones and cameras, which, however, fail to solve the pro-
posed problem because of the random drift error produced
by the external disturbances. This way, wemanually annotate
the shadow vanishing point in the first-person view, and the
view direction of the first-person view camera in the top view.

The cases in Fig. 11 are tagged with several labels according
to the attributes of the scene.

Specifically, we can see from Fig. 11a, b that the human
shadows are clear in both views, which makes the predicted
shadow maps are also with high quality. In this case, the pro-
posedmethodprovides an accurate view-direction estimation
result, where the errors are within 10 degrees. From Fig. 11c,
d, we can see that the predicted shadow map is not very per-
fect. This is because the shadow of the tree branches in the
top view in (c) and the occlusions in the first-person view in
(d) make the predicted human shadow map broken. Even so,
the proposed method also provides an acceptable view direc-
tion estimation result. At the third row in Fig. 11, we show
two examples taken in an open area. Although the ground is
clear, we can see that the shadows are not very strong and
long since the time of day and weather when the image was
shot. Also, the irregular human shape (carrying the umbrella,
bag) also makes the shadows irregular. Under the circum-
stances, we can see that our method still provides a good
performance. Note that, our method does not require the pre-
dicted shadow map to include all the human shadows in the
scene. This alleviates the dependence of our method on the
high accuracy of shadow prediction algorithms. At the fourth
row in Fig. 11, we provide two challenging scenes where the
ground is uneven with parterre or stairs. The human shadows
are distorted, especially in the first-person view, influenced
by the undulation of the ground. We can see that the pro-
posedmethod can handle these cases and provide a promising
result. Finally, in the last row, we show two cases that our
method can not handle very well. As shown in Fig. 11i, the
human shadows are drowned in the shadows of a tangle of
branches. In Fig. 11j, the human shadows are indiscoverable
given the overcast sky. In this case, the proposed method can
not work well under the very poor shadow map.

Overall, the above real-world case study verifies that the
proposed method can generally handle the real-world cases
well. Note that, the SVPNmodel used here is trained only on
synthetic data and directly applied to the real-world images.
By applying the shadow detector trained on the real images,
our method is not heavily dependent on the high accuracy of
shadow prediction results. This makes the proposed method
not sensitive to complex real-world scenes and has good
cross-domain generalization ability.

6 Discussion

6.1 Assumption and Limitation Analysis

Camera Setting In this work, we assume the top-view cam-
era is perpendicular to the ground and the first-person camera
is (roughly) parallel to the ground with a moderate pitch
angle, which is recognized in the previous works (Han et
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al., 2022; Ardeshir & Borji, 2018a; Han et al., 2020b). This
assumption is not strict since it is aligned to the general set-
tings of the top view fromadrone-mounted camera, that takes
a global picture of all subjects on the ground, and the first-
person view from a wearable camera, which aims to keep the
subjects not out of its FOV.

Scene Setting As discussed in Sect. 5.4, the proposed
method may not work well when the scene is too crowded,
e.g., with many overlapped shadows, or the light condition
is poor, e.g. with unclear shadows in cloudy days.

With these limitations, this work has not addressed all
complex issues in real-world applications. But we propose a
brand-new approach to address this new challenging prob-
lem. We will extend our work to more complex scenes in the
future.

6.2 Advantages and Applications

Advantages From the perspective of performance, the
proposed method addresses a foundational problem of
complementary-view camera (weak) calibration for which
existing methods are not useful. For example, existing vision
based methods mostly apply key-point detection and match-
ing for camera calibration. However, key-point features
usually cannot be correctly matched across the complemen-
tary views given the enormous view difference. This can be
also seen from the quantitative evaluation results in Table 1.
Also, the hardware based methods, e.g., Gyroscopes inte-
grated with smart-phones and cameras, cannot be used to
solve this problem either since external disturbances pro-
duce random drift error all the time. The proposed method
can obtain the camera relative pose (yaw and pitch angles)
estimation results frame by framewith a relatively high accu-
racy and an efficient running speed (over 12 fps), which is
available for many applications. We then discuss about the
potential advantage w.r.t. the practicability for several down-
stream tasks, including the large-view-difference camera
calibration, cross-view human identification and co-attention
human detection, as follows.

Large-View-Difference Camera Calibration It is a chal-
lenging problem to calibrate the external parameters of
multiple cameras with large FOV (field-of-view) difference,
especially in mobile camera groups composed of top- and
horizontal-view cameras. The core of external parameter cal-
ibration of multiple cameras is the feature matching between
the captured images. However, such a large FOV difference
not only makes traditional feature extraction and matching
methods e.g., SIFT (Lowe, 2004), but also the deep learning
based methods, e.g., D2-Net (Dusmanu et al., 2019), fail to
play a stable role in this situation.Therefore,most approaches
choose to use additional optical sensors such as LIDAR, or
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Fig. 12 An illustration of the cross-complementary-view human iden-
tification

set up virtualmarkers in the field of view to calibrate the cam-
eras.We present a computer vision guidedmethod to steadily
relate the top- and horizontal-view (consumer-level) cameras
without using other sensors. The yaw and pitch angles of the
horizontal camera relative to the top camera can be used as
a prior information in external parameter calibration of such
two totally different cameras. For visual application systems,
e.g., SfM (Structure fromMotion), which needs frequent cal-
ibration of external parameters between cameras, the stable
estimation of yaw and pitch angles between top and horizon-
tal cameras can (1) limit the search space of featurematching,
and reduce the interference of large view angle difference
on feature matching, and (2) reduce the original six DOF
(degrees of freedom) into four, thus reducing the complexity
of external parameter estimation.

Cross-View Human Identification Complementary-view
human identification, i.e., identifying the same persons
across the top and first-person view, is a fundamental prob-
lem and has many applications. For example, in an outdoor
scenario without pre-installed cameras, we can associate the
humans taken by the cameras on a drone (top view) and worn
by several law enforcement officials (first-person views)
for collaborative tracking, localization, and individual/group
activity recognition, etc. This is also a very challenging prob-
lem due to the large view difference between such two views,
which makes the appearance and motion features to show
huge difference (Han et al., 2022). If we can obtain the
view directions, i.e., the yaw and pitch angles of the first-
person-view camera, we can match the persons across these
two views by examining their spatial layout. Specifically,
as shown in Fig. 12a, in the first-person view, we arrange
the persons appearing in the image from left to right. Corre-
spondingly, with the estimated yaw angle and the FOV (field
of view) of the first-person camera in top view, we orderly
arrange the persons locating at the rays starting from the left
to right boundary of the FOV, as shown in Fig. 12b. This
way, we can (coarsely) match the subjects across two views,
which can be used as a constraint together with other features
for the cross-view human identification. For such cross-view
association, we can further consider the relation between the
subjects’ height (in terms of bounding box) in the first-person
view and the subjects’ depth (relative to the first-person-view
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Fig. 13 An illustration of the co-attention human detection using complementary-view cameras with the relative view direction

camera) in the top view, as detailedly discussed in Han et al.
(2022). However, such algorithm assumes the first-person
view is horizontal to the ground, which is not always true in
practice. This assumption can be removed by combiningwith
the pitch angle of the first-person view camera estimated in
this work.

Co-attention Human Detection Important person detection
is a significant task in video surveillance. Previous works
have studied to localize the important persons with the help
of surrounding people’s visual attention (Fan et al., 2018,
2019; Chong et al., 2018; Recasens et al., 2015; Han et al.,
2020b). Specifically, as shown in Fig. 13, by relating the view
directions of complementary-view cameras, we can map the
viewdirections ofmultiple first-person cameras to the unified
global top view, inwhichwe can estimate the visual-attention
regions of each first-person camera. Based on the visual
attention of each camera wearer and the co-attention fusion
strategy, e.g., the one proposed in Han et al. (2020b), we can
identify the person that draws the attention of most people
at any time. Figures 12 and 13 show two downstream tasks
based on the proposed complementary-view camera relating
problem. This demonstrates that the problem in this work is
a fundamental problem, which can be regarded as the first
step to connect the complementary-views and support their
collaborative video analysis, especially the crowd analysis.

7 Conclusion

In this work, we have studied a new problem of relating the
view directions of complementary first-person and top views
by leveraging human shadows. We proposed a new shadow
vanishing point detection network to simultaneously get the
shadow vanishing point in the first-person-view image and
the shadow direction in the top-view image, based on which,
we established a geometric transformation to estimate the
pitch and yaw angles between the two camera views. As
a weaker version of relative camera pose calibration, the
derived relative pitch and yaw angles can be used to pro-
mote many important applications. We used the controllable
shadow generation engine ShadowX, to construct a synthetic
dataset for quantitative performance evaluation. The exper-

imental results verified the effectiveness of the proposed
method.
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