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Figure 1: (a) Comparison with SOTA methods on ISTD+ dataset[24] at shadow (Y-axis) and shadow-free (X-axis) regions. We also present the results of a
naive encoder-decoder network (Naive En.-De.) trained with different strategies: (1) training on inpainting data and fine-tuning on different amounts of
shadow data; (2) only training on all shadow data. (b) Displays two examples of four methods and we use white arrows to highlight the main advantages.

Abstract

Fully-supervised shadow removal methods achieve the
best restoration qualities on public datasets but still generate
some shadow remnants. One of the reasons is the lack of
large-scale shadow & shadow-free image pairs. Unsuper-
vised methods can alleviate the issue but their restoration
qualities are much lower than those of fully-supervised meth-
ods. In this work, we find that pretraining shadow removal
networks on the image inpainting dataset can reduce the
shadow remnants significantly: a naive encoder-decoder net-
work gets competitive restoration quality w.r.t. the state-of-
the-art methods via only 10% shadow & shadow-free image
pairs. After analyzing networks with/without inpainting pre-
training via the information stored in the weight (IIW), we
find that inpainting pretraining improves restoration quality
in non-shadow regions and enhances the generalization abil-
ity of networks significantly. Additionally, shadow removal
fine-tuning enables networks to fill in the details of shadow
regions. Inspired by these observations we formulate shadow
removal as an adaptive fusion task that takes advantage of
both shadow removal and image inpainting. Specifically,
we develop an adaptive fusion network consisting of two

encoders, an adaptive fusion block, and a decoder. The two
encoders are responsible for extracting the features from the
shadow image and the shadow-masked image respectively.
The adaptive fusion block is responsible for combining these
features in an adaptive manner. Finally, the decoder con-
verts the adaptive fused features to the desired shadow-free
result. The extensive experiments show that our method
empowered with inpainting outperforms all state-of-the-art
methods. We have realized codes and models in https:
//github.com/tsingqguo/inpaint4shadow

1. Introduction

Shadows in images are formed when some objects block
the light source, which not only reduces the image quality
but also affects the subsequent intelligent tasks like visual ob-
ject detection [34][9], objects tracking [36], face recognition
[44], face landmark detection [8], etc. Single-image shadow
removal is to map the shadow regions to their shadow-free
counterparts, which can enhance the visual quality and bene-
fit the intelligent tasks.

In recent years, with the development of advanced learn-
ing algorithms and deep architectures (i.e., GAN [12] and
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CycleGAN [46]), deep learning-based shadow removal meth-
ods [25, 10, 37] have achieved significant progress and ob-
tained top restoration qualities on public datasets. How-
ever, these methods may still lead to some shadow remnants.
As the two cases shown in Fig. 1, even the state-of-the-art
method SG-ShadowNet [37] generates obviously inconsis-
tent colors across shadow boundaries. One of the reasons is
the lack of large-scale shadow & shadow-free image pairs.
The commonly-used ISTD+ dataset[24] only contains 1330
pairs of shadow and shadow-free images for training. To
alleviate the requirements for the amounts of image pairs,
researchers also develop weakly-supervised [11, 25, 31] and
unsupervised shadow removal methods [22, 30, 20, 31].
However, all these methods still have a large gap to the
fully-supervised methods (See the results in Fig. 1 (a)).

Meanwhile, several works [18, 40] have demonstrated
that pretraining networks to predict masked patches from
unmasked patches on a large-scale dataset can enhance the
fully-supervised training on another small-scale dataset sig-
nificantly. Actually, the task predicting masked patches is
a special image inpainting task [27] that aims to fill miss-
ing pixels. Inspired by these works, we seek to leverage
the image inpainting task for high-quality shadow removal.
Specifically, given a deep network, we first train it on the
image inpainting dataset where we can mask all clean im-
ages randomly and get large-scale clean & masked image
pairs for free. Then, we finetune the network on the shadow
removal dataset with limited shadow & shadow-free image
pairs. As shown in Fig. 1, a naive encoder-decoder net-
work pretrained on the inpainting dataset and fine-tuned on
the 10% shadow data can achieve competitive restoration
qualities (i.e. RMSE) at the shadow regions w.r.t. the state-
of-the-art methods (e.g., SP+M-Net [24]). Moreover, when
we compare the networks with and without inpainting pre-
training in the Fig. 1 (b), we see that inpainting pretraining
can eliminate the shadow remnants effectively.

We further analyze the features of the networks
with/without inpainting pretraining and see that inpainting
pretraining not only improves restoration quality in non-
shadow regions but also enhances the generalization ability
of networks. This improvement in generalization ability can
be proved by using the PAC-Bayes theorem to measure the
amount of information stored in the network’s weights (IIW)
[38]. Furthermore, fine-tuning the networks for shadow re-
moval enables them to fill in the details of shadow regions,
thereby improving the overall restoration quality of the im-
ages. To utilize the respective advantages of shadow removal
and image inpainting, we formulate shadow removal as an
adaptive fusion task of shadow removal and image inpainting
where make the shadow removal and image inpainting focus
on the shadow and non-shadow regions respectively. To ad-
dress this task, we propose an adaptive fusion network which
consisting of two encoders, an adaptive fusion block, and a

decoder. The two encoders are responsible for extracting the
features from the shadow image and the shadow-masked im-
age respectively. The adaptive fusion block is responsible for
combining the extracted features in an adaptive manner and
the decoder converts the adaptively fused features into the
desired shadow-free result. Our final method outperforms all
state-of-the-art methods on the public datasets (See Fig. 1(a))
and reduces the shadow remnants significantly.

2. Related Work
2.1. General Shadow Removal Methods

To reconstruct the shadow-free image from its shadow
counterpart, previous methods[7][6][17][41][39][13][32] fo-
cus more on exploiting the priors information. [17] uti-
lize illumination difference to distinguish the shadow and
shadow-free regions, then recover the shadow-free image
by a lighting model. [7] [6] rebuild the shadow-free image
based on the gradient information. [13] proposes to learn a
patch mapping function to perform shadow removal.

Recently, deep learning-based methods have achieved ex-
cellent performance in shadow removal. [24] decomposes
the shadow image as its shadow-free counterpart and a set of
shadow parameters and uses illumination transformation to
remove the shadow. [47] claims that the networks of shadow
removal and generation can mutually promote, then pro-
poses a unified framework to perform shadow removal and
generation together. [2][37] design a feature transformation
network to transform the contextual information from non-
shadow regions to shadow regions. [10] reformulates shadow
removal as an exposure fusion problem, utilizing the deep
neuron network to predict the parameters of exposure. Al-
though achieving a remarkable result, the above supervised-
based methods require a large amount of paired shadow &
shadow-free images to train the network. To alleviate this
limitation, the unsupervised methods [22][30][20][31] em-
ploy the generative adversarial network (GAN) to train the
network with large numbers of unpaired shadow & shadow-
free images. However, the restoration results of unsupervised
methods are not satisfied. In this work, we formulate shadow
removal as an adaptive fusion task and propose a novel adap-
tive fusion network for shadow removal.

2.2. Predictive Filtering Technique

The predictive filtering technique has been widely used
for image processing[1][33][3][14][42][28]. Different from
the traditional convolutional neural network (CNN) which
shares the same kernel along the spacial level for each con-
volution layer, the predictive filtering technique predicts
unique kernel for each location by using a deep neural net-
work which makes it can utilize the neighbors’ information
explicitly. [16] use the predictive filtering on image level
for deraining. [15] employ it to improve the performance of
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the generative adversarial network (GAN) based inpainting
methods. [27] extend the image level filtering into the feature
level and design an end-to-end image inpainting pipeline that
can restore the images with large missing regions. In this
work, we exploit the mechanism of the predictive filtering
technique to predict the adaptive weights in an element-wise
manner which can be used to take information adaptively
from the extracted features.

3. Leveraging Inpainting-pretrained Networks
for Shadow Removal

In this section, we first train a naive encoder-decoder
network through an inpainting dataset (See Sec. 3.1). Then,
we train the same network with paired shadow & shadow-
free images (See Sec. 3.2) based on the inpainting-pretrained
network and randomly initialized network, respectively. We
conduct extensive empirical study and analysis in Sec. 3.3.

3.1. Training Network for Image Inpainting

Given a corrupted image I where some regions are
cropped and indicated by a mask M, an image inpainting
network is to fill the missing pixels and generate an image
that is desired to be identical to the ground truth image (i.e.,
I∗). To train the network, we obtain the corrupted image I by
cropping the ground truth image I∗ according to the mask,
and then the image pair (I, I∗) forms a training example.

Here, we use the following setups for training an image
inpainting network: ❶ Network architecture. Instead of
using advanced inpainting networks (e.g., MISF [27] and
CICM [5]), we employ a naive encoder-decoder network
that contains 11 convolution layers for the encoder and 3
transpose convolution layers for the decoder. By doing this,
we can avoid the effects of some advanced designs on the
observations. ❷ Dataset and masks. We train the encoder-
decoder network on the Places2 dataset[45] that is widely
used in the inpainting field. We randomly sample masks
from a third-party mask dataset [29] and use them to crop
the clean images. ❸ Loss functions. We follow the designs
of [27] and use the GAN loss, perceptual loss, style loss, and
L1 loss for training. With the above setups, we can train a
naive encoder-decoder network for image inpainting.

3.2. Training Network for Shadow Removal

Given a shadow image I and a shadow mask M, a shadow
removal network is to map the shadow regions indicated by
the mask to their shadow-free counterparts and is desired to
produce a clean image I∗. In contrast to the image inpainting
task, we can hardly collect numerous paired images (i.e.,
(I, I∗)) for training the shadow removal network since the
shadow image cannot be naively simulated via the ground
truth image I∗ and the two images should be captured under
the same scene and the same environmental factors. Even

Figure 2: We first train the naive encoder-decoder network on the Place2
dataset and save the networks every 5× 105 iterations, and then fine-tune
each model with the shadow removal dataset (i.e., ISTD+[24]). The blue
line in (a) presents the inpainting results (i.e., PSNR) of different networks
on the Places2 dataset, and the red line shows shadow removal results (i.e.,
root mean square error (RMSE)) of fine-tuned networks on both shadow and
shadow-free regions. (b) presents the shadow removal results (i.e., RMSE)
on the shadow regions and shadow-free regions, respectively.

the widely-used ISTD+ dataset[24] only contains 1,330 pairs
of shadow and shadow-free images for training.

Here, we use the following setups for training a shadow
removal network: ❶ Network architecture. We employ the
same encoder-decoder network in Sec. 3.1.❷ Dataset and
masks. We use the ISTD+ dataset[24] for network training
and testing where the shadow mask for each image is given.
❸ Loss functions. We only use L1 loss for training. Then,
we set up two training strategies: First, we randomly ini-
tialize the network’s weights and train the network on the
ISTD+ dataset[24]. Second, we use the inpainting-pretrained
network as the initialization and fine-tuning the network via
the ISTD+ dataset[24]. Based on the above setups, we can
study how inpainting affects the shadow removal network
training.

3.3. Empirical Study and Analysis

Fine-tuning inpainting-pretrained networks for
shadow removal. Following the setups in Sec. 3.1, we
first train an encoder-decoder network for image inpainting
and store the intermediate models every 5× 105 iterations.
Then, we fine-tune these intermediate models on the shadow
removal dataset (See Sec. 3.2). We show the inpainting
results (i.e., PSNR) of the intermediate models and the cor-
responding shadow removal performance (i.e., RMSE) after
fine-tuning in Fig. 1(a) and Fig. 2. We see that: ❶ All shadow
removal networks (i.e., green triangles in Fig. 1(a)) that are
fine-tuned on the inpainting-pretrained models achieve much
lower RMSEs at both shadow and shadow-free regions than
the network trained on the randomly initialized model (i.e.,
red triangle in Fig. 1(a)). This demonstrates that inpaint-
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Figure 3: (a) Analysis with/without inpainting pretraining via IIW. (b)
RMSE gap between the training and testing datasets. (c)-(f) Visualized
comparison with/without inpainting pretraining and shadow removal fine-
tuning.

ing pretraining indeed helps shadow removal task get much
higher restoration quality in both shadow and shadow-free
regions. ❷ As the iteration becomes larger, the inpainting
capability of intermediate models increases (i.e., the PSNR
on the inpainting dataset increases) and the corresponding
fine-tuned shadow removal networks get lower RMSEs at the
shadow and shadow-free regions. This observation demon-
strates that the shadow removal performance is related to the
inpainting capability of pretrained models, directly.

Fine-tuning inpainting-pretrained networks with dif-
ferent amounts of shadow & shadow-free image pairs.
With an adequately inpainting-pretrianed network, we use
different amounts of shadow & shadow-free image pairs that
are randomly selected from the ISTD+ [24] to fine-tune the
network, respectively. As shown in Fig. 1 (a), we see that: ❶
With only 10% ISTD+ [24], the fine-tuned encoder-decoder
network achieves lower RMSE at shadow-free regions than
the state-of-the-art method AEFNet [10] (i.e., 3.07 vs. 3.80)
and lower RMSE on shadow regions than the SP+M-Net
method (i.e., 7.67 vs. 7.9). Both methods are trained with all
examples in ISTD+ dataset[24]. ❷ Inpainting-pretrained net-
works are fine-tuned with different amounts of image pairs
and have similar RMSEs at both shadow and shadow-free
regions. ❸ The network fine-tuned with 100% image pairs
outperforms three recent works including SG-ShadowNet
[37], SP+M+I-Net [26], and AEFNet [10] at the shadow-
free regions, which demonstrates that inpainting pretraining
benefits the shadow-free preservation.

Analysis with/without inpainting pretraining via in-

formation stored in the weight (IIW) [38]. To further
understand the benefits of using inpainting pretraining for
shadow removal, we fine-tune a naive encoder-decoder net-
work both with and without inpainting pretraining on the
ISTD+ dataset and evaluate the network’s performance ev-
ery 1000 iterations. To assess the network’s performance,
we monitor two key metrics. First, we use the PAC-Bayes
theorem to measure the amount of information stored in the
network’s weights (IIW) [38], which is a promising indicator
of a deep neural network’s generalization ability. As shown
in Fig. 3 (a), with inpainting pretraining, the network’s gen-
eralization capability improved significantly. In addition
to the IIW, we also calculated the Root Mean Squared Er-
ror (RMSE) gap, which is the difference in RMSE values
obtained by evaluating the network on the training and test-
ing datasets. As shown in Fig. 3 (b), the RMSE gap was
smaller with inpainting pretraining than without it which can
prove that inpainting pretraining can decrease the degree of
overfitting of the network.

Visualized comparison with/without inpainting pre-
training and shadow removal fine-tuning. We also ana-
lyze the performance of with/without inpainting pretraining
in both image and feature level as shown in Fig. 3 (c)-(f).
Comparing Fig. 3 (c) with (d), we see that the inpainting
pretrained network can suppress the shadow patterns (i.e.,
the white dashed rectangles) at both the semantic level and
image level effectively. Comparing Fig. 3 (d) and (e), we see
that without the shadow removal fine-tuning, the network
cannot recover the colors properly and the shadow patterns
become more obvious. We have similar observations at the
feature level.

4. Methodology
In Sec. 3, we demonstrate the significant benefits of in-

painting pretraining for shadow removal. Building upon
these insights, in Sec. 4, we explicitly integrate inpainting
into shadow removal to fully harness its potential capabili-
ties and formulate the shadow removal as a special adaptive
fusion task, as detailed in Sec. 4.1. To this end, we propose
an adaptive fusion network in Sec. 4.2 to realize the task
in a unified architecture and detail the implementations in
Sec. 4.3.

4.1. Problem Formulation

Given a shadow image I and a binary mask M, we first
crop the shadow regions and produce a shadow-masked im-
age Ĩ = I ⊙ (1 − M). Then we aim to reconstruct the
shadow-free counterpart based on the shadow image I and
shadow-masked image Ĩ. We denote the whole process as
an adaptive fusion task. Intuitively, such a task inherits the
advantages of image inpainting and could fill the missing
semantic information with similar color distributions as the
shadow-free regions (See discussions in Sec. 3.3). Besides,
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Figure 4: (a) Displays the whole framework of the proposed adaptive fusion network. (b) Shows examples of using a simple solution that input the
concatenated shadow image and shadow-masked image into a naive encoder-decoder and the proposed method to handle the shadow image, respectively. We
also display the enlarged regions in the second row. We further calculate the color difference to the ground truth of the A channel (i.e., (c)) and B channel (i.e.,
(d)) in the LAB color space.

the task could recover missing details in the shadow regions
since the whole information is contained in the raw shadow
image. However, the implementation of this task is not
straightforward.

A simple solution is to concatenate the shadow-masked
image and the shadow image and feed them into the same
encoder-decoder network used in the Sec. 3.1. We can also
perform inpainting pretraining and shadow removal fine-
tuning to that network. We show an example in Fig. 4 (b), (c),
and (d). Clearly, the result of the naive solution still has an
obvious color shifting to the ground truth (See the LAB-A/B
differences in Fig. 4 (c) and (d)), which demonstrates that
such a naive solution cannot properly take the advantages of
both tasks and the color inconsistency still remains.

4.2. Adaptive Fusion Network

Instead of concatenating the two images, we propose to
handle the shadow image and shadow-masked image via two
encoders which are responsible for extracting the feature
from the shadow image and shadow-masked image respec-
tively. We show the whole framework in Fig. 4(a). we denote
the encoder receiving the shadow-masked image as ϕ(·). we
can represent the feature F̃ ∈ RHl×Wl×Cl extracted from
shadow-masked image as

F̃ = ϕl(. . . (. . . ϕ2(ϕ1([Ĩ,M]))), (1)

where ϕl(·) is the lth layer in the encoder. Meanwhile, we
can use another encoder (i.e., ψ(·)) to get the feature of the
shadow image

F = ψl(. . . (. . . ψ2(ψ1([I,M]))). (2)

Instead of passing the shadow-masked feature (i.e., F̃)
and shadow feature (i.e. F) to the decoder directly, we design
an adaptive fusion block to fuse F̃ and F in an adaptive
manner. Specifically, we input F̃ and F into a convolution

Shadow image Shadow-masked imageW1 W2

Figure 5: Visualization of the shadow image, shadow-masked image, and
the corresponding weights W1 and W2.

layer to predict the adaptive weights followed by a sigmoid
operation which can be represented as

[W1,W2] = Sigmoid(Convweight(F̃,F)), (3)

where ‘Convweight’ denotes a convolution layer to predict the
weights W1 and W2. With the predicted weights, we can
obtain the adaptive fused feature F̂ by

F̂ = Convfusion(F̃⊛W1+F⊛W2), (4)

where ‘⊛’ is the element-wise multiplication operation and
‘Convfusion’ denotes a convolution layer to fuse the weighted
features. When we conduct the average pooling along the
channels of W1 and W2 respectively and illustrate the re-
sult, as shown in Fig. 5, we can observe that: in the shadow
regions, the adaptive fused feature F̂ take more informa-
tion from F which is extracted from the shadow image; in
contrast, in the non-shadow regions, it takes more informa-
tion from F̃ which is extracted from the shadow-masked
image. Finally, the adaptive fused feature F̂ is passed into
the decoder to get the de-shadowed result.

4.3. Implementation Details

Network architectures. The encoders ϕ and ψ employ
the same architecture. Specifically, the encoders consist of
three convolution layers and each convolution layer is fol-
lowed by a ReLU activation. The extracted features by ϕ and
ψ are passed into the convolution layer Convweight to predict
the weights followed by a sigmoid operation. The predicted
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weights will be used to adaptive take information from the
features (i.e. F and F̃) extracted from the shadow image and
shadow-masked image. Convweight use a kernel of size 3x3.
Then the weighted feature is fused by another convolution
layer Convfusion with a kernel of size 3x3. Finally, the fused
feature is passed into the decoder. The decoder consists of
eight Resnet blocks and three transposition convolution lay-
ers. Theoretically, we can add the adaptive fusion operation
to all layers, which would lead to high computational com-
plexity. Here, we equip the adaptive fusion operation to the
last layer features of ϕ and ψ in order to save computation.

Loss functions. When training on the inpainting dataset,
we follow [27] and use GAN loss, perceptual loss, Style
loss, and L1 loss, which guides the network to fill in missing
semantic information and details. When fine-tuning the net-
work on the shadow dataset, we only use L1 loss to optimize
since this stage mainly focuses on restoration fidelity.

Training details. We first pretrain the network 450,000
iterations with batch size 8 on the Places2 dataset, then
fine-tune it with 250,000 iterations under the same batch
size on the shadow removal datasets. Following [10], the
input images are resized to 256x256. We use Adam as the
optimizer to optimize the network with a learning rate of
0.00005 and all the experiments are conducted on the Linux
server with two NVIDIA Tesla V100 GPUs.

5. Experiments

5.1. Setups

Datasets. We first train our network on the image inpaint-
ing dataset (i.e., Places2 challenge dataset [45]) and then fine-
tune it on the ISTD+[24] and SRD[35] datasets, respectively.
Finally, we evaluate the trained networks on the ISTD+[24]
and SRD datasets[35]. The Places2 dataset contains more
than millions of images under over 365 scenes. We use the
irregular masks in [29]. The ISTD+ dataset[24] is consti-
tuted of 1330 triplets for training and 540 triplets for testing.
We follow the previous method and use ground truth masks
during the training. For the evaluation, we follow [10] us-
ing Ostu’s algorithm to calculate the difference between the
shadow and shadow-free images to get the masks. The SRD
dataset[35] contains 2680 paired shadow and shadow-free
images for training and 408 paired shadow and shadow-free
images for testing without providing ground truth masks.
Therefore, during the training and testing, we use the de-
tected masks provided by DHAN[4].

Metrics. To prove the effectiveness of our method, we
follow the previous method [10] to calculate the root mean
square error (RMSE) between the reconstructed shadow-
free images and the corresponding ground truth in the LAB
color space. Besides, we also use the peak signal-to-noise
ratio (PSNR[23]), structural similarity index (SSIM), and
the learned perceptual image patch similarity (LPIPS[43])

to measure the quality of recovered shadow-free images. To
ensure a fair comparison, we reevaluate all baseline methods
on the same machine using various metrics.

Baselines. We compare our proposed method with
ten state-of-the-art shadow removal methods which in-
cludes SP+M-Net[24], DSC[19], DHAN[4] , Param+M+D-
Net[25], LG-shadowNet[30], DC-ShadowNet[22], G2R-
ShadowNe[31], Fu et al.[10], BMNet[47], and SG-
ShadowNet[37].

5.2. Comparison Results

Quantitative comparison. We first compare our method
with the competitors on the ISTD+ dataset[24]. As shown
in Table 1, we can observe that: ❶ for the whole image,
our method outperforms all the competitors over each met-
ric i.e. RMSE, PSNR, SSIM, and LPIPS. Specifically, our
method decreases RMSE 5.48% and LPIPS 4.41% as well
as increases PSNR 5.70% and SSIM 0.58% compared with
BMNet[47]. ❷ for the shadow region our method also out-
performs other competitors over all the metrics. Specifi-
cally, compared with LG-shadowNet[30] our method de-
creases RMSE 38.87% as well as increases PSNR 17.79%
and SSIM 0.90% respectively. ❷ for the non-shadow region,
our method still gets the best result. Specifically, compared
with Fu et al.[10] our method decreases RMSE 24.17%,
increases PSNR 20.19%, and increases SSIM 11.62% re-
spectively.

Besides, we further compare with the competitors on
the SRD dataset[35]. As shown in Table 1, we see that:
for the shadow region, non-shadow region, and the whole
image, our method outperforms all baselines over the four
metrics, i.e., RMSE, PSRN, SSIM, and LPIPS. Compared
with DC-ShadowNet[22], for the shadow region, our method
decreases RMSE 24.80% as well as increases PSNR 7.22%
and SSIM 0.91%. For the non-shadow region, our method
decreases RMSE 19.08% as well as increases PSNR 7.59%
and SSIM 1.39%. For the whole image, our method de-
creases RMSE 21.68% and LPIPS 30.71% as well as in-
creases PSNR 7.87% and SSIM 3.07%.

Qualitative comparison. We visualize four samples
from ISTD+[24] and SRD datasets[35] in Fig. 6. We can
observe that ❶ our method can generate more natural and
realistic color in the shadow regions of the restored result.
As shown in Case2 and Case4, the generated floor in the
shadow regions by our method is almost identical to the
ground truth. Compared with other methods i.e. BMNet[47]
and DSC[19], we can find obvious color inconsistencies
between the shadow regions and non-shadow regions in their
generated result. ❷ Although without any post process,
the generated result by our method is more smooth along
the shadow boundary than other methods generated. As
shown in Case1, the boundary in our restored result is almost
unidentified by human eyes. However, we can observe the
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Table 1: Comparison results on ISTD+[24] and SRD[35] datasets.

Datasets Method
All Shadow Non-Shadow

RMSE↓ PSNR↑ SSIM↑ LPIPS↓ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

ISTD+

SP+M-Net[24] 3.610 32.33 0.9479 0.0716 7.205 36.16 0.9871 2.913 35.84 0.9723
Param+M+D-Net[25] 4.045 30.12 0.9420 0.0759 9.714 33.59 0.9850 2.935 34.33 0.9723
SynShadow[21] 4.000 - - - 6.900 - - 3.400 - -
Fu et al.[10] 4.278 29.43 0.8404 0.1673 6.583 36.41 0.9769 3.827 31.01 0.8755
LG-ShadowNet[30] 4.402 29.20 0.9335 0.0920 9.709 32.65 0.9806 3.363 33.36 0.9683
DC-ShadowNet[22] 4.781 28.76 0.9219 0.1112 10.434 32.20 0.9758 3.674 33.21 0.9630
G2R-ShadowNet[31] 3.970 30.49 0.9330 0.0868 8.872 34.01 0.9770 3.010 34.62 0.9707
BMNet[47] 3.595 32.30 0.9551 0.0567 6.189 37.30 0.9899 3.087 35.06 0.9738
SG-ShadowNet[37] 3.531 32.41 0.9524 0.0594 6.019 37.41 0.9893 3.044 34.95 0.9725
Ours 3.398 34.14 0.9606 0.0542 5.935 38.46 0.9894 2.902 37.27 0.9772

SRD

DSC[19] 5.704 29.01 0.9044 0.1145 8.828 34.20 0.9702 4.509 31.85 0.9555
DHAN[4] 4.666 30.67 0.9278 0.0792 7.771 37.05 0.9818 3.486 32.98 0.9591
SynShadow[21] 5.200 - - - 10.90 - - 3.600 - -
Fu et al.[10] 6.269 27.90 0.8430 0.1820 8.927 36.13 0.9742 5.259 29.43 0.8888
DC-ShadowNet[22] 4.893 30.75 0.9118 0.1084 8.103 36.68 0.9759 3.674 33.10 0.9540
BMNet[47] 4.240 31.88 0.9376 0.0817 6.982 37.41 0.9816 3.198 35.09 0.9676
SG-ShadowNet[37] 4.297 31.31 0.9273 0.0835 7.564 36.55 0.9807 3.056 34.23 0.9611
Ours 3.832 33.17 0.9398 0.0751 6.094 39.33 0.9848 2.973 35.61 0.9673

Input SPM PMD G2R Fu et al. Ours Ground Truth

Case1

Case2

Case3

Case4

SG BMNet

Input DSC DHAN DC Fu et al. Ours Ground TruthSG BMNet

Figure 6: Visualization results on ISTD+ dataset[24] (first two rows) and SRD dataset[35] (last two rows)

boundary clearly in the restored result by other methods.
Also in Case3, our restored result is almost identical to the
ground truth. But we can find a clear ghost along the shadow
boundary in restored results by other methods.

5.3. Ablation Study

To prove the effectiveness of each part of our method, we
conduct the following experiments for ablations: Exp1, we
remove the adaptive fusion block and combine the extracted
features F̃ and F directly (See the first row of Table 2). We
pretrain this variant on the image inpainting dataset and fine-
tune that on the shadow dataset. Exp2, we concatenate all
the inputs and input that into a naive encoder-decoder (See
the second row of Table 2). We also perform the pretrain-
ing and fine-tuning like exp1. Exp3, we pretrain a naive
encoder-decode network on the image inpainting dataset and
fine-tune it on the shadow dataset like Exp1 and Exp2. Mean-

while, we also train another naive encoder-decode directly
on the shadow dataset (See the third and fourth row of Ta-
ble 2). Exp4, we train an inpainting model based on the naive
encoder-decoder architecture, then input the shadow-masked
image into the inpainting model to perform the shadow re-
moval. As shown in Table 2, we have the following ob-
servations: ❶ without the adaptive fusion the performance
decreases a lot, e.g. the RMSE decreases 14.33% and 2.65%
in the shadow and non-shadow regions respectively. ❷ Both
solutions of concatenating all the inputs and performing the
shadow removal by an inpainting model get a worse result
in the shadow and non-shadow regions compared with our
method. Specifically, concatenating all the input decreases
the RMSE 12.15% in the shadow regions and 1.93% in the
non-shadow regions. Performing the shadow removal by an
inpainting model decreases the RMSE 59.46% in the shadow
regions and 32.48% in the non-shadow regions.
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Table 2: Ablation study on ISTD+ dataset[24].

Method
All Shadow Non-Shadow

RMSE↓ PSNR↑ SSIM↑ LPIPS↓ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑

w/o adaptive fusion 3.627 33.57 0.9573 0.0603 6.928 37.68 0.9884 2.981 36.87 0.9756
Concatenate inputs 3.581 33.58 0.9573 0.0628 6.756 37.58 0.9879 2.959 37.03 0.9763
Encoder-decode w pretraining 3.527 33.59 0.9589 0.0603 6.377 37.66 0.9886 2.969 36.96 0.9769
Encoder-decode w/o pretraining 4.216 32.75 0.9545 0.0661 7.428 36.89 0.9877 3.588 36.09 0.9744
De-shadow by inpainting 5.992 28.62 0.8706 0.1420 14.64 30.98 0.9227 4.298 34.58 0.9672
Ours 3.398 34.14 0.9606 0.0542 5.935 38.46 0.9894 2.902 37.27 0.9772

(a) (c) (d)(b) (e)

Case1

Case2

Figure 7: (a) and (b) are cropped images and restored results of [27]. (c)
and (d) are shadow images and restored results of our method. (e) is the
corresponding ground truth.
5.4. Relationship to SOTA Image Inpainting

For the single-image inpainting task, the input is a cor-
rupted image as shown in Fig. 7 (a) which can be got by
multiplying the original image with a binary mask. The
masked regions are generated totally based on the unmasked
background. For the shadow removal task, the input is a
shadow image as shown in Fig. 7 (c) and the shadow regions
is indicated by a binary mask. When the binary mask is
small or thin i.e. (a) and (c) in Case2, the restored result of
inpainting is indistinguishable compared with the restored re-
sult of shadow removal (see (b) and (d) in Case2). However,
when the binary mask is large i.e. (a) and (c) in Case1, the
texture information of the restored result based on inpainting
is worse than the shadow removal-based counterpart. This
is because the shadow regions i.e. (c) can provide more de-
tailed texture information than the masked regions i.e. (a).
But from (b) in Case1, we can still find that the restored
color in the masked regions is similar to the background.
This phenomenon proves that the inpainting method has the
capability to transfer the color from the background to the
masked regions even when the masked regions are large.
Based on the above observations, we can find the potential
mutual promotion between image inpainting and shadow re-
moval i.e. image inpainting and shadow removal can provide
color and textual information respectively.

5.5. Effectiveness of the inpainting branch and the
shadow removal branch

Based on our network architecture (Fig. 4), we zero out
the outputs of the first shadow removal encoder while pre-
serving the second encoder and the decoder for the inpainting
task. Remarkably, without any retraining or fine-tuning, the
inpainting branch successfully fills in missing pixels (See
Fig. 8(c) vs.(d)) with consistent and smooth colors across the
affected regions. Similarly, we can remove the inpainting

(c) Masked image(b) Shadow restored (e) Final result(a) Shadow image (d) Inpainting restored

Figure 8: From left to right: shadow image, restored result by shadow re-
moval branch, masked image, restored result by inpainting branch, restored
result by two branches.
Table 3: Pretraining our network on three datasets with 10,000 images
randomly sampled from each dataset. For the last row, we use full Place2
for pretraining.

Method All Shadow Non-Shadow
RMSE↓ PSNR↑ SSIM↑ LPIPS↓ RMSE↓ RMSE↓

w/o pretrain 3.860 33.30 0.9555 0.0599 7.144 3.263
CelabA (104 images) 3.557 33.56 0.9586 0.0559 6.343 3.012
Paris-Street-View (104 images) 3.511 33.64 0.9586 0.0551 6.286 2.967
Places2 (104 images) 3.476 33.76 0.9601 0.0550 6.232 2.937
Places2 (1.8× 106 images) 3.398 34.14 0.9606 0.0542 5.935 2.902

branch to focus solely on shadow removal. As depicted in
Fig. 8(a) vs. (b), the colors in the shadow region are recov-
ered and resemble those of shadow-free regions in (a), albeit
with some noticeable boundary effects.

5.6. Effects of inpainting datasets.

We pretrain our network on three inpainting datasets (See
Table 3), respectively, and fine-tune on ISTD+ dataset. In
Table 3, we see that: ❶ With different datasets, inpainting
pretraining yields significant improvements in shadow re-
moval performance. ❷ Pretraining with a larger dataset leads
to better results.

6. Conclusions
In this work, we found that pretraining a network on the

image inpainting dataset and fine-tuning it on the paired
shadow & shadow-free images can enhance the network’s
capability for shadow removal significantly. We conducted
extensive experiments to analyze and compare the networks
with or without inpainting pretraining. Inspired by these
studies, we formulated shadow removal as an adaptive fusion
task and propose a novel adaptive fusion network for shadow
removal. The extensive experiments show that our method
empowered with inpainting outperforms all state-of-the-art
methods.
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