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A B S T R A C T

Skeleton-based human action recognition has been drawing more interest recently due to its low sensitivity to
appearance changes and the accessibility of more skeleton data. However, the skeletons captured in practice are
sensitive to the view of an actor, given the occlusion of different human-body joints and the errors in human
joint localization. Each view is noisy and incomplete, but important factors, such as motion and semantics,
should be shared between all views in action representation learning. We support the classic hypothesis
that a powerful representation is one that models view-invariant factors, and so does unsupervised learning.
Therefore, we study this hypothesis under the framework of contrastive multiview learning, where we learn a
representation for action recognition that aims to maximize the mutual information between different views of
the same action sequence. Apart from that, a global–local contrastive loss is proposed to model the multi-scale
co-occurrence relationships in both spatial and temporal domains. Extensive experimental results show that the
proposed method significantly boosts the performance of unsupervised skeleton-based human action methods
on three challenging benchmarks of PKUMMD, NTU RGB+D 60, and NTU RGB+D 120.
. Introduction

Human action recognition plays an important role in video surveil-
ance, human-machine interaction, and sports video analysis (Herath
t al., 2017). Different modality information, such as appearance,
epth, optical flows, and body skeletons (Bhardwaj et al., 2019) has
een used for human action recognition. Among them, the skeleton con-
ists of compact positions of major body joints (Zhang et al., 2020) and
an provide highly effective information on human motion underlying
ifferent actions (Johansson, 1973; Bian et al., 2021). Skeleton-based
ction recognition is robust to appearance inconsistencies, different
nvironments, and varying illuminations and is getting more accessible
ith the rapid development of sensor technology for capturing the

keleton.
Most of the state-of-the-art methods for skeleton-based action recog-

ition use supervised deep learning, which requires large-scale anno-
ated data samples for training (Liu et al., 2020; Cheng et al., 2020).
o address this problem, several recent studies attempt to leverage
nsupervised learning for skeleton-based action recognition (Zheng
t al., 2018; Lin et al., 2020; Su et al., 2020). In these studies, deep
epresentations are learned for skeleton data sequences in terms of tasks
ike human motion prediction or regeneration, without using any action

∗ Corresponding author.
E-mail address: wfeng@ieee.org (W. Feng).

labels for supervision. For algorithm evaluation, a simple linear classi-
fier is finally trained for action recognition based on both the learned
representations and action labels of the training data. At present, there
is still a relatively obvious performance gap between the supervised and
unsupervised methods for skeleton-based action recognition. One point
that we think can be further optimized is that the existing unsupervised
skeleton representation learning methods tend to overlook the necessity
of controlling irrelevant factors embedded in the inputs, such as view
variation and pose deformation.

Skeletons simultaneously captured for the same person from dif-
ferent views are usually different (Zhang et al., 2019), as shown in
Fig. 1, even if we try to transform them to the same coordinates. There
are many reasons accounting for this phenomenon, such as altered
reference coordinates, different occluded joints in different views, and
inaccurate human pose estimation. In practice, the skeleton data used
for action recognition may be captured from different and even time-
varying views (Zhang et al., 2019; Nie et al., 2019). We revisit the
classic hypothesis that good representations are the ones that are shared
between multiple views. In other words, the viewpoint you view an
action should not affect its semantics. For this reason, we propose a
new approach to enhancing representation learning by tackling view
variation in skeleton-based action recognition without using any man-
ual action labels. Since the training data are unlabeled and have been
ttps://doi.org/10.1016/j.cviu.2023.103655
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Fig. 1. An illustration of view variance of skeleton data: skeleton data simultaneously
captured for a same person, but from different views, are usually different.

already formatted and related in data collection and prepossessing,
we follow previous studies (Li et al., 2018b; Ji et al., 2021), where a
surrogate task is designed to exploit the inherent structure of unlabeled
multi-view data for representation learning, by calling our proposed
method unsupervised here.

In this paper, we propose global–local contrastive multiview rep-
resentation learning to enhance unsupervised skeleton-based action
recognition. Our goal is therefore to learn representations that capture
information shared between multiple views but that are otherwise com-
pact (i.e. discard view-specific nuisance factors). More specifically, the
proposed method maximizes the mutual information between features
learned from skeletons that are simultaneously captured for the same
person from different views. Such representations of different views
but the same person are pulled closer to each other in the embedding
space through the network training phase. Furthermore, the proposed
training loss takes the form of a global–local contrastive one, which
can also model the multi-scale co-occurrence relationships between
the spatial and temporal domains. In the testing stage, just like in
previous works we only take one skeleton data sequence captured
from an unknown view as the input of the network for skeleton-based
action recognition. We conduct comprehensive evaluation and analysis
in our experiments to demonstrate that the proposed method can learn
better representations for improving the performance of skeleton-based
human action recognition. The proposed method significantly boosts
the performance of unsupervised skeleton-based action recognition on
three widely used multi-view benchmarks under the linear evaluation
protocol.

The main contributions of this paper are as follows:

- A contrastive multiview learning framework for learning view-
invariant representations for skeleton-based action recognition is
proposed.

- We introduce a local–global spatial–temporal graph contrastive
loss, combined with task uncertainty, to model the multi-scale co-
occurrence relationship between spatial and temporal domains.

- Compared with existing methods that do not use ground-truth ac-
tion labels in training, the proposed algorithm significantly boosts
the performance on three widely used benchmarks of PKUMMD,
NTU RGB+D 60, and NTU RGB+D 120.

The remainder of the paper is organized as follows. Section 2 gives
a brief review of the related work on skeleton-based action recognition
and contrastive learning. In Section 3, we describe our proposed global–
local contrastive multiview representation learning approach. Section 4
describes the benchmark datasets and experimental setting, and reports
the experiment results, followed by a brief conclusion in Section 5.

2. Related work

2.1. Skeleton-based action recognition

Skeleton-based action recognition is a very active and burgeoning
area of research, due to its effective representation of motion dynamics.
Much of the traditional skeleton-based action recognition work focuses
2

on designing effective handcrafted features, especially the joint or body
part based features (Vemulapalli et al., 2014; Yang and Tian, 2012;
Xia et al., 2012; Hussein et al., 2013). New methods have recently
emerged in the literature to address the skeleton-based action represen-
tation with deep learning, including Recurrent Neural Network (RNN),
Convolutional Neural Networks (CNN), and Graph Convolutional Net-
work (GCN). Most of them aim to find more effective ways to model
temporal and spatial information of skeleton sequences. The structure
of RNN is suitable for processing sequential data and prior works have
shown that RNN is especially good for handling varying-length skeleton
sequences (Wang and Wang, 2017). In order to extract discriminative
spatial and temporal features of different actions, Song et al. (2017)
propose a spatial and temporal attention module to assign different
importance to each joint and frame within a sequence on top of RNN.
CNN has the intrinsic ability to learn structural information from 2D
or 3D grids, and it has also been used to encode skeleton sequences as
pseudo-images for spatial–temporal representation learning (Ke et al.,
2017). Liu et al. (2017b) firstly transform skeleton sequence into a
series of color images and then enhance visual and motion local pat-
terns through mathematical morphology, finally propose a multi-stream
CNN-based model to extract and fuse deep features from the enhanced
color images. GCN is the generalization of CNN to graphs and it can
well represent the joint-based skeleton data. Therefore the use of GCN
can automatically capture the patterns embedded in the spatial con-
figuration of the joints as well as their temporal dynamics (Yan et al.,
2018; Liu et al., 2020; Cheng et al., 2020). Cheng et al. (2020) take
novel shift graph operations and lightweight point-wise convolutions
to replace regular graph convolutions. This way it reduces computation
cost and provides flexible receptive fields for both spatial graphs and
temporal graphs.

To avoid the laborious labeling of large-scale skeleton data, unsu-
pervised skeleton-based action recognition has been studied by many
researchers (Lin et al., 2020; Su et al., 2020). To make better use of the
movement patterns introduced by extreme augmentations, Guo et al.
(2022) propose a Contrastive Learning framework to utilize abundant
information mining. Li et al. (2021) propose a cross-view contrastive
learning framework by leveraging multiview complementary super-
vision signal. Nie and Liu (2021) propose a denoising autoencoder
to learn intrinsic pose features through the task of recovering cor-
rupted skeletons. Leveraging the colorized skeleton point cloud, Yang
et al. (2021) design an auto-encoder framework that can learn spatial–
temporal features. Thoker et al. (2021) propose to learn from multiple
different input skeleton representations in a cross-contrastive manner.
Kim et al. (2022) propose a transformer model for the task of unsu-
pervised learning of skeleton motion sequences. Most existing methods
perform the feature learning by an encoder–decoder structure, the
input of which is a masked or original skeleton sequence, and the
goal of training is to reconstruct the skeleton sequences from the
encoded features. For the same reason, we focus on learning a pow-
erful representation for skeleton-based action recognition that models
view-invariant factors without any manual action labeling using a
spatial–temporal graph network.

2.2. Contrastive learning

Contrastive learning aims to pull together an anchor and a ‘‘posi-
tive’’ sample in embedding space while pushing apart the anchor from
many ‘‘negative’’ samples (Khosla et al., 2020). Therefore, contrastive
losses are adopted to learn effective representations for pretext tasks
in an unsupervised fashion. Closely related to contrastive learning
is the family of losses based on metric distance learning or triplets
that depend on the class label to supervise the choice of positive
and negative pairs (Schroff et al., 2015). The key distinction between
triplet losses and contrastive losses is that the former use exactly one
positive and one negative pair per anchor and the positive pair of them
is chosen from the same class and the negative pair is chosen from
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Fig. 2. The overall pipeline of the proposed global–local contrastive multiview representation learning for skeleton-based action recognition. 𝐱view1𝑎 and 𝐱view2𝑎 are from any two
views of the multi-view skeleton sequence 𝐗𝑎. 𝐱view∗𝑏 is from any view of the multi-view skeleton sequence 𝐗𝑏. This approach pulls together skeletons simultaneously captured for
the same person from different views in embedding space, while pushing apart the others.
1

different classes. Contrastive learning generally uses just one positive
pair for each anchor sample, selected using either co-occurrence (Hjelm
et al., 2018; Henaff, 2020) or data augmentation (Chen et al., 2020).
The introduction of contrastive learning leads to a surge of interest
in unsupervised visual representation learning (Chen et al., 2020).
Wu et al. (2018) maximize distinction between instances via a novel
nonparametric softmax formulation and use a memory bank to store
the instance class representation vector. For effective similarity mea-
surement between samples in low-dimensional embedding space, other
work explores the use of in-batch samples for negative sampling instead
of a memory bank (Ye et al., 2019; Ji et al., 2019). Recently, researchers
have attempted to relate the success of their methods to the maximiza-
tion of mutual information between latent representations (Bachman
et al., 2019; Henaff, 2020).

In probability theory and information theory, the mutual informa-
tion of two random variables is a measure of their mutual depen-
dence (Wikipedia, 2021). It has important applications to contrastive
learning (Chen et al., 2020). By maximizing mutual information be-
tween node and graph representations, some works, focusing on general
graphs, have achieved state-of-the-art results in unsupervised node and
graph classification tasks (Veličković et al., 2018; Sun et al., 2019).
Maximizing mutual information between features extracted from mul-
tiple views of a shared context is analogous to human learning to
represent observations generated by a shared cause driven by a desire
to predict other related observations (Bachman et al., 2019). Aim-
ing at a specific spatial–temporal graph structure, we introduce a
global–local contrastive multiview representation learning method for
skeleton-based action recognition.

3. Global–local contrastive multiview representation learning

Inspired by recent contrastive learning algorithms, we propose an
approach to learning a powerful representation that models view-
invariant factors without any manual action labeling. It maximizes
the mutual information between skeleton sequences that are simul-
taneously taken for the same person but from different views, via a
global–local contrastive loss in the latent space. The overall pipeline of
the proposed approach is illustrated in Fig. 2. Specifically, a stochastic
data augmentation module 𝜑(⋅) that transforms any given data example
randomly to encourage learning a more robust representation for the
downstream task. Then, a spatial–temporal graph convolution network
(ST-GCN) structural encoder 𝑔(⋅) extracts representation vectors from
augmented data examples. We maximize the representation agreement
between samples simultaneously taken for the same person but from
different views at a global level and a local level. At the global level, a
small neural network projection head 𝑓 (⋅) maps the representations
𝜓
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to a latent space by applying a global contrastive loss. At the local
level, as shown in Fig. 3, an ST-Graph partitioning function 𝜌(⋅) splits
the graph structural representation of the whole skeleton sequence
into multi-local subgraphs, and then a projection head 𝑓𝜙(⋅) maps the
representations to a latent space by applying a local contrastive loss.
Moreover, to effectively combine global and local contrastive losses,
we adjust their relative weights based on task uncertainty.

Before getting into the details of the approach, we state the main
notations. Similar to previous studies (Cheng et al., 2020; Zhang et al.,
2020), we organize skeleton sequence of an action sample as an undi-
rected spatial–temporal graph 𝐱 = ( ,), where  = {𝐣𝑡𝑖 ∣ 𝑡 =
,… , 𝑇 ; 𝑖 = 1,… ,𝑀} denotes a set of vertices, corresponding to 𝑇

frames and 𝑀 body joints per frame, and  is the set of edges,
indicating the connections between nodes. Then, we represent a multi-
view skeleton sample as 𝐗 = {𝐱𝑣}𝑉𝑣=1, where 𝑉 represents the number of
views, which could be as many as needed, and 𝑣 indicates the specific
𝑣th view. For many multiview skeleton samples, we also use 𝐱𝑣𝑖 to
denote the 𝑣th view of the 𝑖th multiview skeleton sample 𝐗𝑖.

3.1. Multiview skeletal data augmentation

Data augmentation aims to create novel and realistically rational
data by applying a certain transformation to the original training data
without affecting their semantic meanings. It has been demonstrated
that contrastive learning usually needs stronger data augmentation
than supervised learning (Chen et al., 2020). Meanwhile, for specific
graphs, certain data augmentations might be more effective than the
others (You et al., 2020). Let an augmented skeleton sequence be
𝐱̂𝑣𝑖 = 𝜑(𝐱𝑣𝑖 ), where 𝜑(⋅) is the augmentation function. In this paper, we
apply temporal subgraph as the data augmentation, with definitions as
follows: it samples a segment from 𝐱𝑣𝑖 along the temporal dimension. As
the length of a skeleton sequence is fixed to 100 frames, we randomly
sample 95 consecutive frames and then extend it to 100 frames by
linear interpolation. This data augmentation increases the robustness
of action recognition when the starting and ending frames of the action
cannot be accurately determined and the skeleton sequences captured
from different views do not have perfect temporal alignment.

3.2. ST-GCN structural encoder

The ultimate goal of the proposed approach is to train a skeleton se-
quence encoder 𝑔(⋅) to get a powerful representation for skeleton-based
action recognition without any manual action labeling. Specifically, to
effectively model the co-occurrence relationships among joints in both
spatial and temporal domains, we apply an ST-GCN structural encoder,
which extracts representation 𝐡𝑣 from the augmented skeleton sequence
𝑖
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Λ

Fig. 3. An more detail illustration of local contrastive in Fig. 2. ST-Graph structural representations 𝐡view1𝑎 and 𝐡view2𝑎 are from any two views of the multi-view skeleton sequence
𝐗𝑎 while 𝐡view∗𝑏 is from any view of the multi-view skeleton sequence 𝐗𝑏. This loss aims to pull together skeleton sequence regions simultaneously captured for the same person
from different views in embedding space, while pushing apart the others.
𝐱̂𝑣𝑖 . Specifically, it contains two parts: spatial graph convolution and
temporal graph convolution.

For spatial graph convolution, the neighbor set of joints is defined
as an adjacent matrix 𝐀 ∈ {0, 1}𝑀×𝑀 according to  , which is typ-
ically partitioned into 3 partitions: the centripetal group containing
neighboring nodes that are closer to the skeleton center, the node
itself and otherwise the centrifugal group. For individual skeleton, let
𝐅 ∈ R𝑀×𝐶 and 𝐅′ ∈ R𝑀×𝐶′ denote the input and output feature during
the processing respectively, where 𝐶 and 𝐶 ′ are the input and output
feature dimensions. The graph convolution is computed as:

𝐅′ =
∑

𝑝∈
𝐀̄𝑝𝐅𝐖𝑝, (1)

where  = {root, centripetal, centrifugal} denotes the spatial partitions,
𝐀̄𝑝 = Λ

− 1
2

𝑝 𝐀𝑝Λ
− 1

2
𝑝 ∈ R𝑀×𝑀 is the normalized adjacent matrix and

𝑖𝑗
𝑝 =

∑

𝑗 (𝐀
𝑖𝑗
𝑝 )+𝛼, 𝛼 is set to 0.001 to avoid empty rows. 𝐖𝑝 ∈ R1×1×𝐶×𝐶′

is the weight of the 1 × 1 convolution for each partition group. For
the temporal dimension, we construct a temporal graph by connecting
identical joints in consecutive frames and use regular 1D convolution
on the temporal dimension as the temporal graph convolution.

The ST-GCN structural encoder comprises a series of dynamic
spatial–temporal graph convolution blocks stacked one above the other.
In this form, there existed many specific models with subtle differ-
ences (Yan et al., 2018; Shi et al., 2019; Cheng et al., 2020). The
proposed approach does not place any restriction on the ST-GCN
structural encoder, as long as it maintains the feature of the spatial–
temporal graph structure. In our implementation, we adopt the network
recently proposed by Cheng et al. (2020) as the ST-GCN structural
encoder.

3.3. ST-Graph partitioning function

As stated in Li et al. (2018a), the graph convolution operation
can be considered Laplacian smoothing for node features over graph
topology. The Laplacian smoothing computes the new node features as
the weighted average of itself and its neighbors. It helps make nodes in
the same cluster tend to learn similar representations. Nevertheless, it
may also lead to the over-smoothing problem and make nodes indistin-
guishable as the number of network layers increases. Meanwhile, it may
concentrate more on node features and make the learned embeddings
lack structural information. In short, ST-GGN can handle most simple
cases but may ignore local details on a complicated graph.

Given the above problems, we enhance the representation by giving
more consideration to specific characteristics of local regions. Specif-
ically, we include an ST-Graph partitioning function 𝜌(⋅) to split the
feature of the whole skeleton sequence 𝐡𝑣𝑖 into multi-local subgraphs
𝐥𝑣𝑖,𝑠, 𝑠 ∈ [1,… , 𝑆], where 𝑆 represents the number of generated sub-

graphs, 𝑖 and 𝑠 indicate sample index and subgraph index, respectively.

4

Fig. 4. ST-Graph spatial or temporal partitioning strategies. The spatial–temporal
feature graph are evenly partitioned along different dimensions by cutting edges.

The choice of partitioning strategies has a strong impact on not only
the performance of recognition networks but also the design of the
networks (Fan et al., 2020). Several graph partitioning algorithms have
already been developed and they are often either edge cut (Andreev and
Racke, 2006), which evenly partitions vertices and cuts edges, or vertex
cut (Bourse et al., 2014), which evenly partitions edges by replicating
vertices. There have also been hybrid algorithms (Li et al., 2019), which
cut both edges and vertices. In this paper, we adopt two simple rule-
based edge cut style partitioning strategies to segment the skeleton
spatial–temporal feature graph. Specifically, vertices of the ST-Graph
are evenly partitioned into 𝑆 segments along the spatial dimension or
the temporal dimension by cutting edges, as shown in Fig. 4.

3.4. Projection head

Recent work by Chen et al. (2020) found that mapping features to
another latent space before contrastive loss calculation can be more
effective. In this way, the features before a nonlinear projection are the
learned representations, where information loss of raw data induced
by the contrastive loss can be relieved. Therefore, in this paper, the
representations 𝐡𝑣𝑖 and 𝐥𝑣𝑖,𝑚 are mapped to another latent space through
an MLP with one hidden layer, respectively. We name this module
as projection head and add it to global and local contrastive learning
subnetworks. Meanwhile, a global pooling is performed on 𝐡𝑣𝑖 and 𝐥𝑣𝑖,𝑚
to get a fixed dimension feature vector for each ST-Graph to aggregate
the node features before the projection head. Formally, the process is
defined as:
𝐆𝑣
𝑖 = 𝑓𝜓 (pool(𝐡𝑣𝑖 )) = 𝐖(𝜓,2)𝜎(𝐖(𝜓,1)pool(𝐡𝑣𝑖 )),

𝐋𝑣𝑖,𝑚 = 𝑓𝜙(pool(𝐥𝑣𝑖,𝑚)) = 𝐖(𝜙,2)𝜎(𝐖(𝜙,1)pool(𝐥𝑣𝑖,𝑚)),
(2)

where 𝑓𝜓 (⋅) and 𝑓𝜙(⋅) represent global and local projection heads. 𝐆𝑣
𝑖

and 𝐋𝑣 are the global and local representations in another latent space.
𝑖,𝑚
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pool(⋅) is a global pooling function. 𝜎 is a ReLU nonlinearity and 𝐖’s are
learned weights of MLP. Note that the output of pool(𝐡𝑣𝑖 ) is named as
𝐇𝑣
𝑖 , which is the representation we learned that models view-invariant

factors.

3.5. Global–local contrastive learning

A global representation can well capture the common knowledge
of action patterns among all the regions in the skeleton sequence and
hence possesses nice merit in terms of model generalization while a
local representation targets the personalization of individual regions. As
mentioned above, we propose several ST-Graph partitioning strategies
to segment the graph into multiple local subgraphs. In this section, a
global–local contrastive learning loss is proposed to effectively model
the multi-scale co-occurrence relationship between spatial and tempo-
ral domains in the ST-Graph. For this, we define different positive pairs
in global and local scenarios and maximize the consistency between the
positive pairs compared with corresponding negative pairs using global
and local contrastive loss functions. Meanwhile, the two contrastive loss
functions are combined with task uncertainty in order to balance the
trade-off between generalization and personalization of representation.

Global contrastive loss. Given two global representations 𝐆𝑣1
𝑎 and

𝑣2
𝑏 , we specify that they form a positive pair if 𝑎 is equal to 𝑏, else

hey form a negative pair. It means multiple skeleton sequences, if
imultaneously taken for the same person from different views, will
e pulled together in embedding space, otherwise will be pulled apart,
hich is shown in Fig. 2. Therefore, not only skeleton representations

an be effectively learned without any action label information, but also
heir view-invariant property of them can be enhanced during multi-
iew contrastive learning. To achieve this, we adopt the normalized
emperature-scaled cross entropy loss (Chen et al., 2020). Specifically,
e randomly sample a minibatch of 𝑁 examples and define the con-

rastive prediction task on pairs of skeleton sequences. Note that each
xample consists of 𝑉 skeleton sequences collected from 𝑉 different

views, resulting in 𝑉 𝑁 data points. Given 𝑉 positive pairs in an
example, we treat the other 𝑉 (𝑁 − 1) data points within a minibatch
as negative examples. Let 𝐮 and 𝐯 denote representations of two data
points. To measure similarity, we define sim(𝐮, 𝐯) = 𝐮⊤𝐯∕ ‖𝐮‖ ‖𝐯‖ that
denotes the dot product between 𝓁2 normalized 𝐮 and 𝐯. Then, the
global loss function for positive pairs of example 𝑖 is defined as

𝓁global
𝑖 = − log

∑𝑉
𝑣1,𝑣2=1 1[𝑣1 ≠ 𝑣2] exp

(

sim
(

𝐆𝑣1
𝑖 ,𝐆

𝑣2
𝑖
)

∕𝜏
)

∑𝑁
𝑘=1

∑𝑉
𝑣1,𝑣2=1 1

[

𝑘 ≠ 𝑖
𝑣1 ≠ 𝑣2

]

exp
(

sim
(

𝐆𝑣1
𝑖 ,𝐆

𝑣2
𝑘
)

∕𝜏
)

, (3)

where 1[𝑣1 ≠ 𝑣2] ∈ {0, 1} is an indicator function evaluating to 1 if
1 ≠ 𝑣2, 1

[

𝑘 ≠ 𝑖
𝑣1 ≠ 𝑣2

]

is also an indicator function evaluating to 1 if one
f 𝑘 ≠ 𝑖 and 𝑣1 ≠ 𝑣2 is satisfied, otherwise evaluating to 0. 𝜏 denotes
temperature parameter. For a minibatch, the global contrastive loss
global is computed across all examples,

global =
1
𝑉 𝑁

𝑁
∑

𝑚=1
𝓁global
𝑚 , (4)

where 𝑁 is the batchsize.
Local contrastive loss. Local contrastive loss is calculated among

he local representations, as illustrated in Fig. 3. Given two local
epresentations 𝐋𝑣1𝑎,𝑠1 and 𝐋𝑣2𝑏,𝑠2, we specify that they form a positive pair
f both 𝑎 = 𝑏 and 𝑠1 = 𝑠2 are satisfied, else they form a negative pair.
rom the composition of the positive and negative pairs, the contrastive
oss achieves the same effect as the global one at the local scale when
ubgraph indices are consistent for all pairs. Besides, it can also handle
he over-smoothing and the structural information lacking problems by
ontrasting among local regions in a sequence when sample indices
re consistent for all pairs. The definition of local contrastive loss is
asically the same as the global one. But because of the extra subgraph
imension, there are 𝑉 −1 positive pairs and 𝑉 (𝑆𝑁 −1) negative pairs
5

in a sample. Formally, the local contrastive loss function for positive
pairs of example 𝑖 is defined as

𝓁local
𝑖 = − log

∑𝑆
𝑠=1

∑𝑉
𝑣1,𝑣2=1 1[𝑣1 ≠ 𝑣2] exp

(

sim
(

𝐋𝑣1𝑖,𝑠,𝐋
𝑣2
𝑖,𝑠

)

∕𝜏
)

∑𝑁
𝑘=1

∑𝑆
𝑠1,𝑠2=1

∑𝑉
𝑣1,𝑣2=1 1

[

𝑘 ≠ 𝑖
𝑠1 ≠ 𝑠2
𝑣1 ≠ 𝑣2

]

exp
(

sim
(

𝐋𝑣1𝑖,𝑠1,𝐋
𝑣2
𝑘,𝑠2

)

∕𝜏
)

,

(5)

where 1

[

𝑘 ≠ 𝑖
𝑠1 ≠ 𝑠2
𝑣1 ≠ 𝑣2

]

is an indicator function that needs one of the three
nequalities is true. 𝑆 is the number of split subgraphs. For a minibatch,
he local contrastive loss local also needs to be computed across all
xamples,

local =
1

𝑆𝑉 𝑁

𝑁
∑

𝑚=1
𝓁local
𝑚 . (6)

Based on the above ST-Graph partitioning function, the ST-Graph can
be evenly partitioned into multiply subgraphs along the spatial dimen-
sion or the temporal dimension by cutting edges. Corresponding to
that, two different forms of local contrastive loss come up: spalocal and
temlocal, to learn various local representations.

Global–Local contrastive loss. Global–Local contrastive loss is
concerned about jointly optimizing the related global and local con-
trastive loss functions. In this paper, the popular approach of using
a linear combination of them as a total loss function is abandoned.
Because manually tuning their weight hyper-parameters is expensive
and intractable. Instead, following the work of Wang et al. (2020), we
adjust each loss’s relative weight in the total loss function by deriving
a multi-task loss function based on maximizing the Gaussian likelihood
with task-dependent uncertainty during model training. We define the
global–local contrastive loss  as follows:

 = 1
𝜎21

global +
1
𝜎22

local + log(𝜎21 ) + log(𝜎22 ), (7)

here 𝜎1 and 𝜎1 associate with the task uncertainty and can be in-
erpreted as the relative weights of respective loss terms. log(𝜎21 ) and
og(𝜎22 ) serve as regularizers to avoid over-fitting. All network param-
ters and the uncertainty task weights are trainable and optimized by
radient backpropagation.

The proposed global–local contrastive multiview representation
earning is summarized as Algorithm 1.

. Experiment

.1. Dataset

We evaluate the proposed method on three public available multi-
iew action recognition benchmarks: NTU RGB+D 60 (Shahroudy et al.,

2016), NTU RGB+D 120 (Liu et al., 2019), and PKUMMD (Liu et al.,
2017a). We briefly describe them below.

NTU RGB+D 60 (NTU). NTU is a large-scale multi-modal action
recognition dataset. It is composed of 56,880 samples over 60 classes
captured from 40 distinct subjects and three Kinect cameras. Each
action in the samples involves one or two people. The dataset is
very challenging due to the large intra-class and view variations. The
original paper of the NTU recommends two benchmarks: (1) Cross-
subject (CS): all samples from a selected group of subjects are used
for training and the rest samples for testing. (2) Cross-view (CV): the
training set contains samples that are captured by cameras 2 and 3,
and the testing set contains videos that are captured by camera 1. We
follow this convention and report performance on both benchmarks.

NTU RGB+D 120 (NTU-120). NTU-120 is an extended version of
NTU. It is composed of 113,945 samples in 120 action categories.
Two protocols are implemented here: (1) Cross-Subject (XSub): training
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Algorithm 1: Global–local contrastive multiview representation learning algorithm
1 Input: Augmentation 𝜑(⋅), global pooling pool(⋅), ST-Graph partitioning function 𝜌(⋅), ST-GCN structural encoder 𝑔(⋅), global and local

projection heads 𝑓𝜓 (⋅) and 𝑓𝜙(⋅), training multi-view skeleton sequences {𝐗𝑖 = {𝐱𝑣𝑖 }
𝑉
𝑣=1}

𝑁
𝑖=1, global contrastive loss global, local contrastive

loss local, similarity measurement function 𝑠𝑖𝑚(⋅).
2 Parameters: Learnable relative weight parameters for global and local contrastive loss: 𝜎1 and 𝜎2; number of views 𝑉 ; number of split

subgraphs 𝑆; number of samples in one batch 𝐾; temperature parameter 𝜏.
1: while sampled batch {{𝐱𝑣𝑖 }

𝑉
𝑣=1}

𝐾
𝑖=1 do

2: while 𝑖 = 1 to 𝐾 do
3: while 𝑣 = 1 to 𝑉 do
4: 𝐡𝑣𝑖 = 𝑔(𝜑(𝐱𝑣𝑖 ))
5: 𝐆𝑣

𝑖 = 𝑓𝜓 (pool(𝐡𝑣𝑖 ))
6: {𝐥𝑣𝑖,𝑠}

𝑆
𝑠=1 = 𝜌(𝐡𝑣𝑖 )

7: while 𝑠 = 1 to 𝑆 do
8: 𝐋𝑣𝑖,𝑠 = 𝑓𝜙(pool(𝐥𝑣𝑖,𝑠))
9: end while

10: end while
11: end while
12: while 𝑖 = 1 to 𝐾 do

13: 𝓁global
𝑖 = − log

∑𝑉
𝑣1,𝑣2=1 1[𝑣1≠𝑣2] exp

(

sim
(

𝐆𝑣1𝑖 ,𝐆
𝑣2
𝑖

)

∕𝜏
)

∑𝐾
𝑘=1

∑𝑉
𝑣1,𝑣2=1 1

[

𝑘 ≠ 𝑖
𝑣1 ≠ 𝑣2

]

exp
(

sim
(

𝐆𝑣1𝑖 ,𝐆
𝑣2
𝑘

)

∕𝜏
)

14: 𝓁local
𝑖 = − log

∑𝑆
𝑠=1

∑𝑉
𝑣1,𝑣2=1 1[𝑣1≠𝑣2] exp

(

sim
(

𝐋𝑣1𝑖,𝑠 ,𝐋
𝑣2
𝑖,𝑠

)

∕𝜏
)

∑𝐾
𝑘=1

∑𝑆
𝑠1,𝑠2=1

∑𝑉
𝑣1,𝑣2=1 1

[

𝑘 ≠ 𝑖
𝑠1 ≠ 𝑠2
𝑣1 ≠ 𝑣2

]

exp
(

sim
(

𝐋𝑣1𝑖,𝑠1 ,𝐋
𝑣2
𝑘,𝑠2

)

∕𝜏
)

15: end while
16: global =

1
𝑉 𝐾

∑𝐾
𝑚=1 𝓁

global
𝑚

17: local =
1

𝑆𝑉 𝐾
∑𝐾
𝑚=1 𝓁

local
𝑚

18:  = 1
𝜎21
global +

1
𝜎22
local + log(𝜎21 ) + log(𝜎22 )

19: update networks 𝑔(⋅), 𝑓𝜓 (⋅), 𝑓𝜙(⋅), 𝜎1 and 𝜎2 to minimize 
20: end while
21: return encoder model 𝑔(⋅), and throw away projection heads 𝑓𝜓 (⋅) and 𝑓𝜙(⋅)
data and testing data are collected from different subjects. (2) Cross-
Setup (XSet): training data and testing data are collected from different
setups.

PKUMMD. PKUMMD is a new large-scale benchmark for continuous
multi-modality 3D human action understanding and covers a wide
range of complex human activities with well-annotated information. It
contains almost 20,000 action instances in 51 action categories, per-
formed by 66 subjects in three different view Kinect sensors. PKUMMD
consists of two subsets: PKUMMD-I is an easier subset for action recog-
nition, while PKUMMD-II is more challenging with more skeleton noise
caused by large view variation. We conduct experiments under the
cross-subject protocol on the two subsets.

4.2. Implementation details

4.2.1. Pre-training without any action label information
In proposed approach, an ST-GCN structural encoder 𝑔(⋅), a global

projection head 𝑓𝜙(⋅) and a local projection head 𝑓𝜓 (⋅) are pre-trained
using multi-view skeleton sequences without any action label informa-
tion. We use SGD with Nesterov momentum 0.9 to pre-train them for
40 epochs. The learning rate is set to 0.1 and divided by 10 at epochs
20, 30, and 35. The batch size is set to 16 for all experiments. The
sequence length 𝑇 is set to 100. The temperature parameter for global–
local contrastive loss is set to 0.07. The number of subgraph 𝑆 is set
to 5. 𝑉 is set to 2, which means each sample includes two skeleton
sequences, simultaneously taken from different views.

4.2.2. Evaluation protocol
To validate the effectiveness of the proposed representation learning

method, we follow the linear evaluation protocol (Wang et al., 2020;
Chen et al., 2020), which is commonly used to evaluate unsupervised
learning methods. In this way, a linear classifier attached to the frozen
encoder model 𝑔(⋅) is trained with the annotated dataset. We report
6

Top-1 accuracy on the testing set as a quantitative evaluation indicator.
The classifier is trained for 45 epochs, with the learning rate divided
by 10 at epochs 25, 35, and 40. The other settings remain the same as
the pre-training.

4.3. Comparison experiments

To quantitatively evaluate the performance, Tables 1 and 3 list
the linear evaluation results of our approach and other state-of-the-art
unsupervised methods on PKUMMD and NTU benchmarks. The model
which only trains the linear classifier and freezes the randomly initial-
ized encoder is denoted as ST-Graph Rand. We regard this model as one
of our baselines. The models implementing ST-Graph contrastive learn-
ing in single-view and multi-view scenarios are denoted as ST-Graph
CSRL and ST-Graph CMRL, respectively. In the single view version, we
maximize the mutual information between skeleton ST-Graph repre-
sentations of one augmented instance and another augmented instance
of an identical skeleton sequence, to learn inherent action patterns of
different skeleton transformations. For the evaluation of P&C FW on
the action recognition task, we reproduce the coder of P&C FW with a
linear evaluation protocol. The temporal subgraph is the default data
augmentation method we adopt in these experiments.

4.3.1. Comparison with state-of-the-art
In existing studies (Su et al., 2020; Lin et al., 2020), the pre-

training and evaluation are usually conducted on the same dataset. An
overall summary of the results is given in Tables 1 and 2, where the
proposed method has returned significantly improved performance in
the unsupervised methods that do not use action labels for training. As
we can see, ST-Graph CMRL is far beyond the performance of random
baseline and other state-of-the-art unsupervised methods and greatly
reduces the gap to the models trained with action annotation. NTU
(CV) is a suitable benchmark to evaluate the model’s robustness to the
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Table 1
Comparison of action recognition performance of the proposed approaches and other state-of-the-art methods.

Supervised Models PKUMMD-I PKUMMD-II NTU (CS) NTU (CV)

Yes ST-Graph 94.5 56.8 87.8 95.1
No ST-Graph Rand 30.1 10.6 19.6 23.2
No LongT GAN (Zheng et al., 2018) 67.7 26.0 52.1 –
No P&C FW (Su et al., 2020) 67.6 35.9 32.5 35.7
No M2SL (Lin et al., 2020) 64.9 27.6 52.6 –
No CAE+ (Rao et al., 2021) – – 58.5 64.8
No SkeletonCRL (Li et al., 2021) 80.9 – 68.3 76.4
No CrosSCRL (Li et al., 2021) – – 72.9 79.9
No AimCRL (Guo et al., 2022) 83.4 – 74.3 79.7
No SeBiReNet (Nie and Liu, 2021) – – – 79.7
No Colorization (Yang et al., 2021) – – 71.6 79.9
No ST-Graph CSRL (Ours) 68.4 31.8 60.2 59.8
No ST-Graph CMRL (Ours) 83.6 39.9 74.7 82.6
Table 2
Unsupervised results on NTU-120.

Models NTU-120(XSub) NTU-120(XSet)

LongT GAN (Zheng et al., 2018) 39.7 35.6
P&C FW (Su et al., 2020) 44.1 41.1
CAE+ (Rao et al., 2021) 48.6 49.2
SkeletonCLR (Li et al., 2021) 56.8 55.9
AimCLR (Guo et al., 2022) 63.4 63.4
Skeleton Contrastive (Thoker et al., 2021) 67.9 67.1
ST-Graph CMRL (Ours) 69.2 68.7

Table 3
Performance of transfer learning setting in linear evaluation.

Supervised Models PKUMMD-I PKUMMD-II

Yes ST-Graph 90.6 55.0
No P&C FW (Su et al., 2020) 63.3 23.6
No M2SL (Lin et al., 2020) – 44.8
No LongT GAN (Zheng et al., 2018) – 45.8
No Skeleton Contrastive (Thoker et al., 2021) – 45.9
No ST-Graph CSRL (Ours) 76.3 39.8
No ST-Graph CMRL (Ours) 82.2 47.0

viewpoint difference. Here, we can see that model’s Top-1 accuracy of
ST-Graph CMRL in NTU (CV) is 82.6%, while ST-Graph Rand and P&C
FW are only 23.2% and 35.7%, respectively. Therefore, the multi-view
contrastive learning significantly improved the view-invariant property
of skeleton representation. As most recent unsupervised results are re-
ported on the NTU-120 dataset, we also compare the proposed method
with unsupervised methods. As shown in Table 2, our method defeats
the other unsupervised method on both XSub and XSet protocols. Even
in a single view scenario, under the truly unsupervised setting, the
performances of ST-Graph CSRL are quite outstanding, which performs
better than almost all the baselines. It achieves high recognition accu-
racies of 60.2% and 59.8% on NTU (CS) and NTU (CV), respectively,
which proves that our global–local contrastive learning of augmented
skeletons of the same sample also works well. From the comparison of
ST-Graph CSRL and CMRL, we can see that significant improvements
are made in each benchmark. It proves that CRL between the multi-
view skeletons brings in a giant performance leap for unsupervised
skeleton-based action recognition.

4.3.2. Transfer learning performance
To further evaluate whether the proposed approach can gain knowl-

edge to related tasks, we investigate the transfer learning performance
of our model (Lin et al., 2020). As the representations learned from
large-scale data are more generalizable, we regard the NTU as the
source dataset and PKUMMD-I and PKUMMD-II as the target datasets.
We conduct the pre-training on source datasets and the evaluation on
target datasets. Under this setting, the samples used for pre-training and
linear evaluation are completely different in terms of viewpoints, action

patterns, and so on, which is more following the practical scenarios.

7

Table 4
Analysis of global–local contrastive multiview learning loss function.

Loss Function NTU (CS) NTU (CV)

global 69.7 73.7
temlocal 67.4 74.9
spalocal 61.0 65.9
global + temlocal 74.7 82.6
global + spalocal 73.6 79.0
global + temlocal + spalocal 74.2 81.5

The results are summarized in Table 3, from which our approach gets
better results of 82.2% for PKUMMD-I and 47.0% for PKUMMD-II,
when models are pre-trained without action annotations. Apart from
that, together with Table 1, we can see that the accuracies of P&C FW
are reduced from 67.6% and 35.9% to 63.3% and 23.6%, respectively,
while our approaches boost the accuracies from 68.4%, 31.8%, 83.6%,
and 39.9% to 76.3%, 39.8%, 82.2%, and 47.0%, respectively, when
the training and testing datasets are from consistent to inconsistent.
Meanwhile, the performances of models pre-trained with action an-
notations also decrease in this transfer learning setting from 94.5%
and 56.8% to 90.6% and 55.0%, respectively. One possible reason is
that our approach can take advantage of a larger training set more
effectively with less influence from the data distribution difference
between different datasets. It can be concluded that the representations
learned in the proposed approach have a good generalization ability.

4.4. Ablation experiments

For a specific ST-Graph structural encoder, the performance of the
proposed approach is mainly determined by the following four compo-
nents: multi-view skeleton contrastive mechanism, data augmentation,
projection head, and global–local contrastive loss. From the results of
ST-Graph CSRL and ST-Graph CMRL in Tables 1 and 3, the performance
of the multi-view skeleton contrastive mechanism is shown to be im-
pressive in all cases. To further assess the other factors, we conduct
several ablation experiments on NTU with a linear evaluation protocol.

4.4.1. The effect of global–local contrastive loss
In this experiment, we evaluate different forms of the contrastive

loss function. Experimental results are summarized in Table 4. Based
on the results, we make the following observations. As the accuracy of
temlocal is higher than spalocal by 6.4%(CS) and 9.0%(CV), the temporal
splitting method is superior to the spatial splitting in this experiment
for local contrastive loss. The impacts of the global and the local losses
are different but complementary. Compared with using only one of
them, the combined global–local loss function global + temlocal leads
to substantially better performance in two benchmarks, i.e., 74.7%(CS)
and 82.6%(CV). In Table 4, it can be found that spalocal only produces
poor performance. We think the reason might be related to the multi-
view action datasets. Specifically, as most multiview action datasets
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Table 5
Performance by using different methods to combine the global and local
contrastive learning losses.

Viewpoint Loss combination NTU (CS) NTU (CV)

Single-view Linear 54.1 56.2
Task uncertainty 60.2 59.8

Multi-view Linear 71.1 78.7
Task uncertainty 74.7 82.6

Table 6
Linear evaluation of representations with different projection heads and various
dimensions of output. The representation, before projection, is 256-dimensional here.

Projection head Identity mapping Nonlinear projection

Output dimension 256 32 64 128 256 512
Accuracy 66.2 74.3 74.3 74.4 74.4 74.7

Table 7
Performance of ST-Graph CMRL using different augmentation strategies.

Augmentation NTU (CS) NTU (CV)

Original 69.9 78.4
Node dropping 69.1 77.4
Node perturbation 66.3 75.0
View rotation 70.4 78.0
Shear 69.6 77.6
Temporal subgraph 74.7 82.6

do not provide the corresponding relation between persons in different
views, the spatial partitioning strategy is likely to lead to a phenomenon
that the positive pairs of local parts are from different persons when
an action is performed by two people. In this case, the effect of spalocal
s inconsistent with our expectation and one of its impacts, learning
fine-grained view-irrelevant representation in the spatial dimension,
ill fail, while others still work. However, when combined with global
nd temlocal, the main role of spalocal is reflected in learning a fine-
rained view irrelevant representation in the spatial dimension. This
s why its accuracy goes down. Therefore, the default form of global–
ocal contrastive loss consists of global and temlocal, combined with task
ncertainty in this paper. We also compare linear and task uncertainty-
ased methods to combine the global and local contrastive losses. Note
hat all the weight parameters are uniformly set to 1 in the linear
ombination method. Results are shown in Table 5, from which we can
ee that the task uncertainty-based combination method outperforms
he linear combination methods in both single-view and multi-view
cenarios.

.4.2. Analysis of the projection head
We study the importance of including a projection head, i.e. 𝑓𝜓 (⋅)

nd 𝑓𝜙(⋅). Table 6 shows the linear evaluation results using two dif-
erent architectures for the head: identity mapping and the nonlinear
rojection with one additional hidden layer. We can observe that a
onlinear projection head, regardless of its output representation di-
ension, performs better than identity mapping in terms of recognition

ccuracy. Therefore, it can be concluded that the hidden layer before
he projection head is a better representation than the layer after.

.4.3. The effects of data augmentation
Apart from the temporal subgraph, we also explore other four

opular skeleton data augmentations in experiments including node
ropping, node perturbation, view rotation, and skeleton shearing, with
efinitions as follows:

Node dropping. It randomly discards body joints in the input skele-
on sequence 𝐱𝑣𝑖 . Specifically, with a 50% chance, we randomly drop
0% of nodes, where the corresponding joint coordinates are set to
ero. It is a common phenomenon that a subset of joints, e.g., those
ccluded ones, cannot be detected. The augmentation of node dropping
 d

8

nables the crucial action patterns can still be learned from a subset of
oints.

Node perturbation. The coordinates of joints are perturbed using
normal Gaussian distribution. The mean of the distribution is set

o 0 while the standard deviation is set to 0.05. The detected joint
ocations, even for those without occlusion, always contain errors due
o sensor and estimation accuracies in practice. The augmentation of
ode perturbation enables the action recognition to be robust to such
rrors.

View rotation. It randomly rotates the joint coordinates in a skeleton
equence along three axes in terms of a rotation matrix. Specifically,
e randomly select three degrees 𝛼, 𝛽, 𝛾, all uniformly in the range
f [−17◦, 17◦] for each sequence. Three basic rotation matrices with
otation angles about X, Y, and Z axis are given as follows:

X(𝛼) =
⎡

⎢

⎢

⎣

1 0 0
0 cos𝛼 sin𝛼
0 −sin𝛼 cos𝛼

⎤

⎥

⎥

⎦

,

𝐑Y(𝛽) =
⎡

⎢

⎢

⎣

cos𝛽 0 −sin𝛽
0 1 0

sin𝛽 0 cos𝛽

⎤

⎥

⎥

⎦

,

𝐑Z(𝛾) =
⎡

⎢

⎢

⎣

cos𝛾 sin𝛾 0
−sin𝛾 cos𝛾 0
0 0 1

⎤

⎥

⎥

⎦

.

(8)

ased on these three basic rotation matrices, the final rotation matrix
s

= 𝐑X(𝛼)𝐑Y(𝛽)𝐑Z(𝛾). (9)

e apply the rotation matrix 𝐑 to the original coordinates of the
keleton sequence and get the transformed coordinates. It simulates
he view changes of the camera. This augmentation enables the action
ecognition to be robust to the camera view changes.

Skeleton shearing. It slants the shape of the skeleton at a random
ngle. The shearing factors are drawn from a uniform distribution in
0.01, 0.1]. The transformation matrix can be written as

=

⎡

⎢

⎢

⎢

⎣

1 𝑠YX 𝑠ZX
𝑠XY 1 𝑠ZY
𝑠XZ 𝑠YZ 1

⎤

⎥

⎥

⎥

⎦

, (10)

here 𝑠YX, 𝑠ZX, 𝑠XY, 𝑠ZY, 𝑠XZ , 𝑠YZ are shearing factors. All joint coordinates
f the original skeleton sequence are transformed with the shearing
atrix 𝐒. The augmentation of skeleton shearing further increases the

obustness of action recognition to more nonrigid transformations of
he skeleton sequence.

We denote the model without any data augmentation as the origi-
al. The results are shown in Table 7. Much to our surprise, compared
ith directly using the original sequence, only the temporal subgraph

trategy to ST-Graph CMRL can significantly improve the accuracy by
.8%(CS) and 4.2%(CV). Two possible reasons are: (1) defining precise
rame-level starting and ending time for action is almost impossible,
nd (2) it is hard to achieve a strict temporal alignment of skeleton
equences captured by multiple cameras. Applying inconsistent tempo-
al subgraphs for different views can improve the robustness of these
navoidable problems without breaking their original relationships.
he counterproductive of other data augmentations may be due to
he fact that the original correspondences in spatial structure among
keletons, which are simultaneously taken from different views, are
estroyed after these random transformations. For example, compared
ith other augmentations, node perturbation, which changes the values
f joints with a normal Gaussian distribution, is most damaging to
patial structure correspondences and leads to the sharpest performance
rop of 3.6%(CS) and 3.4%(CV). Thus, the temporal subgraph is the

efault data augmentation we adopt in this work.
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Fig. 5. TSNE-embedding visualizations of the learned representations from 10 classes randomly selected in NTU (CS) testing set. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Table 8
Contrastive learning between multiple skeleton generation methods
results on NTU.

Skeleton generation method NTU (CS) NTU (CV)

OpenPose 58.4 60.9
OpenPose, OpenPifPaf 69.4 78.7
OpenPose, OpenPifPaf, Detectron 71.5 80.3

4.5. Application without multi-view data

The core of our motivation is that important features for skeleton-
based action recognition, such as motion and semantics, should be
irrelevant to some variable factors in action representation learning.
In this paper, we focus on viewpoint variation. However, multi-view
data would become infeasible in some scenarios. In this scenario, the
proposed approach can also maximize the mutual information between
other irrelevant factors of the same action sequence to learn better
action representation. Here we take the skeleton generation method
as an example. Specifically, we first pre-train model on NTU60 with
multiple skeleton generation methods, including OpenPose (Cao et al.,
2017), OpenPifPaf (Kreiss et al., 2021), and Detectron (Wu et al., 2019),
and then transfer it to the dataset with skeleton data generated by
OpenPose for linear evaluation. In Table 8, the proposed approach
also can bring significant improvement for unsupervised skeleton-based
action recognition.

4.6. Visualization of skeleton representation

Superior performance of ST-Graph CRL over the existing methods
is largely due to the use of the multi-view skeleton contrastive mecha-
nism. Hence apart from the quantitative evaluation, we also visualize
the feature changes by using this mechanism. We randomly select ten
classes in the NTU testing set and visualize the TSNE-embeddings of
the features obtained from P&C FW (Su et al., 2020), ST-Graph CSRL,
and ST-Graph CMRL for the same skeleton sequences in Fig. 5. Here
we observe that even in this 2D embedding it is clearly evident that
the features for different classes are better separated by ours than P&C
FW. Points of different colors are mixed up in (a) while they are more
separated in (b) and (c). Meanwhile, points of the same color in (c) are
more concentrated than those in (b). For example, there is a clear line
among points with a different color at the bottom right of (c) while they
are mixed up at the bottom left of (b). This supports the conclusion that
CRL between multi-view skeletons makes the learned representation

more discriminative.
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5. Conclusion

In this paper, we studied the problem of learning powerful represen-
tations for skeleton-based action recognition without any manual action
labeling. Our proposal is to make the representations good at modeling
view-invariant factors. To this end, a global–local contrastive multiview
representation learning approach was developed to maximize the mu-
tual information between the representations extracted from multiple
skeleton data simultaneously taken from different views. Specifically,
we explored five popular skeleton data augmentation methods and
found only the temporal subgraph can make a positive role in the CRL
framework. Then, in order to support our global–local CRL, partitioning
functions were designed to segment ST-Graph into multiple subgraphs
along spatial or temporal dimensions and projection heads were added
to map the learned representations to another latent space. Besides,
we proposed a local–global spatial–temporal graph contrastive loss,
combined with task uncertainty, to model the multi-scale co-occurrence
relationship between spatial and temporal domains. Experiments on
three multi-view action datasets showed that our proposed approach,
no matter in single-view or multi-view scenarios, got competitive per-
formance compared with the random baseline and other state-of-the-art
unsupervised skeleton-based action recognition methods. In the fu-
ture, we will explore new approaches to effectively handle multi-view
multi-person scenarios.
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