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Abstract

Point cloud shape completion, which aims to reconstruct the
missing regions of the incomplete point clouds with plausi-
ble shapes, is an ill-posed and challenging task that benefits
many downstream 3D applications. Prior approaches achieve
this goal by employing a two-stage completion framework,
generating a coarse yet complete seed point cloud through
an encoder-decoder network, followed by refinement and up-
sampling. However, the encoded features suffer from infor-
mation loss of the missing portion, leading to an inability of
the decoder to reconstruct seed points with detailed geomet-
ric clues. To tackle this issue, we propose a novel Orthogonal
Dictionary Guided Shape Completion Network (ODGNet).
The proposed ODGNet consists of a Seed Generation U-Net,
which leverages multi-level feature extraction and concatena-
tion to significantly enhance the representation capability of
seed points, and Orthogonal Dictionaries that can learn shape
priors from training samples and thus compensate for the in-
formation loss of the missing portions during inference. Our
design is simple but to the point, extensive experiment re-
sults indicate that the proposed method can reconstruct point
clouds with more details and outperform previous state-of-
the-art counterparts. The implementation code is available at
https://github.com/corecai163/ODGNet.

Introduction
Point cloud is an efficient data structure for representing
3D objects in the form of a set of point coordinates. De-
spite its advantages, raw point clouds collected by existing
3D sensors often suffer from sparsity and incompleteness
(Geiger et al. 2013), which significantly hinders their us-
ability in downstream applications like autonomous driving
(Zeng et al. 2018; Li et al. 2021), object detection (Zhou
and Tuzel 2018; Shi and Rajkumar 2020), and segmenta-
tion (Zhang et al. 2023; Zhao et al. 2022). Therefore, infer-
ring and reconstructing the missing regions of the incom-
plete point cloud is an inevitable and essential task in 3D
computer vision. However, this point cloud completion task
is extremely challenging. The successful reconstruction of
correct shapes in the missing portions relies on a combina-
tion of high-level semantic understanding of the target object
and low-level spatial and geometric relationships of nearby
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Figure 1: The point cloud completion results from different
methods. We see that the previous method, SnowFlake (Xi-
ang et al. 2021), cannot reconstruct the detailed shape for
the missing portion, while our proposed method can infer a
plausible shape.

points. Moreover, this completion task is regarded as an ill-
posed inverse problem. In other words, a single incomplete
input can correspond to multiple plausible outputs, further
complicating the inference of possible geometric details for
the missing portion.

Early traditional methods for solving this ill-posed prob-
lem relied on shape priors or hand-crafted geometric reg-
ularities (Kazhdan and Hoppe 2013; Lozes, Elmoataz,
and Lézoray 2014; Hu, Fu, and Guo 2019; Pauly et al.
2008). However, these approaches have been overshadowed
by deep learning-based methods. Previous state-of-the-art
(SOTA) deep learning solutions follow the two-stage com-
pletion framework (Wenxiao Zhang 2020; Yan et al. 2022;
Xiang et al. 2021, 2022; Pan et al. 2021; Yu et al. 2021;
Zhou et al. 2022; Tang et al. 2022; Wang et al. 2022; Yu et al.
2023), where it first generates coarse but complete seed point
clouds via an encoder-decoder network, and then employs
an upsampling network to upsample and refine them. How-
ever, the encoded features derived from incomplete inputs
represent only partial information and lack detailed geomet-
ric features for the missing parts. As a result, the seed points
generated by the decoder may possess limited representation
capability, which can potentially bottleneck the subsequent
upsampling performance. Simply increasing the complex-
ity of the upsampling network, as done by many previous
works (e.g., SnowFlakeNet), might bring only limited bene-
fit to the final performance, as illustrated in Figure 1, if the
seed point clouds fail to adequately represent the underlying
point-cloud shape.

Thus, in this paper, we present a ”simple but straight-
forward” network, ODGNet, that mitigates the bottleneck
observed in previous techniques and significantly improves



point cloud completion performance. Especially, the pro-
posed ODGNet comprises two key components: the Seed
Generation U-Net and the Dictionary Guidance Module.
The Seed Generation U-Net effectively enhances the repre-
sentation capability of generated seed points through multi-
level feature extraction, concatenation, and the utilization of
the local seed feature — a shape feature vector that cap-
tures the local geometry around each seed point. In paral-
lel, the Dictionary Guidance Module plays a vital role by
learning orthogonal shape priors from complete point clouds
during supervised training and facilitating the recovery of
better shapes during inference. Our key insight to mitigate
shape information loss is the introduction of learnable shape
dictionaries, enabling us to learn shape priors in the feature
space. Furthermore, to ensure the shape dictionary captures
distinguishable prior features effectively, we introduce addi-
tional orthogonal constraints to it. Lastly, we employ Up-
sample Transformers (Zhou et al. 2022) to upsample the
seed points to the target resolution, further refining the com-
pletion results.

To verify the effectiveness of the proposed method, we
evaluate it on three standard datasets: PCN (Yuan et al.
2018), ShapeNet-55/34 (Yu et al. 2021), and KITTI (Geiger
et al. 2013). Experiment results show that the proposed
method can recover detailed and plausible shapes for the
missing portion. It can also achieve promising results and
outperform previous SOTA counterparts easily. Our primary
contributions can be summarized as follows:

1. We present a pioneering approach by introducing learn-
able shape priors to a deep learning architecture, ef-
fectively addressing the ill-posed completion task. This
is achieved through the Dictionary Guidance Module,
which compensates for missing geometric details

2. We design a simple yet forthright shape completion net-
work built upon Seed Generation U-Net and the Dic-
tionary Guidance Module to improve the representation
ability of the seed points and upsampling performance.

3. We conduct comprehensive experiments on three
datasets and the results confirm the effectiveness of the
proposed algorithm by outperforming previous SOTA
counterparts.

Related Work
Based on the network architecture of previous point cloud
completion methods, we can classify them into two cate-
gories: Voxelization-based and Point-based methods.

Voxelization Based Method
Voxelization-based methods attempt to migrate solutions
from 2D completion tasks to 3D point clouds by voxeliza-
tion and 3D convolutions (Dai, Qi, and Nießner 2017; Wu
et al. 2015; Han et al. 2017; Xie et al. 2020). To begin, Wu
et al. (2015) introduces the 3D occupancy grid, which desig-
nates each voxel as a probabilistic distribution of binary vari-
ables to represent 3D shapes and uses Convolutional Deep
Belief Networks to hallucinate the missing regions. How-
ever, the resolution of the 3D voxel grid is limited because

of the high computational cost, making it challenging to re-
veal fine local geometric details. To improve the represen-
tation capability of the 3D occupancy grid, 3D-EPN (Dai,
Qi, and Nießner 2017) encodes the implicit distance field
functions into the 3D voxels and leverages high-level se-
mantic features from a classification network to guide the
shape completion process. In addition, GRNet (Xie et al.
2020) proposed a novel gridding process to improve the rep-
resentation ability of 3D grids. Although voxelization-based
methods can take advantage of 3D convolution to regularize
unordered point clouds, these methods suffer from extensive
computational costs or information loss during voxelization.

Point Based Method
Recently, with advancements in the network architectures
designed for the point cloud (Qi et al. 2017a,b; Zhao et al.
2021), point-based methods have evolved into mainstream
solutions for point cloud completion tasks and have achieved
promising progress (Tchapmi et al. 2019; Pan 2020; Xie
et al. 2020; Yuan et al. 2018; Pan et al. 2021; Xiang et al.
2021; Wang, Ang, and Lee 2022; Yu et al. 2021; Liu et al.
2020; Wen et al. 2021, 2022; Wenxiao Zhang 2020; Yan
et al. 2022). For example, TopNet (Tchapmi et al. 2019) in-
troduced a one-stage framework by modeling the point cloud
generation process as the growth of a rooted tree, where one
parent feature is split to generate multiple child features. The
generated point features, however, lack accurate shape infor-
mation of missing parts and cannot be constrained explicitly.
It was then surpassed by the two-stage framework (Yan et al.
2022; Xiang et al. 2021, 2022; Pan et al. 2021; Yu et al.
2021; Zhou et al. 2022).

The two-stage completion framework can achieve better
performance due to its ability to impose more constraints
on the coarse-to-fine point cloud generation process. PCN
(Yuan et al. 2018) is one of the pioneering works for the two-
stage point completion framework, wherein the first stage
uses PointNet (Qi et al. 2017a) layers to extract the global
feature vector and MLPs to produce a coarse point cloud.
The second stage uses a folding-based upsampling block
(MLPs) to generate a dense and complete point cloud. How-
ever, the simple MLPs cannot fully exploit and preserve
intricate geometric shapes, which limits the overall perfor-
mance of PCN. Thus, SnowFlake (Xiang et al. 2021, 2022)
introduces a novel snowflake point deconvolution block
to upsample the points in the feature space and achieves
promising performance. Comparatively, FBNet (Yan et al.
2022) and SeedFormer (Zhou et al. 2022) also focus more
on the upsampling stage by introducing the Feedback-Aware
Completion block and Upsample Transformers to refine and
upsample the low-quality point cloud, respectively. How-
ever, these two-stage shape completion methods overlook
the importance of the seed generation stage and limit their
upsampling performance.

Proposed Method
Overview
Given an incomplete and sparse point cloud P ∈ RNp∗3 as
input, our objective is to infer its missing shapes and pro-
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Figure 2: The overall architecture of the proposed network. a) The architecture for the Seed Generation U-Net. b) The detailed
architecture for the Dictionary Guidance Module.

duce a complete and dense point cloud O ∈ RNo∗3. Fol-
lowing the two-stage point completion framework, we first
design a seed generation U-Net to generate the coarse but
complete seed points S ∈ RNs∗3 and then upsample them
to the target resolution using Upsample Transformers (Zhou
et al. 2022). Figure 2 shows the overall architecture design
of the proposed ODGNet.

Seed Generation U-Net
Our primary focus is to enhance the representation capabili-
ties of the seed point cloud. Given that downsampling oper-
ations in the encoder can lead to the loss of fine details, mak-
ing it challenging to recover them during decoding, we draw
inspiration from evolved 2D image processing techniques,
such as U-Net (Ronneberger, Fischer, and Brox 2015). Es-
pecially, we adopt a similar approach by extracting multi-
level features to preserve fine details at various resolutions
and concatenate them with the decoder’s output for better
seed generation. Moreover, instead of merely generating co-
ordinates of seed points, we introduce the concept of seed
features, which are feature vectors representing rich local
geometric details surrounding each seed point, to improve
the representation capabilities. Figure 2a illustrates the over-
all architecture design of the Seed Generation U-Net.

Encoder The primary objective of the seed generation U-
Net’s encoder is to extract multi-level shape features from an
incomplete point cloud P . To achieve this, we leverage the
set abstraction module proposed in (Qi et al. 2017b), which
facilitates gradual sub-sampling of points and extraction of
local shape features at various resolutions.

In particular, for each level, we take the input point coor-
dinates Pi and corresponding point features Fi, and model
the output coordinates Pi+1 and features Fi+1 using the
composition of two functions, expressed as follows:

Pi+1, Fi+1 = PT(SA(Pi, Fi)) (1)

Here, PT refers to the point transformer described in (Zhao
et al. 2021), while SA represents the set abstraction module.
Additionally, it’s worth noting that F0 = P0 for the initial

input. By stacking multiple set abstractions and point trans-
formers together, we can extract point features and point co-
ordinates at multiple levels, including the global shape fea-
ture, which represents the general shape information of the
incomplete input.

Decoder The decoder module aims to generate the com-
plete seed point cloud. Drawing inspiration from TopNet
(Tchapmi et al. 2019), we adopt a similar approach to gen-
erate seed points in the feature space. This is accomplished
by progressively splitting the input global shape code into
multiple child features. Instead of employing multi-branch
MLPs as done in TopNet, we utilize 1D deconvolution lay-
ers to generate these child features. Each child feature cap-
tures the local shape of the missing portion, and by stacking
multiple 1D deconvolution layers with different kernel sizes
and strides, we can effectively produce varying numbers of
child features.

However, it is important to note that these child features
only represent coarse shape information and may suffer from
information loss. To overcome this limitation, we introduce
the Dictionary Guidance Module, which plays a pivotal role
in reconstructing detailed geometry and generating refined
features from these coarse child features. Subsequently, the
refined feature is concatenated with the multi-level features
extracted from the encoder, resulting in complete shape fea-
tures as illustrated in Figure 2a.

Finally, we employ an MLP layer to regress the refined
point coordinates from the refined point features, completing
the seed point cloud generation process.

Dictionary Guidance Module
Recall that another flaw in the seed generation process is the
missing shape information from the incomplete input, which
makes the point cloud completion task ill-posed and non-
trivial. Presumably, without additional knowledge and guid-
ance, the network can only generate ambiguous shapes for
these missing portions.

To tackle this challenging problem, we introduce prior
knowledge into the reconstruction process. The idea of our



solution is that we can learn the common shape features
from the ground truth point clouds, e.g. features of airplanes
in the training set, during the supervised training. Subse-
quently, during inference, the learned common features can
be treated as strong priors to guide the shape completion,
e.g. unseen airplanes in the testing set.

However, implementing this idea and seamlessly inte-
grating it into the deep neural network is another chal-
lenge. Drawing inspiration from the Detection Transformer
(DETR) (Carion et al. 2020), which leverages the learnable
query (feature vector) to benefit object detection and bound-
ing box generation, we take advantage of this learnable fea-
ture vector. We build a learnable dictionary that can learn the
shape priors automatically from training samples. Figure 2b
shows the network architecture of the Dictionary Guidance
module. It contains a learnable dictionary and a Refine Unit
to integrate shape priors into the coarse input features, ensur-
ing the smooth guidance of the shape completion process.

Refine Unit With the input coarse point features F ∈
RN∗C , our primary objective is to leverage additional shape
information from the learnable dictionary D ∈ RNd∗C and
generate the refined point features F ′ ∈ RN∗C . The im-
plementation of our feature Refine Unit is designed to be
straightforward and intuitive. Specifically, for the coarse fea-
turesF , we first find their similar feature vectors in the learn-
able dictionary D. Then, we aggregate these similar feature
vectors and integrate them with the coarse features, effec-
tively compensating for any missing details.

Regarding our first step to calculate the similarity score
Sim ∈ RN∗Nd between two feature tensors, we borrow the
solution from the cross-attention mechanism:

Q = ϕ(F );K = ψ(D);Sim = σ(
QKT

√
dk

) (2)

where ϕ and ψ are linear layers, σ is the Softmax function,
dk is dimension of K. Then we aggregate the related fea-
ture vectors in the dictionary using the predicted similarity
scores, and the refined features can be obtained by:

F ′ = 0.5 ∗ (MatMul(Sim,D) + F ) (3)

where MatMul is the matrix multiplication and 0.5 is the
coefficient to balance two components.

Othogonal Constraint Furthermore, as previously men-
tioned, to guarantee the representation ability of the learn-
able dictionary, we hope that each prior feature in the dic-
tionary can be discriminative to others. To accomplish this,
we introduce Orthogonal Constraints to each learnable dic-
tionary D ∈ RNd∗C so that each prior feature is orthogonal
to others. Mathematically, this can be defined as follows:

D̂ = Normalize(D);Loth = ||D̂D̂T − I||22, (4)

where I ∈ RNd×Nd is the Identity Matrix, Nd is the number
of learnable vectors in the dictionary, and Nd ≤ C.

Loss Function
Similarly to prior two-stage completion pipelines, we use the
Chamfer Distance (CD) as a loss function to explicitly guide

the Seed Generation and Upsampling processes. In particu-
lar, the CD loss is defined as follows:

CD =
1

N1

∑
o∈O

min
g∈GT

||o− g||22 +
1

N2

∑
g∈GT

min
o∈O

||o− g||22

(5)
where O is the predicted completed point cloud with the
number of N1 points and GT is the ground truth point cloud
with the number of N2 points. Note that there are two vari-
ants for CD which we denote as CD-L2 and CD-L1. Specif-
ically, CD-L2 is equal to CD while CD-L1 takes the square
root of the L2-Norm and is divided by 2. To sum up, the total
loss function used in training is defined as follows:

L = CDseed + λCDupsample + β
∑

Loth (6)

where CDupsample is the coarse to fine upsampling loss
for Upsample Transformers,

∑
Loth is the Orthogonal Con-

straints for all learnable dictionaries. λ and β are the hyper-
parameter to balance different terms and are set to 1 for all
experiments.

Experiments
Dataset and Evaluation Metric
PCN: The PCN dataset is first introduced by Yuan et al.
(2018) and contains pairs of partial and complete point
clouds from 30,974 models of 8 categories collected from
the ShapeNet (Chang et al. 2015). To maintain consistency
with previous methods (Yuan et al. 2018; Xie et al. 2020;
Xiang et al. 2021), we adopt the same train/test splitting
strategy, comprising 28,974 training samples, 800 validation
samples, and 1,200 testing samples. Additionally, in antici-
pation of the varying number of points for the incomplete
point clouds, we follow prior works by resampling them to
a standardized size of 2,048 points.
ShapeNet-55/34: The ShapeNet-55/34 datasets, introduced
in PoinTr (Yu et al. 2021), are also derived from ShapeNet
(Chang et al. 2015). ShapeNet-55 consists of 55 categories
and comprises 41,952 training shapes and 10,518 testing
shapes. On the other hand, ShapeNet-34 contains 46,765
shapes from 34 categories for training, and the testing set
consists of 5,705 shapes, divided into two parts: 3,400
shapes from 34 seen categories and 2,305 shapes from 21
unseen classes. Following the previous works, we evaluate
the models on the point cloud data with different missing
point ratios of 25%, 50%, and 75%, representing three diffi-
culty levels of completion tasks: simple (S), moderate (M),
and hard (H), respectively.
KITTI: Since the previous two datasets are synthetic data
generated from CAD models or meshes, which might be
different from real scanned point clouds, we also include the
KITTI dataset (Geiger et al. 2013). Essentially, it is collected
from an autonomous driving platform and is a challenging
real-world computer vision benchmark. We also follow the
previous method by extracting a sequence of Velodyne scans
from the KITTI dataset and only focusing on points within
the object bounding boxes labeled as cars. In total, it has
2483 partial point clouds and no ground truth.



Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft
FoldingNet(Yang et al. 2018) 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet(Tchapmi et al. 2019) 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
AtlasNet(Groueix et al. 2018) 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
PCN(Yuan et al. 2018) 9.64 5.50 22.70 10.63 8.70 11.0 11.34 11.68 8.59
GR-Net(Xie et al. 2020) 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
PMP(Wen et al. 2021) 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25
PoinTr(Yu et al. 2021) 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29
NSFA(Wenxiao Zhang 2020) 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48
SnowFlake(Xiang et al. 2021) 7.19 4.24 9.27 8.20 7.75 5.96 9.25 6.45 6.37
FBNet(Yan et al. 2022) 6.94 3.99 9.05 7.90 7.38 5.82 8.85 6.35 6.18
ProxyFormer(Li et al. 2023) 6.77 4.01 9.01 7.88 7.11 5.35 8.77 6.03 5.98
AdaPoinTr(Yu et al. 2023) 6.53 3.68 8.82 7.47 6.85 5.47 8.35 5.80 5.76
SeedFormer(Zhou et al. 2022) 6.74 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85
Ours 6.50 3.77 8.77 7.56 6.84 5.09 8.47 5.84 5.66

Table 1: Point cloud completion results on the PCN dataset compared to previous algorithms (CD-L1 ×10−3).

Evaluation Metrics: To quantitatively evaluate the per-
formance of different algorithms, we use three commonly
adopted metrics: CD-L1, CD-L2, and F1-Score@1%. For
the CD metric, the smaller value is better, while for the
F1 score, the larger value is better. For the KITTI dataset,
we use Fidelity and Minimal Matching Distance (MMD)
since there is no ground truth. Specifically, Fidelity mea-
sures the average distance from each point in the input to
its nearest neighbor in the output and MMD measures how
much the output resembles a typical car by calculating the
Chamfer Distance between the output and the car point
cloud from ShapeNet that is closest to the output point cloud.

Evaluation on PCN Dataset

We evaluate the performance of the proposed network on
the PCN dataset and compare it with previous methods. As
the required output resolution for the PCN dataset is 16,384,
we set the upsampling ratios of the upsampling module to
{1, 4, 4}. Besides, we set the size of dictionaries to be equiv-
alent to their input coarse feature dimension. To train the
network from scratch, we set the total epochs to 400 with a
batch size of 32 and use Adam as an optimization function
with a learning rate of 0.0004 at the beginning and gradually
decrease the learning rate by 0.8 for every 20 epochs. The
training is carried out on two Nvidia V100 32G GPUs.

Table 1 presents the quantitative results of our proposed
method, along with the reported outcomes from previous al-
gorithms. Notably, our method achieves an outstanding av-
erage CD-L1 score of 6.50 × 10−3, showcasing a signifi-
cant improvement over the performance of prior methods.
In particular, we demonstrate a remarkable advancement of
0.24 × 10−3 in comparison to the counterpart SeedFormer
(Zhou et al. 2022). Figure 3 includes a visual representa-
tion of the PCN completion results. From the figure, it be-
comes evident that our proposed algorithm excels in preserv-
ing shape details for the missing parts, while minimizing the
presence of noise points. In contrast, other algorithms may
generate ambiguous shapes, often accompanied by a consid-
erable number of outliers.

Method CD-S CD-M CD-H CD-
Avg

F-
Score

FoldingNet 2.67 2.66 4.05 3.12 0.082
PCN 1.94 1.96 4.08 2.66 0.133
TopNet 2.26 2.16 4.3 2.91 0.126
PFNet 3.83 3.87 7.97 5.22 0.339
GRNet 1.35 1.71 2.85 1.97 0.238
SnowFlake 0.7 1.06 1.96 1.24 0.398
PoinTr 0.58 0.88 1.79 1.09 0.464
ProxyFormer 0.49 0.75 1.55 0.93 0.483
AdaPoinTr 0.49 0.69 1.24 0.81 0.503
SeedFormer 0.5 0.77 1.49 0.92 0.472
Ours 0.47 0.70 1.32 0.83 0.437

Table 2: The quantitative results of different methods on the
ShapeNet-55 benchmark dataset (CD-L2 ×10−3).

Evaluation on ShapeNet-55/34 Dataset
To showcase the robust generalization capability of our pro-
posed method, we performed additional experiments on the
ShapeNet-55/34 dataset. As this dataset requires an output
resolution of 8,192, we adjusted the upsampling ratios of the
upsampling module to {1, 2, 4}. We used the same optimiza-
tion settings as in the ShapeNet-PCN dataset to train our net-
work from scratch, but we gradually decrease the learning
rate by half for every 50 epochs.

In Tables 2 and 3, we present the performance of our pro-
posed method in comparison to previous algorithms. Im-
pressively, our method achieves an average CD-L2 score
of 0.83 × 10−3 on the ShapeNet-55 dataset, demonstrating
a remarkable advancement over the performance of previ-
ous counterparts. Furthermore, even when dealing with the
most challenging ShapeNet-34 seen and ShapeNet-21 un-
seen dataset, our method continues to outperform previous
counterparts. Note that limited by space, detailed results can
be found in the Supplementary.

Evaluation on KITTI Dataset
Finally, we examine the robustness of the proposed algo-
rithm on the KITTI dataset. As the KITTI dataset con-



(a) Partial (b) GR-Net (c) PMP (f) Ground Truth(e) Ours(d) SnowFlake

Figure 3: The completion results of various methods on the PCN dataset. Notably, our method can reconstruct the missing
details, e.g. rearview mirror, better than others. Please zoom in for more details.

Seen ShapeNet-34 Unseen ShapeNet-21
Method CD-S CD-M CD-H CD-Avg F-Score CD-S CD-M CD-H CD-Avg F-Score
FoldingNet 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
PCN 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101
TopNet 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.5 0.121
PFNet 3.16 3.19 7.71 4.68 0.347 5.29 5.87 13.33 8.16 0.322
GRNet 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216
PoinTr 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384
SnowFlake 0.6 0.86 1.5 0.99 0.422 0.88 1.46 2.92 1.75 0.388
ProxyFormer 0.44 0.67 1.33 0.81 0.466 0.60 1.13 2.54 1.42 0.415
AdaPoinTr 0.48 0.63 1.07 0.73 0.469 0.61 0.96 2.11 1.23 0.416
SeedFormer 0.48 0.7 1.3 0.83 0.452 0.61 1.07 2.35 1.34 0.402
Ours 0.44 0.64 1.14 0.75 0.451 0.59 1.01 2.26 1.29 0.415

Table 3: Shape completion results on Seen ShapeNet-34 test set and Unseen ShapeNet-21 test set (CD-L2 ×10−3).

Input PoinTr Ours

Figure 4: The visual comparison of different methods on the
KITTI dataset. Our results are cleaner than PoinTr (Yu et al.
2021).

tains only real-collected Lidar point clouds, we do not have
ground-truth point clouds for training. Instead, we train our
model on the PCN car dataset and test it on the KITTI
dataset. Correspondingly, we use Fidelity and MMD to mea-
sure the performance. Please note that, since there is no
ground truth, these metrics are not accurate measurements
for the quality of generated point clouds. Table 4 shows the
quantitative completion results, and Figure 4 shows some

Method FD (×10−3) MMD (×10−3)
PCN 2.235 1.366
TopNet 5.354 0.636
GR-Net 0.816 0.568
PoinTr 0.00 0.526
ProxyFormer 0.00 0.508
AdaPoinTr 0.237 0.392
SeedFormer 0.151 0.516
Ours 1.28 0.349

Table 4: The evaluation results on the KITTI dataset.

visual examples. We see that the previous method PoinTr
(Yu et al. 2021) tends to generate outlier points, while our
method can generate cleaner point clouds.

Ablation Study
Effectiveness of Seed Generation U-Net To prove that
the proposed seed generation method can bring clean and
significant performance improvements to the entire point
cloud completion system, our first and foremost ablation



Seed Generation Upsampling CD-L1 (×10−3)
FoldingNet Folding 14.31
Ours Folding 7.59
SnowFlake PSCU 7.04
Ours PSCU 6.80
SeedFormer UpTrans 6.74
Ours UpTrans 6.50

Table 5: Abaltion study on different seed generation meth-
ods and upsampling methods on the PCN dataset. PSCU
means the Parametric Surface Constrained Upsampler (Cai
et al. 2023). UpTrans means the Upsample Transformer in
(Zhou et al. 2022). Visualization of generated seeds can be
found in the Supplementary.

Dictionary Guidance W/O With With
Orthogonal Constraints W/O With
CD-L1 (×10−3) 6.62 6.55 6.50

Table 6: Ablation study on the Dictionary Guidance Module
on the PCN dataset.

study is to determine the effectiveness of the proposed
ODGNet in generating better seed points compared to other
seed generation methods. We integrate the proposed Seed
Generation U-Net into various upsampling methods and Ta-
ble 5 shows the improvements. Remarkably, the use of our
Seed Generation U-Net with the UpTrans demonstrates sig-
nificant and direct improvement over the SeedFormer’s seed
generation method (Zhou et al. 2022), where the CD-L1
decreases significantly from 6.74 × 10−3 to 6.50 × 10−3,
showcasing a relative enhancement of 3.7%. Similar obser-
vations hold true for the remaining sections of the table. This
insightful ablation study provides compelling evidence that
the seed points generated by our method effectively preserve
more intricate shape information, which in turn greatly ben-
efits the upsampling modules and contributes to the overall
performance improvement.

Dictionary Guidance Module Furthermore, we investi-
gate the importance of the Dictionary Guidance Module,
which aims to compensate for missing detailed shape infor-
mation. To achieve this, we remove the Dictionary Guidance
modules and substitute them with MLPs so that they have
similar parameter amounts. As depicted in Table 6, the opti-
mal performance is attained when the Dictionary Guidance
module and orthogonal constraints are applied. Especially,
we observe a notable performance drop when the Dictionary
Guidance module is removed, where the CD-L1 increases
from 6.50 × 10−3 to 6.62 × 10−3, presenting a substantial
gap of 0.12×10−3, which strongly validate the effectiveness
of the proposed Dictionary Guidance module in enhancing
the completion system’s overall performance.

Analysis of the Learnable Dictionary In the previous ab-
lation study, we illustrated the importance of the Dictionary
Guidance module. Nevertheless, there still exists some cu-
riosity about the meaning of the shape vectors in the dictio-

(a)

(b)

Figure 5: a) Visualization of reconstructed shapes from vec-
tors in the learned dictionary. b) The density of the index
of the maximum similarity scores in the learned dictionaries
for 3 example classes.

nary proposed in this paper.
To obtain a deep insight into this learnable dictionary, we

incorporate the proposed seed generation backbone with a
Folding-based upsampler (Yang et al. 2018). The Folding-
based upsampler leverages seed features and predefined 2D
grids to generate 3D points, enabling visualization of the
shape features. After we trained this network on the PCN
dataset, during the inference stage, we feed the shape vectors
from the dictionary along with predefined 2D grids (16x16)
into the Folding-based upsampler to showcase the shapes
of learned vectors. The results are illustrated in Figure 5a.
Since these shape vectors learn high-level shape features
from training samples, they are not designed to represent
real object parts, like desk corners or car wheels. Instead,
we observe that each shape vector represents a distinct shape
such as lines, planes, and curves, carrying a strong geomet-
ric meaning, which can be regarded as priors and fundamen-
tal building blocks for reconstructing missing components
in the testing stage.

Furthermore, since the learned dictionary contains the
shape priors extracted from the training samples, Intuitively,
given different categories of point clouds, e.g. , airplane and
table, each category of point cloud should utilize different
shape priors to compensate for the missing details as they
have distinct geometries. To verify this, we record the in-
dex of the maximum similarity scores in the Refine Unit and
plot their density distributions. Figure 5b shows that the dis-
tribution of three categories in the PCN dataset has distinct
patterns, which indicates that our method can automatically
select the best combinations to reconstruct more details for
the missing portion and achieve better performance.

Conclusion
In this paper, we propose the ODGNet, a simple but ef-
fective point cloud completion network, that aims to miti-
gate the bottlenecks of the two-stage framework and espe-
cially focuses on the first stage. It incorporates the newly
designed learnable shape dictionaries to recover the fine-
detailed shape information for the missing portions and
multi-level feature extraction and concatenation to improve
the representation ability of seed points. Without ornamen-
tation, the experiment results show that our algorithm can
efficiently reconstruct the missing portion with rich details
and outperform previous state-of-the-art counterparts.
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