


Exceptions
Part 01



• Exceptions signals an exceptional 
occurrence during run-time

• Handles run-time errors by allowing the 
program to crash gracefully and keep 
executing

• Exceptions are Objects
– These Objects have an “exception message”

• “Throwing” an exception is when an 
exception object is created

• “Handling” an exception is when special 
code detects and deals with the 
exceptional occurrence



• 3 Major Parts to Exceptions
1. Creating Exceptions
2. Throwing (Using) Exceptions
3. Handling Exceptions



• In Java there are several predefined 
exceptions
– Exception (most general)
– NullPointerException
– IndexOutOfBoundsException
– IOException

• Creating a specific kind of Exception involves 
inheriting from one of the predefined 
Exceptions

• Only write the Constructors
– Make sure to use “super” to construct the 

superclass Exception
– Set the exception message
– Do not override “getMessage”

Syntax for Creating an Exception

public class <<id>> extends <<an Exception>>
{

<<constructors>>;
}

Example
public DivideByZeroException extends Exception 
{

public DivideByZeroException()
{

super(“Attempted to Divide by Zero”);
}
public DivideByZeroException(String msg)
{

super(msg);
}

}



• When a method could cause an Exception, 
then then programmers need to be notified 
to handle it

• The reserved word “throws” is used in the 
method signature to indicate the method 
could cause an exception

• Each exception is listed by their identifier 
and are separated using a comma

Syntax for a Method that throws an Exception

<<scope>> <<return type>> <<method id>> (<<parameters>>) 
throws <<List of Exceptions>>
{

<<method body>>
}

Example
public double evaluate(char op, double n1, double n2)
throws DivideByZeroException, UnknownOpException
{

…
}



• In a method that throws exceptions there 
should be cases where that kind of 
exception happens

• The reserved word “throw” is used when 
an exception occurs
– Method signature uses “throws”
– Method body uses “throw”

• Follow “throw” by then constructing an 
instance of that kind of exception

Syntax for Throwing the Exception 

throw new <<Exception Constructor>>

Example
…
//Inside of method evaluate
…
throw new DivideByZeroException();
…



• Methods that throws exceptions must be 
handled in a “try-catch” block

• The method that could cause the exception 
must be within the body of the try-block
– Otherwise the method would cause a syntax error

• The exception that is handled must be 
declared in the arguments of the catch-block
– Exception type followed by an identifier

• The exception is then handled in the body of 
the catch-block
– Usually a good idea to print the exception 

message using either “getMessage” or 
“printStackTrace”

Handling an Exception

try
{

<<Method that throws the Exception>>
}
catch(<<Exception type>> <<id>>)
{

<<Handle the Exception>>
}

Example
try
{

…
result = evaluate(nextOp, result, nextNumber);
…

}
catch(DivideByZeroException e)
{

e.printStackTrace();
}



• If a method causes an exception in the try-
block then the program immediately jumps to 
the corresponding catch-block

• After the exception has been handled the 
program continues after the try-catch block

• A try-catch block can only have 1 try-block and 
may have 1 or more catch-blocks

• Multiple Catch-blocks must be ordered from 
most specific exception to least specific 
exception
– Otherwise causes an unreachable code syntax 

error
– Most general exception is “Exception”

• With multiple catch-blocks the most 
appropriate catch-block runs corresponding to 
the exception that was thrown

Syntax for Handling a Multiple Exception

try
{

<<Method that throws the Exceptions>>
}
catch(<<Most Specific Exception type>> <<id>>)
{

<<Handle the Most Specific Exception>>
}
…
catch(<<Most General Exception type>> <<id>>)
{

<<Handle the Most General Exception>>
}



• If a method causes an exception in the try-
block then the program immediately jumps to 
the corresponding catch-block

• After the exception has been handled the 
program continues after the try-catch block

• A try-catch block can only have 1 try-block and 
may have 1 or more catch-blocks

• Multiple Catch-blocks must be ordered from 
most specific exception to least specific 
exception
– Otherwise causes an unreachable code syntax 

error
– Most general exception is “Exception”

• With multiple catch-blocks the most 
appropriate catch-block runs corresponding to 
the exception that was thrown

Example

try
{

…
result = evaluate(nextOp, result, nextNumber);
…

}
catch(DivideByZeroException e)
{

e.printStackTrace();
}
catch(UnknownOpException e)
{

e.printStackTrace();
}
catch(Exception e)
{

e.printStackTrace();
}



• A “finally” block can be optionally added 
after a sequence of catch-blocks

• The code in the finally-block will execute 
whether or not an exception is thrown

Finally Block Syntax

try
{

<<Method that throws the Exception>>
}
catch(<<Exception type>> <<id>>)
{

<<Handle the Exception>>
}
finally
{

<<code that will execute with or without exceptions>>
}

Example
try
{

…
result = evaluate(nextOp, result, nextNumber);
…

}
//Catches
finally
{

System.out.println("result = " + result);
}



Example



• Problem: We must create a simple 
calculator program

• Keeps track of a resulting value
• Performs the operations

– Addition
– Subtraction
– Multiplication
– Division

• User provides input via the console
• Input follows <<operator>> <<value>>

– Example “+ 3”

• Must handle a variety of exceptions while 
keeping the program running


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

