

Classes and Objects
Part 03

Java Software Structure• Organized and structured code helps to:
– Reuse parts of code, so you use less

statements
– Quickly find bugs or errors
– Easily add or extend functionality

• Java Organizes Software
– First in Projects
– Then in Classes
– Then in Methods

Project

Classes

Methods

• Classes are a way that we can create
classifications of “objects”

• Instances of a class are referred to as
“objects”

• Classes provide a “blueprint” of a class of
objects
– Shared Qualities
– Shared Characteristics

• Classes combine
– Data (Attributes / Properties)
– Methods (Actions)

• Think of Classes as nouns

Java Software Structure

Project

Classes

Methods

Process in Memory• Programs have different sections of
memory
– Stack / Call Stack
– Heap
– Data (Global)
– Text

• Methods are pushed on and popped off of
the Stack

• Objects are Dynamically Allocated in the
Heap

• The Stack and the Heap grow toward each
other

Text

Data

Heap

Stack

• Static methods and properties are created
statically
– Opposed to created dynamically
– Created one time in the Data (Global) part of

memory

• Static methods and properties are shared
across all instances
– Unlike dynamic methods or properties (instance

variables) that are unique to each instance

• Uses the reserved word “static”
• CANNOT use the reserved word “this” to call

static methods or properties
– It only refers to dynamic instances

Static Properties

//Inside of a class
public static <<type>> <<id>>;

Example

public static int sharedInt;

• Static methods do not require an instance
(object) to be called
– Can be called directly from the Class

• Sometimes referred to as “Class Methods”
• Generally the scope is “public”
• Great to use when an action does not

pertain to a particular instance (object)
– Saves memory as it does not have to redefine

the method for every instance. Only defined
once.

• CANNOT use the reserved word “this” to
call static methods or properties
– It only refers to dynamic instances

Static Methods

public static <<return type>> <<id>> (<<parameters>>)
{

//Body of the method
}

Example
//Assume inside the class “SimpleMath”
public static int addition(int a, int b)
{

return a+b;
}

• Static methods do not require an instance
(object) to be called
– Can be called directly from the Class

• Sometimes referred to as “Class Methods”
• Generally the scope is “public”
• Great to use when an action does not

pertain to a particular instance (object)
– Saves memory as it does not have to redefine

the method for every instance. Only defined
once.

• CANNOT use the reserved word “this” to
call static methods or properties
– It only refers to dynamic instances

Calling Static Methods

<<Class Id>>.<<static method>>(<<parameters>>);

Example

int sum = SimpleMath.addition(2,3);

• Static methods can call other static
methods

• Dynamic methods can call static methods
• Static methods CANNOT call dynamic

methods directly
– These methods can only be called when an

instance (object) has been constructed
– Just like for the Main Method

• Static methods can be called directly from
the Main Method

Calling Static Methods

<<Class Id>>.<<static method>>(<<parameters>>);

Example

int sum = SimpleMath.addition(2,3);

• Commonly used Classes with Static
Methods
– Math
– Wrapper Classes

• The class “Math” is built in to Java and
provides many mathematic functions
– Does not require an instance of Math to use

methods
• Wrapper Classes like Integer, Double,

Character
– Provides common functionality and constants

for primitive types
– Very common is “.parseInt” or “.parseDouble”

Math Class Methods

Method Return Type Description Example

pow(<<double>>,<<
double>>) Double Power Math.pow(2.0,3.0);

abs(<<A.N.T.>>) A.N.T Absolute
Value

Math.abs(-7);
Math.abs(-3.0);

max(<<A.N.T.>>,
<<A.N.T>>)

A.N.T
Maximum
Value
between two
values

Math.max(2,3);
Math.max(3.5,2.5);

min(<<A.N.T.>>,
<<A.N.T>>) A.N.T

Minimum
Value
between two
values

Math.max(2,3);
Math.max(3.5,2.5);

A.N.T. = Any numeric type, such as int, double, float, or long

• Commonly used Classes with Static
Methods
– Math
– Wrapper Classes

• The class “Math” is built in to Java and
provides many mathematic functions
– Does not require an instance of Math to use

methods
• Wrapper Classes like Integer, Double,

Character
– Provides common functionality and constants

for primitive types
– Very common is “.parseInt” or “.parseDouble”

Math Class Methods

Method Return Type Description Example

ceil(<<double>>) Double Ceiling
(rounds up) Math.ceil(2.1);

floor(<<double>>) Double
Floor
(rounds
down)

Math.floor(3.9);

sqrt(<<double>>) Double Square root Math.sqrt(4.0);

round(<<float>>) Integer Rounds up
or down Math.round(4.0f);

round(<<double>>) Long Rounds up
or down Math.round(4.0);

A.N.T. = Any numeric type, such as int, double, float, or long

• Commonly used Classes with Static
Methods
– Math
– Wrapper Classes

• The class “Math” is built in to Java and
provides many mathematic functions
– Does not require an instance of Math to use

methods
• Wrapper Classes like Integer, Double,

Character
– Provides common functionality and constants

for primitive types
– Very common is “.parseInt” or “.parseDouble”

Integer Class Methods and Properties

Method/Property Return Type Description Example

MAX_VALUE Integer Returns
231-1 Integer.MAX_VALUE

MIN_VALUE Integer Returns
-231 Integer.MIN_VALUE

parseInt(<<String>>) Integer
Converts
String to
Integer

Integer.parseInt(“32”)

• Commonly used Classes with Static
Methods
– Math
– Wrapper Classes

• The class “Math” is built in to Java and
provides many mathematic functions
– Does not require an instance of Math to use

methods
• Wrapper Classes like Integer, Double,

Character
– Provides common functionality and constants

for primitive types
– Very common is “.parseInt” or “.parseDouble”

Double Class Methods and Properties

Method/Property Return Type Description Example

MAX_VALUE Double
Returns
Max Double
Value

Double.MAX_VALUE

MIN_VALUE Double
Returns
Min Double
Value

Double.MIN_VALUE

parseDouble
(<<String>>) Double

Converts
String to
Integer

Double.parseDouble
(“32.0”)

• Commonly used Classes with Static
Methods
– Math
– Wrapper Classes

• The class “Math” is built in to Java and
provides many mathematic functions
– Does not require an instance of Math to use

methods
• Wrapper Classes like Integer, Double,

Character
– Provides common functionality and constants

for primitive types
– Very common is “.parseInt” or “.parseDouble”

Character Class Methods

Method/Property Return Type Description Example

toUpperCase(<<char>>) Character
Converts
character to
upper case

Character.toUpperCase
(‘a’);

toLowerCase(<<char>>) Character
Converts
character to
lower case

Character.toUpperCase
(‘A’);

isUpperCase(<<char>>) Boolean Tests for
uppercase

Character.isUpperCase(
‘a’);

isLowerCase(<<char>>) Boolean Tests for
lowercase

Character.isLowerCase(
‘a’);

• Commonly used Classes with Static
Methods
– Math
– Wrapper Classes

• The class “Math” is built in to Java and
provides many mathematic functions
– Does not require an instance of Math to use

methods
• Wrapper Classes like Integer, Double,

Character
– Provides common functionality and constants

for primitive types
– Very common is “.parseInt” or “.parseDouble”

Character Class Methods

Method/Property Return Type Description Example

isLetter(<<char>>) Boolean Tests for
letter Character.isLetter(‘a’);

isDigit(<<char>>) Boolean Tests for
digit Character.isDigit(‘a’);

isWhitespace(<<char>>) Boolean

Tests for
space such
as ‘ ’, ‘\t’,
and ‘\n’

Character.isWhitespace
(‘ ’);

Example

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

