9 = 3




Classes and Oblects
Part 83




@ganizatieon

CorE

* Organized and structured code helps to:

— Reuse parts of code, so you use less
statements

— Quickly find bugs or errors

— Easily add or extend functionality
* Java Organizes Software
— Firstin Projects
— Then in Classes
— Then in Methods

Java Software Structure

Project

Classes
Methods




ClassEs

* Classes are a way that we can create Java Software Structure
classifications of “objects”

* |nstances of a class are referred to as

“objects” Project
* Classes provide a “blueprint” of a class of
) Classes
objects
— Shared Quialities Methods

— Shared Characteristics

* Classes combine
— Data (Attributes / Properties)
— Methods (Actions)

* Think of Classes as nouns




@bjjects
A
MEROFY

* Programs have different sections of Process in Memory
memory
— Stack / Call Stack
— Heap
— Data (Global)
— Text

* Methods are pushed on and popped off of
the Stack

* Objects are Dynamically Allocated in the
Heap

* The Stack and the Heap grow toward each
other




File Edit View Help

9 = 3

Sitatics

Static methods and properties are created
statically

— Opposed to created dynamically

— Created one time in the Data (Global) part of
memory

Static methods and properties are shared
across all instances

— Unlike dynamic methods or properties (instance
variables) that are unique to each instance

Uses the reserved word “static”

CANNOT use the reserved word “this” to call
static methods or properties

— It only refers to dynamic instances

Static Properties

//Inside of a class
public static <<type>> <<id>>;

Example

public static int sharedInt;




File Edit View Help

9 = 3

Sitatics

Static methods do not require an instance
(object) to be called

— Can be called directly from the Class
Sometimes referred to as “Class Methods”
Generally the scope is “public”

Great to use when an action does not }

public
{

Static Methods

static <<return type>> <<id>> (<<parameters>>)

//Body of the method

pertain to a particular instance (object)

— Saves memory as it does not have to redefine
the method for every instance. Only defined

Example

//Assume inside the class “SimpleMath”

once. public static int addition(int a, int b)

CANNOT use the reserved word “this” to {
call static methods or properties

— It only refers to dynamic instances

return a+b;




File Edit View Help

9 = 3

Sitatics

Static methods do not require an instance
(object) to be called

— Can be called directly from the Class
Sometimes referred to as “Class Methods”
Generally the scope is “public”

Great to use when an action does not
pertain to a particular instance (object)

— Saves memory as it does not have to redefine
the method for every instance. Only defined
once.

CANNOT use the reserved word “this” to
call static methods or properties
— It only refers to dynamic instances

Calling Static Methods

<<Class Id>>.<<static method>>(<<parameters>>);

Example

int sum = SimpleMath.addition(2,3);




File Edit View Help

9 = 3

Sitatics

Static methods can call other static
methods

Dynamic methods can call static methods

Static methods CANNOT call dynamic
methods directly

— These methods can only be called when an

Calling Static Methods

<<Class Id>>.<<static method>>(<<parameters>>);

instance (object) has been constructed
— Just like for the Main Method

Static methods can be called directly from

Example

the Main Method int sum = SimpleMath.addition(2,3);




File Edit View Help

9 = 3

Staitilcs

* Commonly used Classes with Static
Methods
— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods
* Wrapper Classes like Integer, Double,
Character
— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Hiethod R Type m

pow(<<double>>,<<

Math Class Methods

deuble>>) Double Power
abs(<<A.N.T.>>) AN.T Absolute
Value
Maximum
max(<<A.N.T.>>, A.N.T Value
<<A.N.T>>) between two
values
Minimum
min(<<A.N.T.>>, ANT Value
<<A.N.T>>) o between two

values

Math.pow(2.0,3.0);

Math.abs(-7);
Math.abs(-3.0);

Math.max(2,3);
Math.max(3.5,2.5);

Math.max(2,3);
Math.max(3.5,2.5);

A.N.T. = Any numeric type, such as int, double, float, or long




File Edit View Help

9 = 3

Staitilcs

* Commonly used Classes with Static
Methods

— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods

* Wrapper Classes like Integer, Double,
Character

— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Hiethod R Type m

ceil(<<double>>)

floor(<<double>>)

sgrt(<<double>>)

round(<<float>>)

round(<<double>>)

A.N.T. = Any numeric type, such as int, double,

Math Class Methods

Double

Double

Double

Integer

Long

Ceiling
(rounds up)
Floor

(rounds
down)

Square root

Rounds up
or down

Rounds up
or down

Math.ceil(2.1);

Math.floor(3.9);

Math.sqrt(4.0);

Math.round(4.0f);

Math.round(4.0);

float, or long




File Edit View Help

9 = 3

Staitilcs

* Commonly used Classes with Static
Methods

— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods
* Wrapper Classes like Integer, Double,
Character
— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Integer Class Methods and Properties

MethOd/Property REHE Tvpe m

Returns

MAX_VALUE Integer Integer.MAX_VALUE

231

MIN_VALUE Integer ?;tlums Integer.MIN_VALUE
Converts

parselnt(<<String>>) Integer String to Integer.parselnt(“32”)
Integer




File Edit View Help

9 = 3

Staitilcs

* Commonly used Classes with Static
Methods
— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods
* Wrapper Classes like Integer, Double,
Character
— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Double Class Methods and Properties

MethOd/Property REHE Tvpe m

MAX_VALUE

MIN_VALUE

parseDouble
(<<String>>)

Double

Double

Double

Returns
Max Double
Value

Returns
Min Double
Value

Converts
String to
Integer

Double.MAX_VALUE

Double.MIN_VALUE

Double.parseDouble
(“32.0”)




File Edit View Help

9 = 3

Staitilcs

* Commonly used Classes with Static
Methods

— Math
— Wrapper Classes

* The class “Math” is built in to Java and
provides many mathematic functions

— Does not require an instance of Math to use
methods

* Wrapper Classes like Integer, Double,
Character

— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Character Class Methods

MethOd/Property RE Type m

Converts
toUpperCase(<<char>>) Character character to
upper case
Converts
toLowerCase(<<char>>) Character character to
lower case
. Tests for
isUpperCase(<<char>>) Boolean
uppercase
. Tests for
isLowerCase(<<char>>) Boolean

lowercase

Character.toUpperCase
(‘@’);

Character.toUpperCase
(‘A');
Character.isUpperCase(
a’);

Character.isLowerCase(
lal);




File Edit View Help

9 = 3

Staitilcs

* Commonly used Classes with Static

Character Class Methods

Methods
— Math

* The class “Math” is built in to Java and

. . . isLetter(<<char>>) Bool
provides many mathematic functions e eoen
— Does not require an instance of Math to use isDigit(<<char>>) Boolean
methods
* Wrapper Classes like Integer, Double, PR -
Character

— Provides common functionality and constants
for primitive types
— Very common is “.parselnt” or “.parseDouble”

Tests for
letter

Tests for
digit

Tests for
space such
as ‘ I’ l\tI,
and ‘\n’

Character.isLetter(‘a’);

Character.isDigit(‘a’);

Character.isWhitespace

')




Exame |l e




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

