


Classes and Objects
Part 02



Java Software Structure• Organized and structured code helps to: 
– Reuse parts of code, so you use less 

statements
– Quickly find bugs or errors
– Easily add or extend functionality

• Java Organizes Software
– First in Projects
– Then in Classes
– Then in Methods

Project

Classes

Methods



• Classes are a way that we can create 
classifications of “objects”

• Instances of a class are referred to as 
“objects”

• Classes provide a “blueprint” of a class of 
objects
– Shared Qualities
– Shared Characteristics

• Classes combine
– Data (Attributes / Properties)
– Methods (Actions)

• Think of Classes as nouns

Java Software Structure

Project

Classes

Methods



Creating a Class in 7 Easy Steps!
1. Define the class
2. Create Properties

1. Instance Variables
2. Constants

3. Define Constructors
1. Default
2. Parameterized

4. Create Accessors for every Instance 
Variable

5. Create Mutators for every Instance 
Variable

6. Create other Methods
1. equals()
2. toString()

7. Use the Class to create Objects!



Example



• An enumeration (“enum”) is a special kind 
of Class that only contains constants

• Used when creating a type that only has a 
set number of potential values

• Good programming practice to create in a 
separate Java File (like classes)

• The constant values are separated using a 
comma (“,”) and values should be 
capitalized

• Declare an enum just like any other class
– Does not require construction

• Access the defined values using the dot (“.”)

Defining an Enum

public enum <<identifier>>{
<<Value00>>,
<<Value01>>,
…

}

Example

enum PetType {CAT, DOG, HAMSTER, HEDGEHOG, 
ARMADILLO, TURKEY, OWL, ABOMINATION};



• An enumeration (“enum”) is a special kind 
of Class that only contains constants

• Used when creating a type that only has a 
set number of potential values

• Good programming practice to create in a 
separate Java File (like classes)

• The constant values are separated using a 
comma (“,”) and values should be 
capitalized

• Declare an enum just like any other class
– Does not require construction

• Access the defined values using the dot (“.”)

Declaring and Using an Enum

//Delare Enum
<<enum identifier>> <<id>>;
//Using
<<id>> = <<enum identifier>>.<<Value>>;

Example

PetType type;
type = PetType.DOG;



• A method’s identifier, return type, and 
parameters is called the “signature” or 
“definition”

• Overloaded Methods are methods with the 
same identifier’s and return types, but 
different parameters
– This is within the same class

Overloaded Method Example

public void giveComplement()
{

System.out.println(this.name+" reacted with joy");
}
public void giveComplement(int c)
{

for(int i=0;i<c;i++)
this.giveComplement();

}


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

