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Chapter 6: Multilayer Neural Networks Chapter 6: Multilayer Neural Networks 
(Sections 6.1(Sections 6.1--6.3)6.3)

• Introduction

• Feedforward Operation and Classification

• Backpropagation Algorithm
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IntroductionIntroduction

• We’ve already seen NNs in previous chapters:

Generic multicategory classifier from Chapt 2.
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IntroductionIntroduction

• Probabilistic Neural Network and RCE network 
in Chapter 4:
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• Linear Classifier schema in Chapter 5
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IntroductionIntroduction

• Goal: Classify objects by learning nonlinearity

• There are many problems for which linear 
discriminants are insufficient for minimum error

• In previous methods, the central difficulty was the 
choice of the appropriate nonlinear functions

• A “brute” approach might be to select a complete 
basis set such as all polynomials; such a classifier 
would require too many parameters to be determined 
from a limited number of training samples
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• There is no automatic method for determining the 
nonlinearities when no information is provided to the 
classifier

• In using the multilayer Neural Networks, the form of 
the nonlinearity is learned from the training data
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FeedforwardFeedforward Operation and Operation and 
ClassificationClassification

• A three-layer neural network consists of an input 
layer, a hidden layer and an output layer 
interconnected by modifiable weights 
represented by links between layers



Pattern Classification, Chapter 6

8



Pattern Classification, Chapter 6

9



Pattern Classification, Chapter 6

10

• A single “bias unit” is connected to each unit other than the 
input units

• Net activation:

where the subscript i indexes units in the input layer, j in the 
hidden; wji denotes the input-to-hidden layer weights at the 
hidden unit j. (In neurobiology, such weights or connections 
are called “synapses”)

• Each hidden unit emits an output that is a nonlinear function 
of its activation, that is: yj = f(netj)
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Figure 6.1 shows a simple threshold function

• The function f(.) is also called the activation 
function or “nonlinearity” of a unit. There are 
more general activation functions with 
desirables properties

• Each output unit similarly computes its net 
activation based on the hidden unit signals as:

where the subscript k indexes units in the ouput
layer and nH denotes the number of hidden units
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• More than one output are referred zk. An output unit 
computes the nonlinear function of its net, emitting 

zk = f(netk)

• In the case of c outputs (classes), we can view the network 
as computing c discriminants functions 
zk = gk(x) and classify the input x according to the largest 
discriminant function gk(x)  ∀ k = 1, …, c
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• The 3-layer network with the weights listed in  fig. 6.1 solves 
the XOR problem
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• The hidden unit y1 computes the boundary:

≥ 0 ⇒ y1 = +1
x1 + x2 + 0.5 = 0

< 0 ⇒ y1 = -1

• The hidden unit y2 computes the boundary:
≤ 0 ⇒ y2 = +1

x1 + x2 -1.5 = 0
< 0 ⇒ y2 = -1

• The final output unit emits z1 = +1 ⇔ y1 = +1 and y2 = +1
zk = y1 AND NOT y2

= (x1 OR x2) AND NOT (x1 AND x2) = x1 XOR x2

which provides the nonlinear decision of fig. 6.1
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• General Feedforward Operation – case of c output units

• Hidden units enable us to express more complicated nonlinear 
functions and thus extend the classification

• The activation function does not have to be a sign function, it is often 
required to be continuous and differentiable

• We can allow the activation in the output layer to be different from the 
activation function in the hidden layer or have different activation for 
each individual unit

• We assume for now that all activation functions to be identical
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• Expressive Power of multi-layer Networks

Question: Can every decision be implemented by a three-
layer network described by equation (1) ?

Answer: Yes (due to A. Kolmogorov)
“Any continuous function from input to output can be 
implemented in a three-layer net, given sufficient number of 
hidden units nH, proper nonlinearities, and weights.”

for properly chosen functions Ξj and ψij
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• Each of the 2n+1 hidden units j takes as input a sum 
of d nonlinear functions, one for each input feature xi

• Each hidden unit emits a nonlinear function Ξj of its 
total input

• The output unit emits the sum of the contributions of 
the hidden units

Unfortunately: Kolmogorov’s theorem tells us very little 
about how to find the nonlinear functions based on 
data; this is the central problem in network-based 
pattern recognition Ξj?
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• Any function from input to output can be 
implemented as a three-layer neural network

• These results are of greater theoretical interest 
than practical, since the construction of such a 
network requires the nonlinear functions and the 
weight values which are unknown!
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• Our goal now is to set the interconnection weights based 
on the training patterns and the desired outputs

• In a three-layer network, it is a straightforward matter to 
understand how the output, and thus the error, depend on 
the hidden-to-output layer weights

• The power of backpropagation is that it enables us to 
compute an effective error for each hidden unit, and thus 
derive a learning rule for the input-to-hidden weights, this 
is known as:

The credit assignment problem 

Backpropagation Algorithm
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• Networks have two modes of operation:

• Feedforward
The feedforward operations consists of presenting a 
pattern to the input units and passing (or feeding) the 
signals through the network in order to get outputs 
units (no cycles!)

• Learning
The supervised learning consists of presenting an 
input pattern and modifying the network parameters 
(weights) to reduce distances between the computed 
output and the desired output
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• Network Learning

• Let tk be the k-th target (or desired) output and zk be 
the k-th computed output with k = 1, …, c and w 
represents all the weights of the network

• The training error:

• The backpropagation learning rule is based on 
gradient descent
• The weights are initialized with pseudo-random values and 

are changed in a direction that will reduce the error:
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where η is the learning rate which indicates the relative 
size of the change in weights

w(m +1) = w(m) + Δw(m)
at iteration m (m also indexes the pattern)

• Error on the hidden–to-output weights

where the sensitivity of unit k is defined as:

and describes how the overall error changes with the 
activation of the unit’s net
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Since netk = wk
t.y therefore:

Conclusion: the weight update (or learning rule) for the 
hidden-to-output weights is:

Δwkj = ηδkyj = η(tk – zk) f’ (netk)yj

• Error on the input-to-hidden units
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However,

Similarly as in the preceding case, we define the 
sensitivity for a hidden unit:

which means that:“The sensitivity at a hidden unit is 
simply the sum of the individual sensitivities at the output 
units weighted by the hidden-to-output weights wkj; all 
multipled by f’(netj)”

Conclusion: The learning rule for the input-to-hidden 
weights is:
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• Starting with a pseudo-random weight configuration, the 
stochastic backpropagation algorithm can be written as:

Begin initialize nH; w, criterion θ, η, m←0
do m ← m + 1

xm ← randomly chosen pattern
wji ← wji + ηδjxi; wkj ← wkj + ηδkyj

until ||∇J(w)|| < θ
return w

End
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• Batch backpropagation

Begin initialize nH; w, criterion θ, η, r←0
do r ← r + 1 (epoch counter)

m ← 0 ;Δ wji ← 0; Δwkj ← 0; 
do m ← m + 1

xm ← select pattern
Δ wji ← Δ wji + ηδjxi; Δwkj ← Δwkj + ηδkyj

until m = n
wji ← wji + Δ wji; wkj ← wkj + Δwkj

until ||∇J(w)|| < θ
return w

End
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• Stopping criterion

• The algorithm terminates when the change in the criterion 
function J(w) is smaller than some preset value θ

• There are other stopping criteria that lead to better performance 
than this one

• So far, we have considered the error on a single pattern, but we
want to consider an error defined over the entirety of patterns in 
the training set

• The total training error is the sum over the errors of n individual 
patterns
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• Stopping criterion (cont.)

• A weight update may reduce the error on the single pattern 
being presented but can increase the error on the full training 
set

• However, given a large number of such individual updates, 
the total error of equation (1) decreases
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• Learning Curves

• Before training starts, the error on the training set is high; through 
the learning process, the error becomes smaller

• The error per pattern depends on the amount of training data and
the expressive power (such as the number of weights) in the 
network

• The average error on an independent test set is always higher than 
on the training set, and it can decrease as well as increase

• A validation set is used in order to decide when to stop training ; 
we do not want to overfit the network and decrease the power of 
the classifier generalization

“we stop training at a minimum of the error on the validation set”
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EXERCISES

• Exercise #1.
Explain why a MLP (multilayer perceptron) does not 
learn if the initial weights and biases are all zeros

• Exercise #2. (#2 p. 344)


