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Introduction

® We've already seen NNs In previous chapters:

discriminant
functions

Duda, Peter E. Hart, and David C. Stork, Pattern Classification. Copyright @© 2001 by
lohn Wiley & Sons, Inc.

Generic multicategory classifier from Chapt 2.
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Introduction

® Probabilistic Neural Network and RCE network
iIn Chapter 4
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FIGURE 4.9. A probabilistic neural network (PNN} consists of o input units, n pat-
tern units, and ¢ category units. Each pattern unit forms the inner product of its

variance oI, where 1is the d = d identity matrix. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright @ 2001 by John Wiley & Sons,
Inc.
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Introduction

® Linear Classifier schema in Chapter 5
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gl wnils

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value x; is multiplied
by its corresponding weight wy; the effective input at the output unit is the sum all these
products, ¥ wix,. We show in each unit its effective input-output function. Thus each of
the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if w'x + wy = 0 or a =1 otherwise. From: Richard O, Duda, Peter E. Hart,
and David G. Stork, Fattern Classification. Copyright @© 2001 by John Wiley & Sons,
Inc.
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Introduction

® Goal: Classify objects by learning nonlinearity

® There are many problems for which linear
discriminants are insufficient for minimum error

® In previous methods, the central difficulty was the
choice of the appropriate nonlinear functions

® A “brute” approach might be to select a complete
basis set such as all polynomials; such a classifier
would require too many parameters to be determined
from a limited number of training samples
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® There is no automatic method for determining the
nonlinearities when no information is provided to the

classifier

® In using the multilayer Neural Networks, the form of
the nonlinearity is learned from the training data
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Feedforward Operation anad
Classification

® A three-layer neural network consists of an input
layer, a hidden layer and an output layer
iInterconnected by modifiable weights
represented by links between layers
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FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x, x,-space, along with the

four patterns to be classified. The three-layer network is shown in the middle. The input

units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each

of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and —1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s

thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 it its net is greater than or equal

to 0 and emits a —1 otherwise. Within each unit we show a graph of ils input-output
or activation function—i{net) versus nel. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias} in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Fatlern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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® A single “bias unit” is connected to each unit other than the
Input units

® Net activation:

where the subscript i iIndexes units in the input layer, | in the
hidden; w; denotes the input-to-hidden layer weights at the
hidden unltj (In neurobiology, such weights or connections
are called “synapses”)

Each hidden unit emits an output that is a nonlinear function
of its activation, that is: y; = f(net)
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Figure 6.1 shows a simple threshold function

1 if net>0
—1 if net<0

® The function f(.) is also called the activation
function or “nonlinearity” of a unit. There are
more general activation functions with
desirables properties

f(net)=sgn(net)s{

® Each output unit similarly computes its net
activation based on the hidden unit signals as:

where the subscript k indexes units in the ouput
layer and n, denotes the number of hidden units
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® More than one output are referred z,. An output unit
computes the nonlinear function of its net, emitting

z, = f(net,)

® In the case of c outputs (classes), we can view the network
as computing c discriminants functions

Z, = 0,(x) and classify the input x according to the largest

discriminant function g,(x) Vk=1, ..., cC

discriminant
functions

input

FIGURE 2.5. The functional structure of a general statistical pattern classifier which

e T T Pattern Classification, Chapter 6
includes o inputs and ¢ discriminant functions gi(x). A subsequent step determines
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The 3-layer network with the weights listed in fig. 6.1 solves
the XOR problem
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® The hidden unit y, computes the boundary:
20=y,=+1
X; +X,+0.5=0
<0=y,=-1

® The hidden unit y, computes the boundary:
<0=y,=+1
X; +X%X,-1.5=0
<0=y,=-1

® The final output unitemits z, = +1 <y, =+landy, = +1
z, =Y, AND NOT vy,
= (X; OR x,) AND NOT (x; AND x,) = x; XOR X,
which provides the nonlinear decision of fig. 6.1
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® General Feedforward Operation — case of ¢ output units

® Hidden units enable us to express more complicated nonlinear
functions and thus extend the classification

® The activation function does not have to be a sign function, it is often
required to be continuous and differentiable

® We can allow the activation in the output layer to be different from the
activation function in the hidden layer or have different activation for
each individual unit

® \We assume for now that all activation functions to be identical
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® Expressive Power of multi-layer Networks

Question: Can every decision be implemented by a three-
layer network described by equation (1) ?

Answer: Yes (due to A. Kolmogorov)

“Any continuous function from input to output can be
Implemented in a three-layer net, given sufficient number of
hidden units n,,, proper nonlinearities, and weights.”

2n+1

g(x) = Zaj(zy/ij (x)) ¥xel"(I=[01];n>2)

for properly chosen functions Zand y;
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2n+1

g(x) = Z (Zt//.,(X)j vxel'(I=[01];n>2)

® Each of the 2n+1 hidden units jtakes as input a sum
of d nonlinear functions, one for each input feature x.

Each hidden unit emits a nonlinear function = = of its
total input

The output unit emits the sum of the contributions of
the hidden units

Unfortunately: Kolmogorov’s theorem tells us very little
about how to find the nonlinear functions based on
data; this is the central problem in network-based
pattern recognition = =?
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FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f(-). In the case shown, the hidden unit outputs are paired in
opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright @ 2001 by John Wiley
& Sons, Inc.
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® Any function from input to output can be
Implemented as a three-layer neural network

® These results are of greater theoretical interest
than practical, since the construction of such a
network requires the nonlinear functions and the
weight values which are unknown!
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FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, tour- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Fattern Classification. Copyright (© 2001 by John Wiley & Sons, Inc.
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Backpropagation Algorithm

Our goal now Is to set the interconnection weights based
on the training patterns and the desired outputs

In a three-layer network, it is a straightforward matter to
understand how the output, and thus the error, depend on
the hidden-to-output layer weights

The power of backpropagation is that it enables us to
compute an effective error for each hidden unit, and thus
derive a learning rule for the input-to-hidden weights, this
IS known as:

The credit assignment problem
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® Networks have two modes of operation:

® Feedforward

The feedforward operations consists of presenting a
pattern to the input units and passing (or feeding) the
signals through the network in order to get outputs
units (no cycles!)

® Learning

The supervised learning consists of presenting an
Input pattern and modifying the network parameters
(weights) to reduce distances between the computed
output and the desired output
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FIGURE 6.4. A d-ny-c fully connected three-layer network and the notation we shall
use. During feedforward operation, a d-dimensional input pattern x is presented 1o the
input layer; each input unit then emits its corresponding component x;. Each of the ny
hidden units computes its net activation, net;, as the inner product of the input layer sig-
nals with weights w;; at the hidden unit. The hidden unit emits yv; = finet), where ()
is the nonlinear activation function, shown here as a sigmoid. Each of the ¢ output units
functions in the same manner as the hidden units do, computing net, as the inner prod-
uct of the hidden unit signals and weights at the output unit. The final signals emitted by
the network, 2z, = f(net), are used as discriminant functions for classification. During
network training, these output signals are compared with a teaching or target vector f,
and any difference is used in training the weights throughout the network. From: Richard
0. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001
by John Wiley & Sons, Inc.
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® Network Learning

® Let tk be the k-th target (or desired) output and zk be
the k-th computed output with k=1, ..., cand w
represents all the weights of the network

® The training error:

® The backpropagation learning rule is based on
gradient descent

® The weights are initialized with pseudo-random values and
are changed in a direction that will reduce the error:

]
ow

AW = —n
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where 7 Is the learning rate which indicates the relative
size of the change in weights

w(m +1) = w(m) + Aw(m)
at iteration m (m also indexes the pattern)

® Error on the hidden—to-output weights

0J oJ onet, 5 onet,

ow,,  onet,  ow, < oW,

J

where the sensitivity of unit k is defined as:
onet,

and describes how the overall error changes with the
activation of the unit’s net

0J 0J 0z,

“" dnet,  dz, onet,

=(t —z,) ' (net, )
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Since net, = w,l.y therefore:

Conclusion: the weight update (or learning rule) for the

hidden-to-output weights is:

AWy = noy;= n(t — z) T (nety)y;

® Error on the input-to-hidden units

0J o2 oy; onet,
ow, dy, onet; ow,

I J
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However, | ayj EZ(tk_Zk) = ;(tk Zk)ayk.

k=1 i
0z, onet < ,
Z, )anelf[k ij = —;(tk -z, ) f* (net, )w,
Similarly as in the preceding case, we define the
sensitivity for a hidden unit:

which means that:“The sensitivity at a hidden unit Is
simply the sum of the individual sensitivities at the output
units weighted by the hidden-to-output weights w,; all
multipled by f'(net;)”

Conclusion: The learning rule for the input-to-hidden
weights Is:

AW = X5 = n[iw_,q5k] f* (net; )x

o
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® Starting with a pseudo-random weight configuration, the
stochastic backpropagation algorithm can be written as:

Begin initialize n,; w, criterion 6, n, m«O0
dom«<m+1
X" <« randomly chosen pattern
Wi < W5 + MojXis Wi < W; + MoY;
until | |VI(wW)]] < 6

return w
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® Batch backpropagation

Begin initialize n,; w, criterion 6, n, r<oO0
do r « r + 1 (epoch counter)
m < 0 ;Aw;; < 05 Aw,; < O3

dome<m+1
X" «— select pattern
AW < Awg; + nojXis AWy < Aw,; + Moy;
until m = n
Wiji < Wi + AWy, Wy < Wi + Awg
until |[|VI(W]] < 6
return w
End

Pattern Classification, Chapter 6




® Stopping criterion

® The algorithm terminates when the change in the criterion
function J(w) is smaller than some preset value 0

® There are other stopping criteria that lead to better performance
than this one

® So far, we have considered the error on a single pattern, but we
want to consider an error defined over the entirety of patterns in
the training set

® The total training error is the sum over the errors of n individual
patterns
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® Stopping criterion (cont.)

® A weight update may reduce the error on the single pattern
being presented but can increase the error on the full training
set

® However, given a large number of such individual updates,
the total error of equation (1) decreases
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® [earning Curves

® Before training starts, the error on the training set is high; through
the learning process, the error becomes smaller

The error per pattern depends on the amount of training data and
the expressive power (such as the number of weights) in the
network

The average error on an independent test set is always higher than
on the training set, and it can decrease as well as increase

A validation set is used in order to decide when to stop training ;
we do not want to overfit the network and decrease the power of
the classifier generalization

“we stop training at a minimum of the error on the validation set”
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FIGURE 6.6. A learning curve shows the criterion function as a function of the amoun
of training, typically indicated by the number of epochs or presentations of the full train-
ing sel. We plot the average error per pattern, that is, 1/n3_._; J,. The validation error
and the test or generalization error per pattern are virtually always higher than the train-
ing error. In some protocols, training is stopped at the first minimum of the validation
sel. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.

Copyright @© 2001 by John Wiley & Sons, Inc.
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EXERCISES

® Exercise #1.

Explain why a MLP (multilayer perceptron) does not
learn if the initial weights and biases are all zeros

® EXxercise #2. (#2 p. 344)
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