

Pattern Classification

All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher Chapter 2 (Part 1): Bayesian Decision Theory (Sections 2.1-2.2)

Introduction

Bayesian Decision Theory–Continuous Features

Introduction

- The sea bass/salmon example
 - State of nature, prior
 - State of nature is a random variable
 - The catch of salmon and sea bass is equiprobable
 - $P(\omega_1) = P(\omega_2)$ (uniform priors)
 - $P(\omega_1) + P(\omega_2) = 1$ (exclusivity and exhaustivity)

• Decision rule with only the prior information • Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2

Use of the class –conditional information

• $P(x \mid \omega_1)$ and $P(x \mid \omega_2)$ describe the difference in lightness between populations of sea and salmon

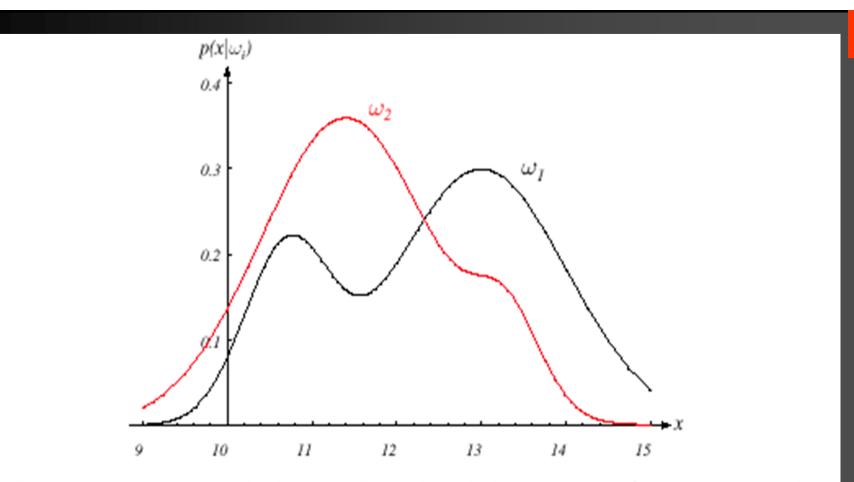


FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

4

Posterior, likelihood, evidence

• $P(\omega_j \mid x) = P(x \mid \omega_j)P(\omega_j) / P(x)$

Where in case of two categories

$$P(x) = \sum_{j=1}^{j=2} P(x | \omega_j) P(\omega_j)$$

Posterior = (Likelihood * Prior) / Evidence

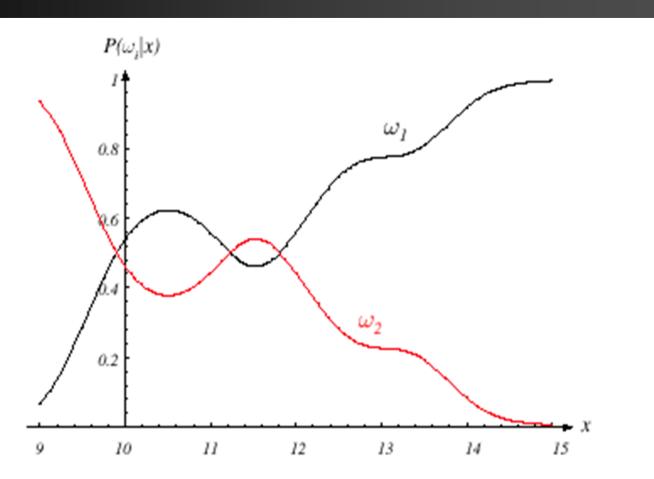


FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every *x*, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

6

Decision given the posterior probabilities

X is an observation for which:

if $P(\omega_1 | x) > P(\omega_2 | x)$ True state of nature = ω_1 if $P(\omega_1 | x) < P(\omega_2 | x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the probability of error is :

 $P(error \mid x) = P(\omega_1 \mid x) \text{ if we decide } \omega_2$ $P(error \mid x) = P(\omega_2 \mid x) \text{ if we decide } \omega_1$

• Minimizing the probability of error

• Decide ω_1 if $P(\omega_1 | x) > P(\omega_2 | x)$; otherwise decide ω_2

Therefore:

 $P(error \mid x) = min \left[P(\omega_1 \mid x), P(\omega_2 \mid x)\right]$ (Bayes decision)

Bayesian Decision Theory – Continuous Features

Generalization of the preceding ideas

- Use of more than one feature
- Use more than two states of nature
- Allowing actions and not only decide on the state of nature
- Introduce a loss of function which is more general than the probability of error

- Allowing actions other than classification primarily allows the possibility of rejection
 - Rejection in the sense of abstention
 - Don't make a decision if the alternatives are too close
 - This must be tempered by the cost of indecision

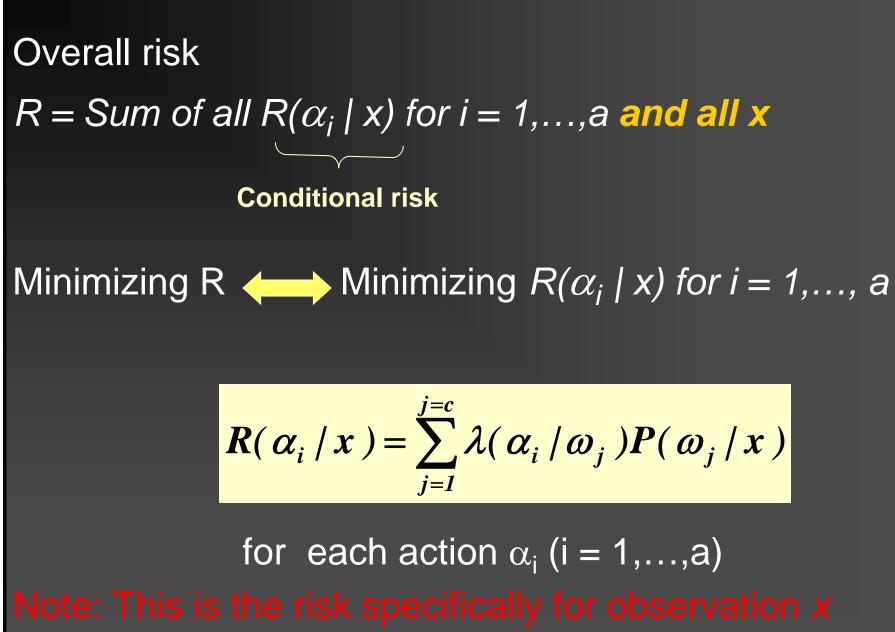
The loss function states how costly each action taken is

Let { $\omega_1, \omega_2, \dots, \omega_c$ } be the set of *c* states of nature (or "categories")

Let { $\alpha_1, \alpha_2, \ldots, \alpha_a$ } be the set of possible actions

Let $\lambda(\alpha_i \mid \omega_i)$ be the loss incurred for taking

action α_i when the state of nature is ω_i



Select the action α_i for which $R(\alpha_i | x)$ is minimum

R is minimum and R in this case is called the Bayes risk = best performance that can be achieved! • Two-category classification α_1 : deciding ω_1 α_2 : deciding ω_2 $\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$

loss incurred for deciding ω_i when the true state of nature is ω_i

Conditional risk:

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$$
$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$$

Our rule is the following: if $R(\alpha_1 | x) < R(\alpha_2 | x)$ action α_1 : "decide ω_1 " is taken

Substituting the def. of R() we have : decide ω_1 if:

 $\lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x}) < \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$

and decide ω_2 otherwise

We can rewrite

$\lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x}) < \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$

As

$(\lambda_{21} - \lambda_{11}) P(\omega_1 \mid \mathbf{X}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 \mid \mathbf{X})$

Finally, we can rewrite $(\lambda_{21} - \lambda_{11}) P(\omega_1 \mid x) > (\lambda_{12} - \lambda_{22}) P(\omega_2 \mid x)$

using Bayes formula and posterior probabilities to get: decide ω_1 if:

$$\begin{array}{l} (\lambda_{21} - \lambda_{11}) \ P(x \mid \omega_1) \ P(\omega_1) > \\ (\lambda_{12} - \lambda_{22}) \ P(x \mid \omega_2) \ P(\omega_2) \end{array}$$

and decide ω_2 otherwise

If $\lambda_{21} > \lambda_{11}$ then we can express our rule as a Likelihood ratio:

The preceding rule is equivalent to the following rule:

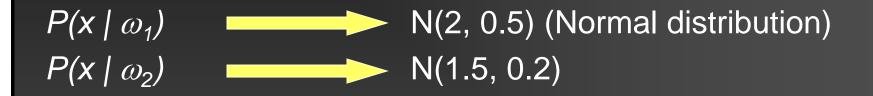
$$if \frac{P(x/\omega_1)}{P(x/\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Then take action α_1 (decide ω_1) Otherwise take action α_2 (decide ω_2) **Optimal decision property**

"If the likelihood ratio exceeds a threshold value independent of the input pattern x, we can take optimal actions"

Exercise

Select the optimal decision where: $\Omega = \{\omega_1, \omega_2\}$



 $P(\omega_1) = 2/3$ $P(\omega_2) = 1/3$

$$\lambda = \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{4} \end{bmatrix}$$