
1

Lecture 7

Networking, HTTP, CGI

Network Application

• Client application and server application
communicate via a network protocol

• A protocol is a set of rules on how the client and
server communicate

web
client

web
server

HTTP

Internet Protocol Suite

client server
application

layer

hardware hardware

IP

TCP

IP

TCP

us
er

ke
rn

el

(ethernet)

transport
layer

network
layer

datalink and physical layer

Network Packet

Ethernet header

IP header

TCP header

Your data

TCP/IP

• TCP and IP were developed as a standard
networking protocol to connect a diverse set of
networks

• Two layers:
– IP – determines routing of packets of data from sender

to receiver. Uses 32-bit addresses (e.g. 128.122.20.15)

– TCP – connection-oriented protocol for reliable
delivery of data. Acknowledgements, sequencing,
retransmission, timeouts

Ports

• With TCP/IP, each machine has a number of ports
that can be contacted from a client.

• A machine has to serve a port by listening for
connections to it.

• Ports for popular services are fixed:
– ssh: 22, telnet: 23, www: 80
– 1-1023 are reserved (well-known)
– 1024-49151 are user level
– 49152-65535 are private to the machine

• Clients use ephemeral ports

2

Naming

• In addition to addresses, nodes on the
network can have associated names

• Names are translated into addresses by a
server called a nameserver

• Local name address mappings stored in
/etc/hosts

Sockets

• Sockets provide access to TCP/IP on UNIX
systems

• Invented in Berkeley UNIX

• Allows a network connection to be opened
as a file (returns a file descriptor)

machine 1 machine 2

Major Network Services

• Telnet
– Provides a virtual terminal for a remote user
– Port 23

– telnet program can be used to connect to other ports

• FTP: File Transfer Protocol
– A service that allows files to be transferred from one

machine to another.

– Uses port 20 for data, 21 for control

• SSH
– Like telnet but encrypts data. Port 22

Major Network Services (cont.)

• SMTP
– Host-to-host mail transport
– Port 25

• IMAP
– Email access

– Port 143 (993 for SSL)

• HTTP
– “… protocol for distributed, collaborative, hypermedia

information systems”

– Port 80

Ksh93: /dev/tcp

• Files in the form
/dev/tcp/hostname/port result in a
socket connection to the given service:

exec 3<>/dev/tcp/smtp.cs.nyu.edu/25 #SMTP
print –u3 ”EHLO cs.nyu.edu"
print –u3 ”QUIT"
while IFS= read –u3
do

print –r "$REPLY"
done

HTTP
• The Hyper Text Transfer Protocol: Port 80

• Language used to communicate between browsers
(IE, Mozilla) and web servers (Apache, IIS)

• Browsers make requests:
– Request a URL

– Also includes info such as the browser type, formats
accepted, etc.

• Web servers reply with two parts
– Header information describing the data

– The actual data (e.g. HTML document)

3

GET /index.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/5.0 (Linux i686)
Host: www.cs.nyu.edu
Accept: image/gif, image/x-bitmap,
image/jpeg, */*

HTTP/1.0 200 Document follows
Date: Tue, 05 Nov 2002 12:03:23 EST
Server: Apache 1.1
Last-modified: Mon, 04 Nov 2002 03:34:43
EST
Content-type: text/html
Content-length: 2493

<H1> This is a test </H1>

request

response

Sample HTTP session
% telnet www.cs.nyu.edu 80
Trying 128.122.81.68...
Connected to cs.nyu.edu.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.cs.nyu.edu

HTTP/1.1 200 OK
Date: Tue, 19 Oct 2004 05:12:27 GMT
Server: Apache/2.0.49 (Unix) mod_perl/1.99_14 …
Last-Modified: Thu, 12 Sep 2002 17:09:03 GMT
…
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<title></title>
<meta HTTP-EQUIV="Refresh" CONTENT="0; URL=csweb/index.html">
<body>
</body>
</html>

URLs

• Uniform Resource Locator

http://www.cs.nyu.edu:80/courses/fall04/G22.2245-001/index.html

protocol host resource

Connect to port 80 on machine www.cs.nyu.edu

GET /courses/fall02/G22.2245-001/index.htm

port

HTML

• Hyper-Text Markup Language

• A text document with formatting information
– Tags are embedded in the text
– Common tags: <P>, ..., , <PRE>,
<H1>

• Browsers turn HTML into visual presentation

HTML

• HTML is a file format that describes a web
page.

• These files can be made by hand, or
generated by a program

• A good way to generate an HTML file is by
writing a shell script

CGI Overview
• Web servers allow HTML documents to be

generated on the fly through the CGI standard.

• A request is made for a web page, your program is
called by the web server to generate the HTML,
the HTML is rendered in the browser
– Your program outputs HTML to standard output

• There are ways to get input to your script
– Through standard input and/or environment variables

4

HTML Forms

• An HTML form provides a way to collect user
input
– Text Areas
– Buttons
– Menus
– Checkboxes

• Browser send data via HTTP request
• Invokes a URL of a CGI script to process data

when submitted

Forms and CGI

• HTTP defines how form variables are sent
to the web server

• Two methods:
– GET

• Form variables encoded into an environment
variable

– POST
• Form variables encoded into standard input as the

content of the HTTP request

Sending form variables

• Browser sends form variables as name-value pairs:
name1=value1&name2=value2&name3=value3

• Names are defined in form elements
<INPUT TYPE=“checkbox” NAME=“send_payment” Value=“yes”>

• Values are specified by user
– Encoded into special format: special characters replaced

with %## (2-digit hex number), spaces replaced with +
• Avoids parsing problems
• e.g. “10/20 Wed” encoded as “10%2F20+Wed”

Submitting forms

• POST

POST /cgi-bin/sample.cgi HTTP/1.1
Host: www.cs.nyu.edu
Content-Length: 50
Content-Type: application/x-www-form-urlencoded

name1=value1&name2=value2

• GET

GET /cgi-bin/sample.cgi?name1=value1&name2=value2 HTTP/1.1
Host: www.cs.nyu.edu

Reading form inputs

• Forms specify whether to use GET or POST style
HTTP request
<FORM ACTION=“/cgi-bin/sample.cgi METHOD=POST>
…
</FORM>

• GET: input encoded into QUERY_STRING
• POST: standard input (body of the request)
• Most scripts parse the input into an associative

array
– You can parse these yourself
– But most people use libraries for this

5

CGI Environment Variables
• DOCUMENT_ROOT
• HTTP_HOST
• HTTP_REFERER
• HTTP_USER_AGENT
• HTTP_COOKIE
• REMOTE_ADDR
• REMOTE_HOST
• REMOTE_USER
• REQUEST_METHOD
• SERVER_NAME
• SERVER_PORT

CGI Script: Example

Part 1: HTML Form
<html>
<center>
<H1>Anonymous Comment Submission</H1>
</center>
Please enter your comment below which will
be sent anonymously to <tt>kornj@cs.nyu.edu</tt>.
If you want to be extra cautious, access this
page through Anonymizer.
<p>
<form action=cgi-bin/comment.cgi method=post>
<textarea name=comment rows=20 cols=80>
</textarea>
<input type=submit value="Submit Comment">
</form>
</html>

Part 2: CGI Script (ksh)
#!/home/unixtool/bin/ksh

. cgi-lib.ksh # Read special functions to help parse
ReadParse
PrintHeader

print -r -- "${Cgi.comment}" | /bin/mailx -s "COMMENT" kornj

print "<H2>You submitted the comment</H2>"
print "<pre>"
print -r -- "${Cgi.comment}"
print "</pre>"

Debugging

• Debugging can be tricky, since error
messages don't always print well as HTML

• One method: run interactively

$ QUERY_STRING='birthday=10/15/03'
$./birthday.cgi
Content-type: text/html

<html>
Your birthday is <tt>10/15/02</tt>.
</html>

How to get your script run

• This can vary by web server type
http://www.cims.nyu.edu/systems/resources/webhosting/index.html

• Typically, you give your script a name that
ends with .cgi

• Give the script execute permission

• Specify the location of that script in the
URL

6

CGI Security Risks

• Often CGI scripts are run as the author
– setuid

• Be careful of security holes

• Never trust the input

• Clean up (don't leave sensitive data around)

CGI Benefits

• Simple

• Language independent

• UNIX tools are good for this because
– Work well with text

– Integrate programs well

– Easy to prototype

– No compilation (CGI scripts)

Example: Dump Some Info
#!/home/unixtool/bin/ksh

. ./cgi-lib.ksh
PrintHeader
ReadParse

print "<h1> Date </h1>"
print "<pre>"
date
print "</pre>"

print "<h1> Form Variables </h1>"
print "<pre>"
set -s -- ${!Cgi.*}
for var
do
 nameref r=$var
 print "${var#Cgi.} = $r"
 unset r
done
print "</pre>"

print "<h1> Environment </h1>"
print "<pre>"
env | sort
print "</pre>"

Example: Find words in Dictionary

<form action=dict.cgi>
Regular expression: <input type=entry
name=re value=".*">
<input type=submit>
</form>

Example: Find words in Dictionary
#!/home/unixtool/bin/ksh

PATH=$PATH:.
. cgi-lib.ksh
ReadParse
PrintHeader

print "<H1> Words matching <tt>${Cgi.re}</tt> in the dictionary
</H1>\n";
print ""
grep "${Cgi.re}" /usr/dict/words | while read word
do
 print " $word"
done
print ""

