Llecture?

Networking, HTTP, CGI

* Client application and server application
communicate via a network protocol

* A protocol is a set of rules on how the client and
server communicate

web HTTP web
client server

Internet Protocol Suite

— application
2 client layer server
transport
TCP |« s TCP

kernel

hardware hardware

datalink and physical layer

(ethernet)

Ethernet header

IP header

TCP header

Your data

TCP/IP

» TCP and IP were developed as a standard

networking protocol to connect a diverse set of

networks

* Two layers:

— IP — determines routing of packets of data from sender
to receiver. Uses 32-bit addresses (e.g. 128.122.20.15)

— TCP - connection-oriented protocol for reliable
delivery of data. Acknowledgements, sequencing,
retransmission, timeouts

Ports

With TCP/IP, each machine has a number of ports
that can be contacted from a client.
A machine has to serve a port by listening for
connections to it.

Ports for popular services are fixed:

— ssh: 22, telnet: 23, www: 80

— 1-1023 are reserved (well-known)

— 1024-49151 are user level

— 49152-65535 are private to the machine
Clients use ephemeral ports

« In addition to addresses, nodes on the
network can have associated names

» Names are translated into addresses by a
server called a nameserver

+ Local name address mappings stored in
/etc/hosts

Sockets

* Sockets provide access to TCP/IP on UNIX
systems

* Invented in Berkeley UNIX

« Allows a network connection to be opened
as a file (returns a file descriptor)

O

T —

machine 1 machine 2

* Telnet

— Provides a virtual terminal for a remote user

— Port 23

— telnet program can be used to connect to other ports
» FTP: File Transfer Protocol

— A service that allows files to be transferred from one
machine to another.

— Uses port 20 for data, 21 for control
* SSH
— Like telnet but encrypts data. Port 22

* SMTP
— Host-to-host mail transport
— Port 25
« IMAP
— Email access
— Port 143 (993 for SSL)
« HTTP

— “... protocol for distributed, collaborative, hypermedia
information systems”

— Port 80

Ksh93: /dev/tcp

* Files in the form
/dev/tcp/hostname/port result in a
socket connection to the given service:

exec 3<>/dev/tcp/smtp.cs.nyu.edu/25 #SMTP
print -u3 ”“EHLO cs.nyu.edu"
print -u3 ”QUIT"
while IFS= read -u3
do
print -r "$REPLY"
done

HTTP

» The Hyper Text Transfer Protocol: Port 80
» Language used to communicate between browsers
(IE, Mozilla) and web servers (Apache, IIS)
» Browsers make requests:
— Request a URL

— Also includes info such as the browser type, formats
accepted, etc.

» Web servers reply with two parts
— Header information describing the data
— The actual data (e.g. HTML document)

GET /index.html HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (Linux i1686)
Host: www.cs.nyu.edu

Accept: image/gif, image/x-bitmap,

3 3 * /%
image/jpeg, */ request

HTTP/1.0 200 Document follows

Date: Tue, 05 Nov 2002 12:03:23 EST
Server: Apache 1.1

Last-modified: Mon, 04 Nov 2002 03:34:43
EST

Content-type: text/html

Content-length: 2493

L. response
<H1> This is a test </H1>

Sample HTTP session

% telnet www.cs.nyu.edu 80
Trying 128.122.81.68...
Connected to cs.nyu.edu.
Escape character is '"]'.
GET / HTTP/1.1

Host: www.cs.nyu.edu

HTTP/1.1 200 OK

Date: Tue, 19 Oct 2004 05:12:27 GMT

Server: Apache/2.0.49 (Unix) mod perl/1.99 14
Last-Modified: Thu, 12 Sep 2002 17:09:03 GMT

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<title></title>

<meta HTTP-EQUIV="Refresh" CONTENT="0; URL=csweb/index.html">
<body>

</body>

</html>

URLS

e Uniform Resource Locator

//{wwwAcsAnyuAedu‘:*courses/fallOA/GZZA2245—001/indexAhtml

protocol host port resource

Connect to port 80 on machine www. cs.nyu.edu

GET /courses/fall02/G22.2245-001/index.htm

HTML

» Hyper-Text Markup Language

* A text document with formatting information
— Tags are embedded in the text
— Common tags: <P>, ..., , <PRE>,
<H1>

» Browsers turn HTML into visual presentation

HTML

e HTML is a file format that describes a web
page.

¢ These files can be made by hand, or
generated by a program

+ A good way to generate an HTML file is by
writing a shell script

CGI Overview

» Web servers allow HTML documents to be
generated on the fly through the CGI standard.

* A request is made for a web page, your program is
called by the web server to generate the HTML,
the HTML is rendered in the browser

— Your program outputs HTML to standard output
» There are ways to get input to your script
— Through standard input and/or environment variables

e

HTML Forms

An HTML form provides a way to collect user
input

— Text Areas

— Buttons

— Menus

— Checkboxes

Browser send data via HTTP request

Invokes a URL of a CGI script to process data
when submitted

e HTTP defines how form variables are sent
to the web server

e Two methods:
- GET

» Form variables encoded into an environment
variable
— POST

» Form variables encoded into standard input as the
content of the HTTP request

(POST)

STDIN

STDOUT

(HTML)
ool

» Browser sends form variables as name-value pairs:
namel=valuel &éname2=value2 &éname3=value3
* Names are defined in form elements
<INPUT TYPE=“checkbox” NAME=“send_payment” Value=“yes”>
*» Values are specified by user

— Encoded into special format: special characters replaced
with %### (2-digit hex number), spaces replaced with +
* Avoids parsing problems
* e.g “10/20 Wed” encoded as “10%2F20+Wed”

POST

POST /cgi-bin/sample.cgi HTTP/1.1

Host: www.cs.nyu.edu

Content-Length: 50

Content-Type: application/x-www-form-urlencoded

namel=valuel&name2=value2

GET

GET /cgi-bin/sample.cgi?namel=valuelsname2=value2 HTTP/1.1
Host: www.cs.nyu.edu

» Forms specify whether to use GET or POST style
HTTP request

<FORM ACTION=“/cgi-bin/sample.cgi METHOD=POST>

2/FORM>
* GET: input encoded into QUERY_STRING
» POST: standard input (body of the request)
* Most scripts parse the input into an associative
array
— You can parse these yourself
— But most people use libraries for this

* DOCUMENT ROOT
* HTTP_HOST

* HTTP_REFERER

* HTTP_USER_AGENT
* HTTP_COOKIE

*+ REMOTE_ADDR

*+ REMOTE_HOST

*+ REMOTE_USER

* REQUEST METHOD
* SERVER_NAME

* SERVER_PORT

CGI Script: Example

icix|
=
el
eI
Anonymous Comment Submission
Tyonwantobe
St
=
=
Subt Cormen

)|
i | @ 7

Part 1: HTML Form

<html>

<center>

<H1>Anonymous Comment Submission</H1>

</center>

Please enter your comment below which will

be sent anonymously to <tt>kornj@cs.nyu.edu</tt>.
If you want to be extra cautious, access this
page through Anonymizer.
<p>

<form action=cgi-bin/comment.cgi method=post>
<textarea name=comment rows=20 cols=80>
</textarea>

<input type=submit value="Submit Comment">
</form>

</html>

Part 2: CGI Script (ksh)

#!/home/unixtool/bin/ksh

. cgi-lib.ksh # Read special functions to help parse
ReadParse
PrintHeader

print -r -- "${Cgi.comment}" | /bin/mailx -s "COMMENT" kornj

print "<H2>You submitted the comment</H2>"
print "<pre>"

print -r -- "${Cgi.comment}"

print "</pre>"

Debugging can be tricky, since error
messages don't always print well as HTML

* One method: run interactively

$ QUERY_STRING:'birthday=10/15/03'
$./birthday.cgi
Content-type: text/html

<html>
Your birthday is <tt>10/15/02</tt>.
</html>

How to get your script run

+ This can vary by web server type

hitp:/www. cims.nyu edu/systems/resources/webhosting/index. htm|

* Typically, you give your script a name that
ends with .cgi

* Give the script execute permission

* Specify the location of that script in the
URL

CGI Security Risks

» Often CGI scripts are run as the author
— setuid
* Be careful of security holes
 Never trust the input
* Clean up (don't leave sensitive data around)

CGI Benefits

+ Simple
+ Language independent
+ UNIX tools are good for this because
— Work well with text
— Integrate programs well
— Easy to prototype
— No compilation (CGI scripts)

#!/home/unixtool /bin/ksh

. ./cgi-lib.ksh
PrintHeader
ReadParse

print "<hl> Date </h1>"
print "<pre>"

date

print "</pre>"

print "<hl> Form Variables </h1>"
print "<pre>"
set -s -- ${!Cgi.*}
for var
do
nameref r=$var
print "${var#Cgi.} = $r"
unset r
done
print "</pre>"

print "<hl> Environment </h1>"
print "<pre>"

env | sort

print "</pre>"

Example: Find words in Dictionary

<form action=dict.cgi>

Regular expression: <input type=entry
name=re value=".*">

<input type=submit>

</form>

Example: Find words in Dictionary

#!/home/unixtool /bin/ksh

PATH=$PATH: .

. cgi-lib.ksh
ReadParse
PrintHeader

print "<H1> Words matching <tt>${Cgi.re}</tt> in the dictionary
</H1>\n";
print ""
grep "${Cgi.re}" /usr/dict/words | while read word
do
print " $word"
done
print ""

