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Lecture 7

Networking, HTTP, CGI

Network Application

• Client application and server application
communicate via a network protocol

• A protocol is a set of rules on how the client and
server communicate
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TCP/IP

• TCP and IP were developed as a standard
networking protocol to connect a diverse set of
networks

• Two layers:
– IP – determines routing of packets of data from sender

to receiver.  Uses 32-bit addresses (e.g. 128.122.20.15)

– TCP – connection-oriented protocol for reliable
delivery of data.  Acknowledgements, sequencing,
retransmission, timeouts

Ports

• With TCP/IP, each machine has a number of ports
that can be contacted from a client.

• A machine has to serve a port by listening for
connections to it.

• Ports for popular services are fixed:
– ssh: 22,  telnet: 23,  www: 80
– 1-1023 are reserved (well-known)
– 1024-49151 are user level
– 49152-65535 are private to the machine

• Clients use ephemeral ports
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Naming

• In addition to addresses, nodes on the
network can have associated names

• Names are translated into addresses by a
server called a nameserver

• Local name address mappings stored in
/etc/hosts

Sockets

• Sockets provide access to TCP/IP on UNIX
systems

• Invented in Berkeley UNIX

• Allows a network connection to be opened
as a file (returns a file descriptor)

machine 1 machine 2

Major Network Services

• Telnet
– Provides a virtual terminal for a remote user
– Port 23

– telnet program can be used to connect to other ports

• FTP: File Transfer Protocol
– A service that allows files to be transferred from one

machine to another.

– Uses port 20 for data, 21 for control

• SSH
– Like telnet but encrypts data.  Port 22

Major Network Services (cont.)

• SMTP
– Host-to-host mail transport
– Port 25

• IMAP
– Email access

– Port 143 (993 for SSL)

• HTTP
– “… protocol for distributed, collaborative, hypermedia

information systems”

– Port 80

Ksh93: /dev/tcp

• Files in the form
/dev/tcp/hostname/port result in a
socket connection to the given service:

exec 3<>/dev/tcp/smtp.cs.nyu.edu/25 #SMTP
print –u3 ”EHLO cs.nyu.edu"
print –u3 ”QUIT"
while IFS= read –u3
do

print –r "$REPLY"
done

HTTP
• The Hyper Text Transfer Protocol: Port 80

• Language used to communicate between browsers
(IE, Mozilla) and web servers (Apache, IIS)

• Browsers make requests:
– Request a URL

– Also includes info such as the browser type, formats
accepted, etc.

• Web servers reply with two parts
– Header information describing the data

– The actual data (e.g. HTML document)
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GET /index.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/5.0 (Linux i686)
Host: www.cs.nyu.edu
Accept: image/gif, image/x-bitmap,
image/jpeg, */*

HTTP/1.0 200 Document follows
Date: Tue, 05 Nov 2002 12:03:23 EST
Server: Apache 1.1
Last-modified: Mon, 04 Nov 2002 03:34:43
EST
Content-type: text/html
Content-length: 2493

<H1> This is a test </H1>

request

response

Sample HTTP session
% telnet www.cs.nyu.edu 80
Trying 128.122.81.68...
Connected to cs.nyu.edu.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.cs.nyu.edu

HTTP/1.1 200 OK
Date: Tue, 19 Oct 2004 05:12:27 GMT
Server: Apache/2.0.49 (Unix) mod_perl/1.99_14 …
Last-Modified: Thu, 12 Sep 2002 17:09:03 GMT
…
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<title></title>
<meta HTTP-EQUIV="Refresh" CONTENT="0; URL=csweb/index.html">
<body>
</body>
</html>

URLs

• Uniform Resource Locator

http://www.cs.nyu.edu:80/courses/fall04/G22.2245-001/index.html

protocol host resource

Connect to port 80 on machine www.cs.nyu.edu

GET /courses/fall02/G22.2245-001/index.htm

port

HTML

• Hyper-Text Markup Language

• A text document with formatting information
– Tags are embedded in the text
– Common tags: <P>, <B>...</B>, <UL>, <PRE>,
<H1>

• Browsers turn HTML into visual presentation

HTML

• HTML is a file format that describes a web
page.

• These files can be made by hand, or
generated by a program

• A good way to generate an HTML file is by
writing a shell script

CGI Overview
• Web servers allow HTML documents to be

generated on the fly through the CGI standard.

• A request is made for a web page, your program is
called by the web server to generate the HTML,
the HTML is rendered in the browser
– Your program outputs HTML to standard output

• There are ways to get input to your script
– Through standard input and/or environment variables
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HTML Forms

• An HTML form provides a way to collect user
input
– Text Areas
– Buttons
– Menus
– Checkboxes

• Browser send data via HTTP request
• Invokes a URL of a CGI script to process data

when submitted

Forms and CGI

• HTTP defines how form variables are sent
to the web server

• Two methods:
– GET

• Form variables encoded into an environment
variable

– POST
• Form variables encoded into standard input as the

content of the HTTP request

Sending form variables

• Browser sends form variables as name-value pairs:
name1=value1&name2=value2&name3=value3

• Names are defined in form elements
<INPUT TYPE=“checkbox” NAME=“send_payment” Value=“yes”>

• Values are specified by user
– Encoded into special format: special characters replaced

with %## (2-digit hex number), spaces replaced with +
• Avoids parsing problems
• e.g. “10/20 Wed” encoded as “10%2F20+Wed”

Submitting forms

• POST

POST /cgi-bin/sample.cgi HTTP/1.1
Host: www.cs.nyu.edu
Content-Length: 50
Content-Type: application/x-www-form-urlencoded

name1=value1&name2=value2

• GET

GET /cgi-bin/sample.cgi?name1=value1&name2=value2 HTTP/1.1
Host: www.cs.nyu.edu

Reading form inputs

• Forms specify whether to use GET or POST style
HTTP request
<FORM ACTION=“/cgi-bin/sample.cgi METHOD=POST>
…
</FORM>

• GET: input encoded into QUERY_STRING
• POST: standard input (body of the request)
• Most scripts parse the input into an associative

array
– You can parse these yourself
– But most people use libraries for this
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CGI Environment Variables
• DOCUMENT_ROOT
• HTTP_HOST
• HTTP_REFERER
• HTTP_USER_AGENT
• HTTP_COOKIE
• REMOTE_ADDR
• REMOTE_HOST
• REMOTE_USER
• REQUEST_METHOD
• SERVER_NAME
• SERVER_PORT

CGI Script: Example

Part 1: HTML Form
<html>
<center>
<H1>Anonymous Comment Submission</H1>
</center>
Please enter your comment below which will
be sent anonymously to <tt>kornj@cs.nyu.edu</tt>.
If you want to be extra cautious, access this
page through <a
href="http://www.anonymizer.com">Anonymizer</a>.
<p>
<form action=cgi-bin/comment.cgi method=post>
<textarea name=comment rows=20 cols=80>
</textarea>
<input type=submit value="Submit Comment">
</form>
</html>

Part 2: CGI Script (ksh)
#!/home/unixtool/bin/ksh

. cgi-lib.ksh  # Read special functions to help parse
ReadParse
PrintHeader

print -r -- "${Cgi.comment}" | /bin/mailx -s "COMMENT" kornj

print "<H2>You submitted the comment</H2>"
print "<pre>"
print -r -- "${Cgi.comment}"
print "</pre>"

Debugging

• Debugging can be tricky, since error
messages don't always print well as HTML

• One method: run interactively

$ QUERY_STRING='birthday=10/15/03'
$ ./birthday.cgi
Content-type: text/html

<html>
Your birthday is <tt>10/15/02</tt>.
</html>

How to get your script run

• This can vary by web server type
http://www.cims.nyu.edu/systems/resources/webhosting/index.html

• Typically, you give your script a name that
ends with .cgi

• Give the script execute permission

• Specify the location of that script in the
URL
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CGI Security Risks

• Often CGI scripts are run as the author
– setuid

• Be careful of security holes

• Never trust the input

• Clean up (don't leave sensitive data around)

CGI Benefits

• Simple

• Language independent

• UNIX tools are good for this because
– Work well with text

– Integrate programs well

– Easy to prototype

– No compilation (CGI scripts)

Example: Dump Some Info
#!/home/unixtool/bin/ksh

. ./cgi-lib.ksh
PrintHeader
ReadParse

print "<h1> Date </h1>"
print "<pre>"
date
print "</pre>"

print "<h1> Form Variables </h1>"
print "<pre>"
set -s -- ${!Cgi.*}
for var
do
        nameref r=$var
        print "${var#Cgi.} = $r"
        unset r
done
print "</pre>"

print "<h1> Environment </h1>"
print "<pre>"
env | sort
print "</pre>"

Example: Find words in Dictionary

<form action=dict.cgi>
Regular expression: <input type=entry
name=re value=".*">
<input type=submit>
</form>

Example: Find words in Dictionary
#!/home/unixtool/bin/ksh

PATH=$PATH:.
. cgi-lib.ksh
ReadParse
PrintHeader

print "<H1> Words matching <tt>${Cgi.re}</tt> in the dictionary
</H1>\n";
print "<OL>"
grep "${Cgi.re}" /usr/dict/words | while read word
do
        print "<LI> $word"
done
print "</OL>"


