

Lecture 5

Awk and Shell

Sed Drawbacks

• Hard to remember text from one line to
another

• Not possible to go backward in the file
• No way to do forward references

like /..../+1

• No facilities to manipulate numbers

• Cumbersome syntax

Awk

Programmable Filters

Aho Weinberger Kernighan

Why is it called AWK?

http://www.scholarsfirst.com/dept_compsci/_shared/kernighan.jpg

Awk Introduction
• awk's purpose: A general purpose programmable filter

that handles text (strings) as easily as numbers
– This makes awk one of the most powerful of the Unix

utilities

• awk processes fields while sed only processes lines
• nawk (new awk) is the new standard for awk

– Designed to facilitate large awk programs
– gawk is a free nawk clone from GNU

• awk gets it’s input from
– files
– redirection and pipes
– directly from standard input

AWK Highlights
• A programming language for handling common

data manipulation tasks with only a few lines of
code

• awk is a pattern-action language, like sed
• The language looks a little like C but automatically

handles input, field splitting, initialization, and
memory management
– Built-in string and number data types
– No variable type declarations

• awk is a great prototyping language
– Start with a few lines and keep adding until it does what

you want

BEGIN {action}

pattern {action}

pattern {action}

 .

 .

 .

pattern { action}

END {action}

Structure of an AWK
Program

• An awk program consists of:
– An optional BEGIN segment

• For processing to execute prior to
reading input

– pattern - action pairs
• Processing for input data

• For each pattern matched, the
corresponding action is taken

– An optional END segment
• Processing after end of input data

Running an AWK Program

• There are several ways to run an Awk program
– awk 'program' input_file(s)

• program and input files are provided as command-line
arguments

– awk 'program'
• program is a command-line argument; input is taken from

standard input (yes, awk is a filter!)

– awk -f program_file input_files
• program is read from a file

Patterns and Actions

• Search a set of files for patterns.

• Perform specified actions upon lines or
fields that contain instances of patterns.

• Does not alter input files.

• Process one input line at a time

• This is similar to sed

Pattern-Action Structure
• Every program statement has to have a pattern or an

action or both

• Default pattern is to match all lines

• Default action is to print current record
• Patterns are simply listed; actions are enclosed in { }

• awk scans a sequence of input lines, or records, one
by one, searching for lines that match the pattern
– Meaning of match depends on the pattern

Patterns

• Selector that determines whether action is to be
executed

• pattern can be:
– the special token BEGIN or END
– regular expressions (enclosed with //)
– arithmetic relation operators
– string-valued expressions
– arbitrary combination of the above

• /NYU/ matches if the string “NYU” is in the record
• x > 0 matches if the condition is true
• /NYU/ && (name == "UNIX Tools")

BEGIN and END patterns

• BEGIN and END provide a way to gain
control before and after processing, for
initialization and wrap-up.
– BEGIN: actions are performed before the first

input line is read.

– END: actions are done after the last input line
has been processed.

Actions

• action may include a list of one or more C like
statements, as well as arithmetic and string expressions
and assignments and multiple output streams.

• action is performed on every line that matches pattern.
– If pattern is not provided, action is performed on every input line

– If action is not provided, all matching lines are sent to standard output.

• Since patterns and actions are optional, actions must
be enclosed in braces to distinguish them from pattern.

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!

Variables

• awk scripts can define and use variables

BEGIN { sum = 0 }

{ sum ++ }

END { print sum }
• Some variables are predefined

Records

• Default record separator is newline
– By default, awk processes its input a line at a

time.

• Could be any other regular expression.
• RS: record separator

– Can be changed in BEGIN action

• NR is the variable whose value is the
number of the current record.

Fields

• Each input line is split into fields.
– FS: field separator: default is whitespace (1 or more

spaces or tabs)
– awk -Fc option sets FS to the character c

• Can also be changed in BEGIN

– $0 is the entire line

– $1 is the first field, $2 is the second field, ….

• Only fields begin with $, variables are unadorned

Simple Output From AWK

• Printing Every Line
– If an action has no pattern, the action is performed to all

input lines
• { print } will print all input lines to standard out
• { print $0 } will do the same thing

• Printing Certain Fields
– Multiple items can be printed on the same output line with

a single print statement
– { print $1, $3 }
– Expressions separated by a comma are, by default,

separated by a single space when output

Output (continued)

• NF, the Number of Fields
– Any valid expression can be used after a $ to indicate the

contents of a particular field
– One built-in expression is NF, or Number of Fields
– { print NF, $1, $NF } will print the number of fields,

the first field, and the last field in the current record
– { print $(NF-2) } prints the third to last field

• Computing and Printing
– You can also do computations on the field values and

include the results in your output
– { print $1, $2 * $3 }

Output (continued)

• Printing Line Numbers
– The built-in variable NR can be used to print line

numbers
– { print NR, $0 } will print each line prefixed with its

line number

• Putting Text in the Output
– You can also add other text to the output besides what is

in the current record
– { print "total pay for", $1, "is", $2 * $3 }

– Note that the inserted text needs to be surrounded by
double quotes

Fancier Output

• Lining Up Fields
– Like C, Awk has a printf function for producing

formatted output
– printf has the form

• printf(format, val1, val2, val3, …)

{ printf(“total pay for %s is $%.2f\n”,
 $1, $2 * $3) }

– When using printf, formatting is under your control so
no automatic spaces or newlines are provided by awk.
You have to insert them yourself.

{ printf(“%-8s %6.2f\n”, $1, $2 * $3) }

Selection
• Awk patterns are good for selecting specific lines

from the input for further processing
– Selection by Comparison

• $2 >= 5 { print }

– Selection by Computation
• $2 * $3 > 50 { printf(“%6.2f for %s\n”,
 $2 * $3, $1) }

– Selection by Text Content
• $1 == "NYU"
• /NYU/

– Combinations of Patterns
• $2 >= 4 || $3 >= 20

– Selection by Line Number
• NR >= 10 && NR <= 20

Arithmetic and variables

• awk variables take on numeric (floating
point) or string values according to context.

• User-defined variables do not need to be
declared.

• By default, user-defined variables are
initialized to the null string which has
numerical value 0.

Computing with AWK

• Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked

 more than 15 hrs”}

• Computing Sums and Averages is also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
 print “total pay is”, pay
 print “average pay is”, pay/NR
 }

Handling Text

• One major advantage of Awk is its ability to handle
strings as easily as many languages handle
numbers

• Awk variables can hold strings of characters as
well as numbers, and Awk conveniently translates
back and forth as needed

• This program finds the employee who is paid the
most per hour:

 # Fields: employee, payrate
 $2 > maxrate { maxrate = $2; maxemp = $1 }

 END { print “highest hourly rate:”,
 maxrate, “for”, maxemp }

String Manipulation

• String Concatenation
– New strings can be created by combining old ones

 { names = names $1 " " }

END { print names }

• Printing the Last Input Line
– Although NR retains its value after the last input line

has been read, $0 does not

 { last = $0 }

END { print last }

Built-in Functions

• awk contains a number of built-in functions.
length is one of them.

• Counting Lines, Words, and Characters using
length (a poor man’s wc)

 { nc = nc + length($0) + length(RS)
 nw = nw + NF
 }
END { print NR, "lines,", nw, "words,", nc,

 "characters" }

• substr(s, m, n) produces the substring of s that
begins at position m and is at most n characters
long.

Control Flow Statements

• awk provides several control flow statements for
making decisions and writing loops

• If-Then-Else
 $2 > 6 { n = n + 1; pay = pay + $2 * $3 }

END { if (n > 0)
 print n, "employees, total pay is",

pay, "average pay is", pay/n
 else
 print "no employees are paid more

than $6/hour"
 }

Loop Control

• While
interest1 - compute compound interest

input: amount, rate, years

output: compound value at end of each year

{ i = 1

while (i <= $3) {

printf(“\t%.2f\n”, $1 * (1 + $2) ^ i)

i = i + 1

}

}

Do-While Loops

• Do While

do {

statement1

}

while (expression)

For statements

• For
interest2 - compute compound interest
input: amount, rate, years

output: compound value at end of each year

{ for (i = 1; i <= $3; i = i + 1)

printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

Arrays

• Array elements are not declared

• Array subscripts can have any value:
– Numbers

– Strings! (associative arrays)

• Examples
– arr[3]="value"
– grade["Korn"]=40.3

Array Example

reverse - print input in reverse order by line

{ line[NR] = $0 } # remember each line

END {
for (i=NR; (i > 0); i=i-1) {
 print line[i]
}

 }

Useful One (or so)-liners

• END { print NR }
• NR == 10
• { print $NF }
• { field = $NF }

 END { print field }
• NF > 4
• $NF > 4
• { nf = nf + NF }

 END { print nf }

More One-liners

• /Jeff/ { nlines = nlines + 1 }

 END { print nlines }
• $1 > max { max = $1; maxline = $0 }

 END { print max, maxline }
• NF > 0
• length($0) > 80
• { print NF, $0}
• { print $2, $1 }
• { temp = $1; $1 = $2; $2 = temp; print }
• { $2 = ""; print }

Even More One-liners
• { for (i = NF; i > 0; i = i - 1)
printf(“%s “, $i)

 printf(“\n”)
 }
• { sum = 0
 for (i = 1; i <= NF; i = i + 1)
sum = sum + $i

 print sum
 }
• { for (i = 1; i <= NF; i = i + 1)

sum = sum $i }
 END { print sum }
}

Awk Variables

• $0, $1, $2, $NF

• NR - Number of records processed

• NF - Number of fields in current record

• FILENAME - name of current input file

• FS - Field separator, space or TAB by default

• OFS - Output field separator, space by default

• ARGC/ARGV - Argument Count, Argument Value
array
– Used to get arguments from the command line

Operators
• = assignment operator; sets a variable equal to a

value or string
• == equality operator; returns TRUE is both sides

are equal
• != inverse equality operator
• && logical AND
• || logical OR
• ! logical NOT
• <, >, <=, >= relational operators
• +, -, /, *, %, ^
• String concatenation

Built-In Functions
• Arithmetic

– sin, cos, atan, exp, int, log, rand, sqrt

• String
– length, substitution, find substrings, split strings

• Output
– print, printf, print and printf to file

• Special
– system - executes a Unix command

• system(“clear”) to clear the screen
• Note double quotes around the Unix command

– exit - stop reading input and go immediately to the END
pattern-action pair if it exists, otherwise exit the script

More Information

on the website

Lecture 5

Shell Scripting

What is a shell?

• The user interface to the operating system
• Functionality:

– Execute other programs
– Manage files
– Manage processes

• Full programming language
• A program like any other

– This is why there are so many shells

Shell History

• There are
many choices
for shells

• Shell features
evolved as
UNIX grew

Shell Scripts

• A shell script is a regular text file that contains
shell or UNIX commands
– Before running it, it must have execute

permission:
•chmod +x filename

• A script can be invoked as:
– ksh name [arg …]
– ksh < name [args …]
– name [arg …]

Shell Scripts
• When a script is run, the kernel determines which

shell it is written for by examining the first line of
the script

– If 1st line starts with #!pathname-of-shell,
then it invokes pathname and sends the script as
an argument to be interpreted

– If #! is not specified, the current shell assumes it
is a script in its own language

• leads to problems

Simple Example

#!/bin/sh

echo Hello World

Scripting vs. C
Programming

• Advantages of shell scripts
– Easy to work with other programs
– Easy to work with files
– Easy to work with strings
– Great for prototyping. No compilation

• Disadvantages of shell scripts
– Slow
– Not well suited for algorithms & data structures

The C Shell

• C-like syntax (uses { }'s)
• Inadequate for scripting

– Poor control over file descriptors
– Can't mix flow control and commands
– Difficult quoting "I say \"hello\"" doesn't work
– Can only trap SIGINT

• Survives mostly because of interactive features.
– Job control
– Command history
– Command line editing, with arrow keys (tcsh)

The Bourne Shell

• Slight differences on various systems

• Evolved into standardized POSIX shell

• Scripts will also run with ksh, bash

• Influenced by ALGOL

Complex Commands

• The shell's power is in its ability to hook
commands together

• We've seen one example of this so far with
pipelines:

• We will see others

cut –d: -f2 /etc/passwd | sort | uniq

Redirection of input/ouput

• Redirection of output: >
– example:$ ls -l > my_files

• Redirection of input: <
– example: $ cat <input.data

• Append output: >>
– example: $ date >> logfile

• Arbitrary file descriptor redirection: fd>
– example: $ ls –l 2> error_log

Multiple Redirection

• cmd 2>file
– send standard error to file
– standard output remains the same

• cmd > file 2>&1
– send both standard error and standard output to file

• cmd > file1 2>file2
– send standard output to file1
– send standard error to file2

Here Documents
• Shell provides alternative ways of supplying

standard input to commands (an anonymous file)
• Shell allows in-line input redirection using <<

called here documents
• format
command [arg(s)] << arbitrary-delimiter
command input
 :
 :
arbitrary-delimiter
• arbitrary-delimiter should be a string that does

not appear in text

Here Document Example

#!/bin/sh

mail steinbrenner@yankees.com <<EOT
 You guys really blew it in
 yesterday. Good luck tomorrow.
 Yours,
 $USER
 EOT

Shell Variables

• Write

name=value

• Read: $var

• Turn local variable into environment:

 export variable

Variable Example

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE

Environmental Variables

NAME MEANING

$HOME Absolute pathname of your home directory

$PATH A list of directories to search for

$MAIL Absolute pathname to mailbox

$USER Your login name

$SHELL Absolute pathname of login shell

$TERM Type of your terminal

$PS1 Prompt

Parameters

• A parameter is one of the following:
– A variable
– A positional parameter, starting at 1 (next slide)
– A special parameter

• To get the value of a parameter: ${param}
– Can be part of a word (abc${foo}def)
– Works in double quotes

• The {} can be omitted for simple variables, special
parameters, and single digit positional parameters.

Positional Parameters

• The arguments to a shell script
– $1, $2, $3 …

• The arguments to a shell function
• Arguments to the set built-in command

– set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
– shift 2

• $1=a, $2=test

• Parameter 0 is the name of the shell or the shell script.

Example with Parameters

#!/bin/sh

Parameter 1: word
Parameter 2: file
grep $1 $2 | wc –l

$ countlines ing /usr/dict/words
3277

Special Parameters

• $# Number of positional parameters
• $- Options currently in effect
• $? Exit value of last executed command
• $$ Process number of current process
• $! Process number of background process
• $* All arguments on command line
• "$@" All arguments on command line

individually quoted "$1" "$2" ...

Command Substitution

• Used to turn the output of a command into a string

• Used to create arguments or variables

• Command is placed with grave accents ` ` to
capture the output of command

$ date
Wed Sep 25 14:40:56 EDT 2001
$ NOW=`date`

$ sed "s/oldtext/`ls | head -1`/g"

$ PATH=`myscript`:$PATH
$ grep `generate_regexp` myfile.c

File name expansion

• Wildcards (patterns)

* matches any string of characters

? matches any single character

[list] matches any character in list

[lower-upper] matches any character in range
lower-upper inclusive

[!list] matches any character not in list

File Expansion

• If multiple matches, all are returned
and treated as separate arguments:

• Handled by the shell (exec never sees the wildcards)
– argv[0]: /bin/cat

– argv[1]: file1

– argv[2]: file2

$ /bin/ls
file1 file2
$ cat file1
a
$ cat file2
b
$ cat file*
a
b

NOT
– argv[0]: /bin/cat

– argv[1]: file*

Compound Commands

• Multiple commands
– Separated by semicolon

• Command groupings
– pipelines

• Boolean operators
• Subshell

– (command1; command2) > file

• Control structures

Boolean Operators

• Exit value of a program (exit system call) is a number
– 0 means success

– anything else is a failure code

• cmd1 && cmd2
– executes cmd2 if cmd1 is successful

• cmd1 || cmd2
– executes cmd2 if cmd1 is not successful

$ ls bad_file > /dev/null && date
$ ls bad_file > /dev/null || date
Wed Sep 26 07:43:23 2001

Control Structures

if expression
then

command1
else

command2
fi

What is an expression?

• Any UNIX command. Evaluates to true if the exit
code is 0, false if the exit code > 0

• Special command /bin/test exists that does most
common expressions
– String compare
– Numeric comparison
– Check file properties

• /bin/[is linked to /bin/test for syntactic
sugar

• Good example UNIX tools working together

Examples
if test "$USER" = "kornj"
then

echo "I hate you"
else

echo "I like you"
fi

if [-f /tmp/stuff] && [`wc –l < /tmp/stuff` -gt 10]

then
echo "The file has more than 10 lines in it"

else
echo "The file is nonexistent or small"

fi

test Summary
• String based tests
-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
(expr) groups an expression

Control Structures
Summary

•if … then … fi
•while … done
•until … do … done
•for … do … done
•case … in … esac

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

