
  

Lecture 5

Awk and Shell



  

Sed  Drawbacks 

• Hard to remember text from one line to 
another

• Not possible to go backward in the file
• No way to do forward references 

like    /..../+1

• No facilities to manipulate numbers

• Cumbersome syntax



  

Awk

Programmable Filters



  

Aho Weinberger Kernighan

Why is it called AWK?

http://www.scholarsfirst.com/dept_compsci/_shared/kernighan.jpg


  

Awk Introduction
• awk's purpose: A general purpose programmable filter 

that handles text (strings) as easily as numbers
– This makes awk one of the most powerful of the Unix 

utilities

• awk processes fields while sed only processes lines
• nawk (new awk) is the new standard for awk

– Designed to facilitate large awk programs
– gawk is a free nawk clone from GNU

• awk gets it’s input from
– files
– redirection and pipes 
– directly from standard input



  

AWK Highlights
• A programming language for handling common 

data manipulation tasks with only a few lines of 
code

• awk is a pattern-action language, like sed
• The language looks a little like C but automatically 

handles input, field splitting, initialization, and 
memory management
– Built-in string and number data types
– No variable type declarations

• awk is a great prototyping language
– Start with a few lines and keep adding until it does what 

you want



  

BEGIN {action}

pattern {action}

pattern {action}

  .

  .

  .

pattern { action}

END {action}

Structure of an AWK 
Program

• An awk program consists of:
– An optional BEGIN segment

• For processing to execute prior to 
reading input

– pattern - action pairs
• Processing for input data

• For each pattern matched, the 
corresponding action is taken

– An optional END segment
• Processing after end of input data



  

Running an AWK Program

• There are several ways to run an Awk program
– awk 'program' input_file(s)

• program and input files are provided as command-line 
arguments

– awk 'program'
• program is a command-line argument; input is taken from 

standard input (yes, awk is a filter!)

– awk -f program_file input_files
• program is read from a file



  

Patterns and Actions

• Search a set of files for patterns.

• Perform specified actions upon lines or 
fields that contain instances of patterns.

• Does not alter input files.

• Process one input line at a time

• This is similar to sed



  

Pattern-Action Structure
• Every program statement has to have a pattern or an 

action or both

• Default pattern is to match all lines

• Default action is to print current record
• Patterns are simply listed; actions are enclosed in { }

• awk scans a sequence of input lines, or records, one 
by one, searching for lines that match the pattern
– Meaning of match depends on the pattern



  

Patterns

• Selector that determines whether action is to be 
executed

• pattern can be:
– the special token BEGIN or END
– regular expressions (enclosed with //)
– arithmetic relation operators
– string-valued expressions
– arbitrary combination of the above

• /NYU/ matches if the string “NYU” is in the record
• x > 0 matches if the condition is true
• /NYU/ && (name == "UNIX Tools")



  

BEGIN and END patterns

• BEGIN and END provide a way to gain 
control before and after processing, for 
initialization and wrap-up.
– BEGIN: actions are performed before the first 

input line is read.

– END: actions are done after the last input line 
has been processed.



  

Actions

• action may include a list of one or more C like 
statements, as well as arithmetic and string expressions 
and assignments and multiple output streams.

• action is performed on every line that matches pattern.
– If pattern is not provided, action is performed on every input line

– If action is not provided, all matching lines are sent to standard output.

• Since patterns and actions are optional, actions must 
be enclosed in braces to distinguish them from pattern.



  

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!



  

Variables

• awk scripts can define and use variables

BEGIN { sum = 0 }

{ sum ++ }

END { print sum }
• Some variables are predefined



  

Records

• Default record separator is newline
– By default, awk processes its input a line at a 

time.

• Could be any other regular expression.
• RS: record separator

– Can be changed in BEGIN action

• NR is the variable whose value is the 
number of the current record.



  

Fields

• Each input line is split into fields.
– FS: field separator: default is whitespace (1 or more 

spaces or tabs)
– awk -Fc option sets FS to the character c

• Can also be changed in BEGIN

– $0 is the entire line

– $1 is the first field, $2 is the second field, …. 

• Only fields begin with $, variables are unadorned



  

Simple Output From AWK

• Printing Every Line
– If an action has no pattern, the action is performed to all 

input lines
• { print } will print all input lines to standard out
• { print $0 } will do the same thing

• Printing Certain Fields
– Multiple items can be printed on the same output line with 

a single print statement
– { print $1, $3 }
– Expressions separated by a comma are, by default, 

separated by a single space when output



  

Output (continued)

• NF, the Number of Fields
– Any valid expression can be used after a $ to indicate the 

contents of a particular field
– One built-in expression is NF, or Number of Fields
– { print NF, $1, $NF } will print the number of fields, 

the first field, and the last field in the current record
– { print $(NF-2) } prints the third to last field

• Computing and Printing
– You can also do computations on the field values and 

include the results in your output
– { print $1, $2 * $3 }



  

Output (continued)

• Printing Line Numbers
– The built-in variable NR can be used to print line 

numbers
– { print NR, $0 } will print each line prefixed with its 

line number

• Putting Text in the Output
– You can also add other text to the output besides what is 

in the current record
– { print "total pay for", $1, "is", $2 * $3 }

– Note that the inserted text needs to be surrounded by 
double quotes



  

Fancier Output

• Lining Up Fields
– Like C, Awk has a printf function for producing 

formatted output
– printf has the form

• printf( format, val1, val2, val3, … )

{ printf(“total pay for %s is $%.2f\n”,
         $1, $2 * $3) }

– When using printf, formatting is under your control so 
no automatic spaces or newlines are provided by awk.  
You have to insert them yourself.

{ printf(“%-8s %6.2f\n”, $1, $2 * $3 ) }



  

Selection
• Awk patterns are good for selecting specific lines 

from the input for further processing
– Selection by Comparison

• $2 >= 5 { print }

– Selection by Computation
• $2 * $3 > 50 { printf(“%6.2f for %s\n”,
                      $2 * $3, $1) }

– Selection by Text Content
• $1 == "NYU"
• /NYU/

– Combinations of Patterns
• $2 >= 4 || $3 >= 20

– Selection by Line Number
• NR >= 10 && NR <= 20



  

Arithmetic and variables

• awk variables take on numeric (floating 
point) or string values according to context.

• User-defined variables do not need to be 
declared.

• By default, user-defined variables are 
initialized to the null string which has 
numerical value 0.



  

Computing with AWK

• Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked

          more than 15 hrs”}

• Computing Sums and Averages is also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
      print “total pay is”, pay
      print “average pay is”, pay/NR
    }



  

Handling Text

• One major advantage of Awk is its ability to handle 
strings as easily as many languages handle 
numbers

• Awk variables can hold strings of characters as 
well as numbers, and Awk conveniently translates 
back and forth as needed

• This program finds the employee who is paid the 
most per hour:

      # Fields: employee, payrate
    $2 > maxrate { maxrate = $2; maxemp = $1 }

      END { print “highest hourly rate:”,
             maxrate, “for”, maxemp }



  

String Manipulation

• String Concatenation
– New strings can be created by combining old ones

         { names = names $1 " " }

END { print names }

• Printing the Last Input Line
– Although NR retains its value after the last input line 

has been read, $0 does not

         { last = $0 }

END { print last }



  

Built-in Functions

• awk contains a number of built-in functions.  
length is one of them.

• Counting Lines, Words, and Characters using 
length (a poor man’s wc)

         { nc = nc + length($0) + length(RS)
       nw = nw + NF
     }
END { print NR, "lines,", nw, "words,", nc, 

      "characters" }

• substr(s, m, n) produces the substring of s that 
begins at position m and is at most n characters 
long.



  

Control Flow Statements

• awk provides several control flow statements for 
making decisions and writing loops

• If-Then-Else
        $2 > 6 { n = n + 1; pay = pay + $2 * $3 }

END { if (n > 0)
          print n, "employees, total pay is",

pay, "average pay is", pay/n
      else
          print "no employees are paid more

than $6/hour"
    }



  

Loop Control

• While
# interest1 - compute compound interest

#   input: amount, rate, years

#   output: compound value at end of each year

{  i = 1

while (i <= $3) {

printf(“\t%.2f\n”, $1 * (1 + $2) ^ i)

i = i + 1

}

}



  

Do-While Loops

• Do While

do {

statement1

}

while (expression)



  

For statements

• For
# interest2 - compute compound interest
#   input: amount, rate, years

#   output: compound value at end of each year

{ for (i = 1; i <= $3; i = i + 1)

printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

 



  

Arrays

• Array elements are not declared

• Array subscripts can have any value:
– Numbers

– Strings!  (associative arrays)

• Examples
– arr[3]="value"
– grade["Korn"]=40.3



  

Array Example

# reverse - print input in reverse order by line

{ line[NR] = $0 }   # remember each line

 

END {    
for (i=NR; (i > 0); i=i-1) {
    print line[i]
}

  }



  

Useful One (or so)-liners

• END { print NR }
• NR == 10
• { print $NF }
•   { field = $NF }

  END { print field }
• NF > 4
• $NF > 4
•   { nf = nf + NF }

    END { print nf }   



  

More One-liners

• /Jeff/ { nlines = nlines + 1 }

   END   { print nlines }
• $1 > max { max = $1; maxline = $0 }

   END     { print max, maxline }
• NF > 0
• length($0) > 80
• { print NF, $0}
• { print $2, $1 }
• { temp = $1; $1 = $2; $2 = temp; print }
• { $2 = ""; print }



  

Even More One-liners
• { for (i = NF; i > 0; i = i - 1) 
printf(“%s “, $i)

    printf(“\n”)
  }
• { sum = 0
    for (i = 1; i <= NF; i = i + 1)
sum = sum + $i 

    print sum
   }
• { for (i = 1; i <= NF; i = i + 1)

sum = sum $i }
    END { print sum }
}



  

Awk Variables

• $0, $1, $2, $NF

• NR - Number of records processed

• NF - Number of fields in current record

• FILENAME - name of current input file

• FS - Field separator, space or TAB by default

• OFS - Output field separator, space by default

• ARGC/ARGV - Argument Count, Argument Value 
array
– Used to get arguments from the command line



  

Operators
• = assignment operator; sets a variable equal to a 

value or string
• == equality operator; returns TRUE is both sides 

are equal
• != inverse equality operator
• && logical AND
• || logical OR
• ! logical NOT
• <, >, <=, >= relational operators
• +, -, /, *, %, ^
• String concatenation



  

Built-In Functions
• Arithmetic

– sin, cos, atan, exp, int, log, rand, sqrt

• String
– length, substitution, find substrings, split strings

• Output
– print, printf, print and printf to file

• Special
– system - executes a Unix command

• system(“clear”) to clear the screen
• Note double quotes around the Unix command

– exit - stop reading input and go immediately to the END 
pattern-action pair if it exists, otherwise exit the script 



  

More Information

on the website
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Shell Scripting



  

What is a shell?

• The user interface to the operating system
• Functionality:

– Execute other programs
– Manage files
– Manage processes

• Full programming language
• A program like any other

– This is why there are so many shells



  

Shell History

• There are 
many choices 
for shells

• Shell features 
evolved as 
UNIX grew



  

Shell Scripts

• A shell script is a regular text file that contains 
shell or UNIX commands
– Before running it, it must have execute 

permission:
•chmod +x filename

• A script can be invoked as:
– ksh name [ arg … ]
– ksh < name [ args … ]
– name [ arg …]



  

Shell Scripts
• When a script is run, the kernel determines which 

shell it is written for by examining the first line of 
the script

– If 1st line starts with #!pathname-of-shell, 
then it invokes pathname and sends the script as 
an argument to be interpreted

– If #! is not specified, the current shell assumes it 
is a script in its own language

• leads to problems



  

Simple Example

#!/bin/sh

echo Hello World



  

Scripting vs. C 
Programming

• Advantages of shell scripts
– Easy to work with other programs
– Easy to work with files
– Easy to work with strings
– Great for prototyping.  No compilation

• Disadvantages of shell scripts
– Slow
– Not well suited for algorithms & data structures



  

The C Shell

• C-like syntax (uses { }'s)
• Inadequate for scripting

– Poor control over file descriptors
– Can't mix flow control and commands
– Difficult quoting "I say \"hello\"" doesn't work
– Can only trap SIGINT

• Survives mostly because of interactive features.
– Job control
– Command history
– Command line editing, with arrow keys (tcsh)



  

The Bourne Shell

• Slight differences on various systems

• Evolved into standardized POSIX shell

• Scripts will also run with ksh, bash

• Influenced by ALGOL





  

Complex Commands

• The shell's power is in its ability to hook 
commands together

• We've seen one example of this so far with 
pipelines:

• We will see others

cut –d: -f2 /etc/passwd | sort | uniq



  

Redirection of input/ouput

• Redirection of output: >
– example:$ ls -l > my_files

• Redirection of input:  <
– example: $ cat <input.data

• Append output: >>
– example: $ date >> logfile

• Arbitrary file descriptor redirection: fd>
– example: $ ls –l 2> error_log



  

Multiple Redirection

• cmd 2>file
– send standard error to file
– standard output remains the same

• cmd > file 2>&1
–  send both standard error and standard output to file

• cmd > file1 2>file2
– send standard output to file1
– send standard error to file2



  

Here Documents
• Shell provides alternative ways of supplying 

standard input to commands (an anonymous file)
• Shell allows in-line input redirection using << 

called here documents
• format
command [arg(s)] << arbitrary-delimiter
command input
 :
 :
arbitrary-delimiter
• arbitrary-delimiter should be a string that does 

not appear in text



  

Here Document Example

#!/bin/sh

mail steinbrenner@yankees.com <<EOT
  You guys really blew it in
  yesterday.  Good luck tomorrow.
  Yours,
  $USER
  EOT



  

Shell Variables

• Write

name=value

• Read:  $var

• Turn local variable into environment:

    export variable



  

Variable Example

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE



  

Environmental Variables

NAME MEANING

$HOME Absolute pathname of your home directory

$PATH A list of directories to search for

$MAIL Absolute pathname to mailbox

$USER Your login name

$SHELL Absolute pathname of login shell

$TERM Type of your terminal

$PS1 Prompt



  

Parameters

• A parameter is one of the following:
– A variable
– A positional parameter, starting at 1 (next slide)
– A special parameter

• To get the value of a parameter: ${param}
– Can be part of a word  (abc${foo}def)
– Works in double quotes

• The {} can be omitted for simple variables, special 
parameters, and single digit positional parameters.



  

Positional Parameters

• The arguments to a shell script
– $1, $2, $3 …

• The arguments to a shell function
• Arguments to the set built-in command

– set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
– shift 2

• $1=a, $2=test

• Parameter 0 is the name of the shell or the shell script.



  

Example with Parameters

#!/bin/sh

# Parameter 1: word
# Parameter 2: file
grep $1 $2 | wc –l

$ countlines ing /usr/dict/words
3277



  

Special Parameters

• $# Number of positional parameters
• $-           Options currently in effect
• $? Exit value of last executed command
• $$ Process number of current process
• $! Process number of background process
• $* All arguments on command line
• "$@" All arguments on command line 

individually quoted "$1" "$2" ...



  

Command Substitution

• Used to turn the output of a command into a string

• Used to create arguments or variables

• Command is placed with grave accents ` ` to 
capture the output of command

$ date
Wed Sep 25 14:40:56 EDT 2001
$ NOW=`date`

$ sed "s/oldtext/`ls | head -1`/g"

$ PATH=`myscript`:$PATH
$ grep `generate_regexp` myfile.c



  

File name expansion

• Wildcards (patterns)

* matches any string of characters

? matches any single character

[list] matches any character in list

[lower-upper] matches any character in range 
lower-upper inclusive

[!list] matches any character not in list



  

File Expansion

• If multiple matches, all are returned
and treated as separate arguments:

• Handled by the shell (exec never sees the wildcards)
– argv[0]: /bin/cat

– argv[1]: file1

– argv[2]: file2

$ /bin/ls
file1 file2
$ cat file1
a
$ cat file2
b
$ cat file*
a
b

NOT
– argv[0]: /bin/cat

– argv[1]: file*



  

Compound Commands

• Multiple commands
– Separated by semicolon

• Command groupings
– pipelines

• Boolean operators
• Subshell

– ( command1; command2 ) > file

• Control structures



  

Boolean Operators

• Exit value of a program (exit system call) is a number
– 0 means success

– anything else is a failure code

• cmd1 && cmd2
– executes cmd2 if cmd1 is successful

• cmd1 || cmd2
– executes cmd2 if cmd1 is not successful

$ ls bad_file > /dev/null && date
$ ls bad_file > /dev/null || date
Wed Sep 26 07:43:23 2001



  

Control Structures

if expression
then

command1
else

command2
fi



  

What is an expression?

• Any UNIX command.  Evaluates to true if the exit 
code is 0, false if the exit code > 0

• Special command /bin/test exists that does most 
common expressions
– String compare
– Numeric comparison
– Check file properties

• /bin/[ is linked to /bin/test for syntactic 
sugar

• Good example UNIX tools working together



  

Examples
if test "$USER" = "kornj"
then

echo "I hate you"
else

echo "I like you"
fi

if [ -f /tmp/stuff ] && [ `wc –l < /tmp/stuff` -gt 10 ] 

then
echo "The file has more than 10 lines in it"

else
echo "The file is nonexistent or small"

fi



  

test Summary
• String based tests
-z string Length of string is 0
-n string Length of string is not 0
string1 = string2 Strings are identical
string1 != string2 Strings differ
string String is not NULL

• Numeric tests
int1 –eq int2 First int equal to second
int1 –ne int2 First int not equal to second
-gt, -ge, -lt, -le greater, greater/equal, less, less/equal

• File tests
-r file File exists and is readable
-w file File exists and is writable
-f file File is regular file
-d file File is directory
-s file file exists and is not empty

• Logic
! Negate result of expression
-a, -o and operator, or operator
( expr ) groups an expression



  

Control Structures 
Summary

•if … then … fi
•while … done
•until … do … done
•for … do … done
•case … in … esac
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