
1

Lecture 4

Regular Expressions:

grep, sed and awk

Previously

• Basic UNIX Commands
– Files: rm, cp, mv, ls
– Processes: ps, kill

• Unix Filters
– cat, head, tail, tee, wc
– cut, paste
– find
– sort, uniq

Today

• Regular Expressions
– Allow you to search for text in files
– grep command

• Stream manipulation:
– sed
– awk?

• But first, one command we didn’t cover last time…

tr: TRanslate Characters
• Copies standard input to standard output with

substitution or deletion of selected characters

• Syntax: tr [-cds] [string1] [string2]
• -d delete all input characters contained in string1

• -c complements the characters in string1 with respect
 to the entire ASCII character set

• -s squeeze all strings of repeated output characters
that are in string2 to single characters

tr (continued)
• tr reads from standard input.

– Any character that does not match a character in string1
is passed to standard output unchanged

– Any character that does match a character in string1 is
translated into the corresponding character in string2
and then passed to standard output

• Examples
– tr s z replaces all instances of s with z
– tr so zx replaces all instances of s with z and o

with x
– tr a-z A-Z replaces all lower case characters with

upper case characters
– tr –d a-c deletes all a-c characters

tr uses

• Change delimiter
tr ‘|’ ‘:’

• Rewrite numbers
tr ,. .,

• Import DOS files
tr –d ’\r’ < dos_file

• Find ASCII in a binary file
tr –cd ’\n[a-zA-Z0-9]’ < binary_file

2

Regular Expressions

What Is a Regular Expression?

• A regular expression (regex) describes a set of
possible input strings.

• Regular expressions descend from a fundamental
concept in Computer Science called finite
automata theory

• Regular expressions are endemic to Unix
– vi, ed, sed, and emacs
– awk, tcl, perl and Python
– grep, egrep, fgrep
– compilers

Regular Expressions

• The simplest regular expressions are a
string of literal characters to match.

• The string matches the regular expression if
it contains the substring.

UNIX Tools rocks.

match

UNIX Tools sucks.

match

UNIX Tools is okay.
no match

regular expression c k s

Regular Expressions

• A regular expression can match a string in
more than one place.

Scrapple from the apple.

match 1 match 2

regular expression a p p l e

Regular Expressions

• The . regular expression can be used to
match any character.

For me to poop on.

match 1 match 2

regular expression o .

3

Character Classes

• Character classes [] can be used to match
any specific set of characters.

beat a brat on a boat

match 1 match 2

regular expression b [eor] a t

match 3

Negated Character Classes

• Character classes can be negated with the
[^] syntax.

beat a brat on a boat

match

regular expression b [^eo] a t

More About Character Classes
– [aeiou] will match any of the characters a, e, i, o,

or u
– [kK]orn will match korn or Korn

• Ranges can also be specified in character classes
– [1-9] is the same as [123456789]
– [abcde] is equivalent to [a-e]
– You can also combine multiple ranges

•[abcde123456789] is equivalent to [a-e1-9]
– Note that the - character has a special meaning in a

character class but only if it is used within a range,
[-123] would match the characters -, 1, 2, or 3

Named Character Classes

• Commonly used character classes can be
referred to by name (alpha, lower, upper,
alnum, digit, punct, cntrl)

• Syntax [:name:]
– [a-zA-Z] [[:alpha:]]
– [a-zA-Z0-9] [[:alnum:]]
– [45a-z] [45[:lower:]]

• Important for portability across languages

Anchors

• Anchors are used to match at the beginning or end
of a line (or both).

• ^ means beginning of the line
• $ means end of the line

beat a brat on a boat

match

regular expression ^ b [eor] a t

regular expression b [eor] a t $

beat a brat on a boat

match

^word

4

Repetition

• The * is used to define zero or more
occurrences of the single regular expression
preceding it.

I got mail, yaaaaaaaaaay!

match

regular expression y a * y

For me to poop on.

match

regular expression o a * o

.*

Repetition Ranges
• Ranges can also be specified

– {n,m} notation can specify a range of
repetitions for the immediately preceding regex

– {n} means exactly n occurrences
– {n,} means at least n occurrences
– {n,m} means at least n occurrences but no

more than m occurrences

• Example:
– .{0,} same as .*
– a{2,} same as aaa*

Subexpressions

• If you want to group part of an expression so that
* applies to more than just the previous character,
use () notation

• Subexpresssions are treated like a single character
– a* matches 0 or more occurrences of a
– abc* matches ab, abc, abcc, abccc, …

– (abc)* matches abc, abcabc, abcabcabc, …

– (abc){2,3} matches abcabc or abcabcabc

grep

• grep comes from the ed (Unix text editor) search
command “global regular expression print” or
g/re/p

• This was such a useful command that it was
written as a standalone utility

• There are two other variants, egrep and fgrep that
comprise the grep family

• grep is the answer to the moments where you
know you want the file that contains a specific
phrase but you can’t remember its name

Family Differences

• grep - uses regular expressions for pattern
matching

• fgrep - file grep, does not use regular expressions,
only matches fixed strings but can get search
strings from a file

• egrep - extended grep, uses a more powerful set of
regular expressions but does not support
backreferencing, generally the fastest member of
the grep family

• agrep – approximate grep; not standard

5

Syntax

• Regular expression concepts we have seen
so far are common to grep and egrep.

• grep and egrep have different syntax
– grep: BREs
– egrep: EREs

• Major syntax differences:
– grep: \(and \), \{ and \}
– egrep: (and), { and }

 Protecting Regex
Metacharacters

• Since many of the special characters used in
regexs also have special meaning to the
shell, it’s a good idea to get in the habit of
single quoting your regexs
– This will protect any special characters from

being operated on by the shell

– If you habitually do it, you won’t have to worry
about when it is necessary

Escaping Special Characters
• Even though we are single quoting our regexs so the

shell won’t interpret the special characters, sometimes
we still want to use an operator as itself

• To do this, we “escape” the character with a \
(backslash)

• Suppose we want to search for the character sequence
‘a*b*’
– Unless we do something special, this will match zero or

more ‘a’s followed by zero or more ‘b’s, not what we want

– ‘a*b*’ will fix this - now the asterisks are treated as
regular characters

Egrep: Alternation

• Regex also provides an alternation character | for
matching one or another subexpression
– (T|Fl)an will match ‘Tan’ or ‘Flan’
– ^(From|Subject): will match the From and

Subject lines of a typical email message
• It matches a beginning of line followed by either the characters

‘From’ or ‘Subject’ followed by a ‘:’

• Subexpressions are used to limit the scope of the
alternation
– At(ten|nine)tion then matches “Attention” or

“Atninetion”, not “Atten” or “ninetion” as would
happen without the parenthesis - Atten|ninetion

Egrep: Repetition Shorthands

• The * (star) has already been seen to specify zero
or more occurrences of the immediately preceding
character

• + (plus) means “one or more”
 abc+d will match ‘abcd’, ‘abccd’, or ‘abccccccd’ but

will not match ‘abd’
 Equivalent to {1,}

Egrep: Repetition Shorthands cont

• The ‘?’ (question mark) specifies an optional character, the
single character that immediately precedes it
 July? will match ‘Jul’ or ‘July’

 Equivalent to {0,1}
 Also equivalent to (Jul|July)

• The *, ?, and + are known as quantifiers because they
specify the quantity of a match

• Quantifiers can also be used with subexpressions
– (a*c)+ will match ‘c’, ‘ac’, ‘aac’ or ‘aacaacac’ but will not

match ‘a’ or a blank line

6

Grep: Backreferences

• Sometimes it is handy to be able to refer to a
match that was made earlier in a regex

• This is done using backreferences
– \n is the backreference specifier, where n is a number

• For example, to find if the first word of a line is
the same as the last:
– ^\([[:alpha:]]\{1,\}\).*\1$
– The \([[:alpha:]]\{1,\}\) matches 1 or more

letters

Practical Regex Examples

• Variable names in C
– [a-zA-Z_][a-zA-Z_0-9]*

• Dollar amount with optional cents
– \$[0-9]+(\.[0-9][0-9])?

• Time of day
– (1[012]|[1-9]):[0-5][0-9] (am|pm)

• HTML headers <h1> <H1> <h2> …
– <[hH][1-4]>

grep Family
• Syntax

grep [-hilnv] [-e expression] [filename]
egrep [-hilnv] [-e expression] [-f filename] [expression]

[filename]
fgrep [-hilnxv] [-e string] [-f filename] [string] [filename]
– -h Do not display filenames
– -i Ignore case
– -l List only filenames containing matching lines
– -n Precede each matching line with its line number
– -v Negate matches
– -x Match whole line only (fgrep only)
– -e expression Specify expression as option
– -f filename Take the regular expression (egrep) or

a list of strings (fgrep) from filename

grep Examples
• grep 'men' GrepMe
• grep 'fo*' GrepMe
• egrep 'fo+' GrepMe
• egrep -n '[Tt]he' GrepMe
• fgrep 'The' GrepMe
• egrep 'NC+[0-9]*A?' GrepMe
• fgrep -f expfile GrepMe

• Find all lines with signed numbers
 $ egrep ’[-+][0-9]+\.?[0-9]*’ *.c

bsearch. c: return -1;
compile. c: strchr("+1-2*3", t-> op)[1] - ’0’, dst,
convert. c: Print integers in a given base 2-16 (default 10)
convert. c: sscanf(argv[i+1], "% d", &base);
strcmp. c: return -1;
strcmp. c: return +1;

• egrep has its limits: For example, it cannot match all lines that
contain a number divisible by 7.

Fun with the Dictionary
• /usr/dict/words contains about 25,000 words

– egrep hh /usr/dict/words
• beachhead
• highhanded
• withheld
• withhold

• egrep as a simple spelling checker: Specify plausible
alternatives you know
egrep "n(ie|ei)ther" /usr/dict/words
neither

• How many words have 3 a’s one letter apart?
– egrep a.a.a /usr/dict/words | wc –l

• 54
– egrep u.u.u /usr/dict/words

• cumulus

Other Notes

• Use /dev/null as an extra file name
– Will print the name of the file that matched

• grep test bigfile
– This is a test.

• grep test /dev/null bigfile
– bigfile:This is a test.

• Return code of grep is useful
– grep fred filename > /dev/null && rm filename

7

x

xyz

Ordinary characters match themselves
(NEWLINES and metacharacters excluded)
Ordinary strings match themselves

\m
^
$
.

[xy^$x]
[^xy^$z]

[a-z]
r*

r1r2

Matches literal character m
Start of line
End of line
Any single character
Any of x, y, ^, $, or z
Any one character other than x, y, ^, $, or z
Any single character in given range
zero or more occurrences of regex r
Matches r1 followed by r2

\(r\)
\n

\{n,m\}

Tagged regular expression, matches r
Set to what matched the nth tagged expression
(n = 1-9)
Repetition

r+
r?

r1|r2
(r1|r2)r3
(r1|r2)*

{n,m}

One or more occurrences of r
Zero or one occurrences of r
Either r1 or r2
Either r1r3 or r2r3
Zero or more occurrences of r1|r2, e.g., r1, r1r1,
r2r1, r1r1r2r1,…)
Repetition

fgrep, grep, egrep

grep, egrep

grep

egrep

This is one line of text
o.*o

input line

regular expression

Quick
Reference

Sed: Stream-oriented, Non-
Interactive, Text Editor

• Look for patterns one line at a time, like grep

• Change lines of the file

• Non-interactive text editor
– Editing commands come in as script

– There is an interactive editor ed which accepts the same
commands

• A Unix filter
– Superset of previously mentioned tools

Conceptual overview

• All editing commands in a sed script are applied in
order to each input line.

• If a command changes the input, subsequent
command address will be applied to the current
(modified) line in the pattern space, not the original
input line.

• The original input file is unchanged (sed is a filter),
and the results are sent to standard output (but can
be redirected to a file).

Sed Architecture

scriptfile

Input

Output

Input line
(Pattern Space)

Hold Space

Scripts
• A script is nothing more than a file of commands
• Each command consists of up to two addresses

and an action, where the address can be a regular
expression or line number.

address action command

address action

address action

address action

address action

script

Scripts (continued)

• As each line of the input file is read, sed reads the
first command of the script and checks the address
against the current input line:
– If there is a match, the command is executed
– If there is no match, the command is ignored
– sed then repeats this action for every command in the

script file

• When it has reached the end of the script, sed
outputs the current line (pattern space) unless
the -n option has been set

8

Sed Flow of Control
• sed then reads the next line in the input file and

restarts from the beginning of the script file
• All commands in the script file are compared to,

and potentially act on, all lines in the input file

. . .cmd 1 cmd ncmd 2

script

input

output
output

only without -n

print cmd

sed Commands
• sed commands have the general form

– [address[, address]][!]command [arguments]

• sed copies each input line into a pattern space
– If the address of the command matches the line in the

pattern space, the command is applied to that line
– If the command has no address, it is applied to each line

as it enters pattern space
– If a command changes the line in pattern space,

subsequent commands operate on the modified line

• When all commands have been read, the line in
pattern space is written to standard output and a
new line is read into pattern space

Addressing

• An address can be either a line number or a
pattern, enclosed in slashes (/pattern/)

• A pattern is described using regular
expressions (BREs, as in grep)

• If no pattern is specified, the command will
be applied to all lines of the input file

• To refer to the last line: $

Addressing (continued)

• Most commands will accept two addresses
– If only one address is given, the command operates

only on that line
– If two comma separated addresses are given, then the

command operates on a range of lines between the first
and second address, inclusively

• The ! operator can be used to negate an address,
ie; address!command causes command to be
applied to all lines that do not match address

Commands

• command is a single letter
• Example: Deletion: d
•[address1][,address2]d

– Delete the addressed line(s) from the pattern
space; line(s) not passed to standard output.

– A new line of input is read and editing resumes
with the first command of the script.

Address and Command Examples

• d deletes the all lines
• 6d deletes line 6
• /^$/d deletes all blank lines
• 1,10d deletes lines 1 through 10
• 1,/^$/d deletes from line 1 through the first blank line
• /^$/,$d deletes from the first blank line through

the last line of the file
• /^$/,10d deletes from the first blank line through line 10
• /^ya*y/,/[0-9]$/d deletes from the first line that begins

with yay, yaay, yaaay, etc. through
the first line that ends with a digit

9

Multiple Commands

• Braces {} can be used to apply multiple commands to an
address

[/pattern/[,/pattern/]]{
command1
command2
command3
}

• Strange syntax:
– The opening brace must be the last character on a line
– The closing brace must be on a line by itself
– Make sure there are no spaces following the braces

Sed Commands

• Although sed contains many editing commands,
we are only going to cover the following subset:

• p - print
• r - read
• w - write
• y - transform
• q - quit

• s - substitute
• a - append
• i - insert
• c - change
• d - delete

sed Syntax
• Syntax: sed [-n] [-e] [‘command’] [file…]

 sed [-n] [-f scriptfile] [file…]
– -n - only print lines specified with the print command

(or the ‘p’ flag of the substitute (‘s’) command)

– -f scriptfile - next argument is a filename containing
editing commands

– -e command - the next argument is an editing command
rather than a filename, useful if multiple commands are
specified

– If the first line of a scriptfile is “#n”, sed acts as though
-n had been specified

Print

• The Print command (p) can be used to force the
pattern space to be output, useful if the -n option
has been specified

• Syntax: [address1[,address2]]p
• Note: if the -n or #n option has not been specified,
p will cause the line to be output twice!

• Examples:
1,5p will display lines 1 through 5
/^$/,$p will display the lines from the first
blank line through the last line of the file

Substitute

• Syntax:
[address(es)]s/pattern/replacement/[flags]
– pattern - search pattern

– replacement - replacement string for pattern

– flags - optionally any of the following
• n a number from 1 to 512 indicating which

occurrence of pattern should be
replaced

• g global, replace all occurrences of pattern
in pattern space

• p print contents of pattern space

Substitute Examples

• s/Puff Daddy/P. Diddy/
– Substitute P. Diddy for the first occurrence of Puff Daddy in

pattern space

• s/Tom/Dick/2
– Substitutes Dick for the second occurrence of Tom in the

pattern space

• s/wood/plastic/p
– Substitutes plastic for the first occurrence of wood and

outputs (prints) pattern space

10

Replacement Patterns

• Substitute can use several special characters
in the replacement string
– & - replaced by the entire string matched in the

regular expression for pattern
– \n - replaced by the nth substring (or

subexpression) previously specified using “\(“
and “\)”

– \ - used to escape the ampersand (&) and the
backslash (\)

Replacement Pattern Examples
"the UNIX operating system …"
s/.NI./wonderful &/
"the wonderful UNIX operating system …"

cat test1
first:second
one:two
sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one

sed 's/\([[:alpha:]]\)\([^ \n]*\)/\2\1ay/g'
– Pig Latin ("unix is fun" -> "nixuay siay unfay")

Append, Insert, and Change

• Syntax for these commands is a little strange
because they must be specified on multiple lines

• append [address]a\
 text
• insert [address]i\
 text
• change [address(es)]c\
 text
• append/insert for single lines only, not range

Append and Insert
• Append places text after the current line in pattern space
• Insert places text before the current line in pattern space

– Each of these commands requires a \ following it.
text must begin on the next line.

– If text begins with whitespace, sed will discard it
unless you start the line with a \

• Example:
/<Insert Text Here>/i\

 Line 1 of inserted text\
 \ Line 2 of inserted text
 would leave the following in the pattern space

Line 1 of inserted text
 Line 2 of inserted text

<Insert Text Here>

Change

• Unlike Insert and Append, Change can be applied
to either a single line address or a range of
addresses

• When applied to a range, the entire range is
replaced by text specified with change, not each
line
– Exception: If the Change command is executed with

other commands enclosed in { } that act on a range of
lines, each line will be replaced with text

• No subsequent editing allowed

Change Examples

• Remove mail headers, ie;
the address specifies a range
of lines beginning with a
line that begins with From
until the first blank line.
– The first example replaces all

lines with a single occurrence
of <Mail Header Removed>.

– The second example replaces
each line with <Mail Header
Removed>

/^From /,/^$/c\
 <Mail Headers Removed>

/^From /,/^$/{
s/^From //p
c\
<Mail Header Removed>
}

11

Using !

• If an address is followed by an exclamation point
(!), the associated command is applied to all lines
that don’t match the address or address range

• Examples:
 1,5!d would delete all lines except 1 through 5
 /black/!s/cow/horse/ would substitute

“horse” for “cow” on all lines except those that
contained “black”

“The brown cow” -> “The brown horse”
“The black cow” -> “The black cow”

Transform
• The Transform command (y) operates like tr, it

does a one-to-one or character-to-character
replacement

• Transform accepts zero, one or two addresses
• [address[,address]]y/abc/xyz/

– every a within the specified address(es) is transformed
to an x. The same is true for b to y and c to z

– y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNO
PQRSTUVWXYZ/ changes all lower case characters on the
addressed line to upper case

– If you only want to transform specific characters (or a
word) in the line, it is much more difficult and requires
use of the hold space

Pattern and Hold spaces

• Pattern space: Workspace or temporary
buffer where a single line of input is held
while the editing commands are applied

• Hold space: Secondary temporary buffer
for temporary storage only

Pattern

Hold

in

out

h, H, g, G

Quit
• Quit causes sed to stop reading new input lines

and stop sending them to standard output
• It takes at most a single line address

– Once a line matching the address is reached, the script
will be terminated

– This can be used to save time when you only want to
process some portion of the beginning of a file

• Example: to print the first 100 lines of a file (like
head) use:
– sed '100q' filename
– sed will, by default, send the first 100 lines of filename

to standard output and then quit processing

Sed Advantages

• Regular expressions

• Fast

• Concise

Sed Drawbacks

• Hard to remember text from one line to
another

• Not possible to go backward in the file

• No way to do forward references like
/..../+1

• No facilities to manipulate numbers

• Cumbersome syntax

12

Awk

Programmable Filters

Aho Weinberger Kernighan

Why is it called AWK?

Awk Introduction
• awk's purpose: A general purpose programmable

filter that handles text (strings) as easily as numbers
– This makes awk one of the most powerful of the Unix

utilities

• awk processes fields while sed only processes lines
• nawk (new awk) is the new standard for awk

– Designed to facilitate large awk programs
– gawk is a free nawk clone from GNU

• awk gets it’s input from
– files
– redirection and pipes
– directly from standard input

AWK Highlights
• A programming language for handling common

data manipulation tasks with only a few lines of
code

• awk is a pattern-action language, like sed
• The language looks a little like C but

automatically handles input, field splitting,
initialization, and memory management
– Built-in string and number data types
– No variable type declarations

• awk is a great prototyping language
– Start with a few lines and keep adding until it does what

you want

Awk Features over Sed

• Convenient numeric processing

• Variables and control flow in the actions

• Convenient way of accessing fields within
lines

• Flexible printing
• Built-in arithmetic and string functions

• C-like syntax

BEGIN {action}

pattern {action}

pattern {action}

 .

 .

 .

pattern { action}

END {action}

Structure of an AWK Program

• An awk program consists of:
– An optional BEGIN segment

• For processing to execute prior to
reading input

– pattern - action pairs
• Processing for input data

• For each pattern matched, the
corresponding action is taken

– An optional END segment
• Processing after end of input data

13

Running an AWK Program

• There are several ways to run an Awk program
– awk 'program' input_file(s)

• program and input files are provided as command-line
arguments

– awk 'program'
• program is a command-line argument; input is taken from

standard input (yes, awk is a filter!)

– awk -f program_file input_files
• program is read from a file

Patterns and Actions

• Search a set of files for patterns.

• Perform specified actions upon lines or
fields that contain instances of patterns.

• Does not alter input files.

• Process one input line at a time
• This is similar to sed

Pattern-Action Structure
• Every program statement has to have a pattern or an

action or both

• Default pattern is to match all lines

• Default action is to print current record

• Patterns are simply listed; actions are enclosed in { }

• awk scans a sequence of input lines, or records, one
by one, searching for lines that match the pattern
– Meaning of match depends on the pattern

Patterns

• Selector that determines whether action is to be
executed

• pattern can be:
– the special token BEGIN or END
– regular expressions (enclosed with //)
– arithmetic relation operators
– string-valued expressions
– arbitrary combination of the above

• /NYU/ matches if the string “NYU” is in the record
• x > 0 matches if the condition is true
• /NYU/ && (name == "UNIX Tools")

BEGIN and END patterns

• BEGIN and END provide a way to gain
control before and after processing, for
initialization and wrap-up.
– BEGIN: actions are performed before the first

input line is read.

– END: actions are done after the last input line
has been processed.

Actions

• action may include a list of one or more C like
statements, as well as arithmetic and string
expressions and assignments and multiple output
streams.

• action is performed on every line that matches
pattern.
– If pattern is not provided, action is performed on every input line

– If action is not provided, all matching lines are sent to standard output.

• Since patterns and actions are optional, actions must
be enclosed in braces to distinguish them from
pattern.

14

An Example

ls | awk '
BEGIN { print "List of html files:" }
/\.html$/ { print }
END { print "There you go!" }
'

List of html files:
index.html
as1.html
as2.html
There you go!

Variables

• awk scripts can define and use variables
BEGIN { sum = 0 }
{ sum ++ }
END { print sum }

• Some variables are predefined

Records

• Default record separator is newline
– By default, awk processes its input a line at a

time.

• Could be any other regular expression.
• RS: record separator

– Can be changed in BEGIN action

• NR is the variable whose value is the
number of the current record.

Fields

• Each input line is split into fields.
– FS: field separator: default is whitespace (1 or more

spaces or tabs)
– awk -Fc option sets FS to the character c

• Can also be changed in BEGIN

– $0 is the entire line

– $1 is the first field, $2 is the second field, ….

• Only fields begin with $, variables are unadorned

Simple Output From AWK

• Printing Every Line
– If an action has no pattern, the action is performed to all

input lines
• { print } will print all input lines to standard out
• { print $0 } will do the same thing

• Printing Certain Fields
– Multiple items can be printed on the same output line

with a single print statement
– { print $1, $3 }
– Expressions separated by a comma are, by default,

separated by a single space when output

Output (continued)

• NF, the Number of Fields
– Any valid expression can be used after a $ to indicate

the contents of a particular field
– One built-in expression is NF, or Number of Fields
– { print NF, $1, $NF } will print the number of

fields, the first field, and the last field in the current
record

– { print $(NF-2) } prints the third to last field

• Computing and Printing
– You can also do computations on the field values and

include the results in your output
– { print $1, $2 * $3 }

15

Output (continued)

• Printing Line Numbers
– The built-in variable NR can be used to print line

numbers
– { print NR, $0 } will print each line prefixed with

its line number

• Putting Text in the Output
– You can also add other text to the output besides what

is in the current record
– { print "total pay for", $1, "is", $2 * $3 }

– Note that the inserted text needs to be surrounded by
double quotes

Fancier Output

• Lining Up Fields
– Like C, Awk has a printf function for producing

formatted output
– printf has the form

• printf(format, val1, val2, val3, …)

{ printf(“total pay for %s is $%.2f\n”,
 $1, $2 * $3) }

– When using printf, formatting is under your control so
no automatic spaces or newlines are provided by awk.
You have to insert them yourself.
{ printf(“%-8s %6.2f\n”, $1, $2 * $3) }

Selection
• Awk patterns are good for selecting specific lines

from the input for further processing
– Selection by Comparison

• $2 >= 5 { print }

– Selection by Computation
• $2 * $3 > 50 { printf(“%6.2f for %s\n”,
 $2 * $3, $1) }

– Selection by Text Content
• $1 == "NYU"
• /NYU/

– Combinations of Patterns
• $2 >= 4 || $3 >= 20

– Selection by Line Number
• NR >= 10 && NR <= 20

Arithmetic and variables

• awk variables take on numeric (floating
point) or string values according to context.

• User-defined variables are unadorned (they
need not be declared).

• By default, user-defined variables are
initialized to the null string which has
numerical value 0.

Computing with AWK

• Counting is easy to do with Awk
$3 > 15 { emp = emp + 1}
END { print emp, “employees worked

 more than 15 hrs”}

• Computing Sums and Averages is also simple
{ pay = pay + $2 * $3 }
END { print NR, “employees”
 print “total pay is”, pay
 print “average pay is”, pay/NR
 }

Handling Text

• One major advantage of Awk is its ability to
handle strings as easily as many languages handle
numbers

• Awk variables can hold strings of characters as
well as numbers, and Awk conveniently translates
back and forth as needed

• This program finds the employee who is paid the
most per hour:

 # Fields: employee, payrate
 $2 > maxrate { maxrate = $2; maxemp = $1 }

 END { print “highest hourly rate:”,
 maxrate, “for”, maxemp }

16

String Manipulation

• String Concatenation
– New strings can be created by combining old ones
 { names = names $1 " " }
END { print names }

• Printing the Last Input Line
– Although NR retains its value after the last input line

has been read, $0 does not
 { last = $0 }
END { print last }

Built-in Functions

• awk contains a number of built-in functions.
length is one of them.

• Counting Lines, Words, and Characters using
length (a poor man’s wc)
 { nc = nc + length($0) + 1
 nw = nw + NF
 }
END { print NR, "lines,", nw, "words,", nc,

 "characters" }

• substr(s, m, n) produces the substring of s that
begins at position m and is at most n characters
long.

Control Flow Statements

• awk provides several control flow statements for
making decisions and writing loops

• If-Then-Else
 $2 > 6 { n = n + 1; pay = pay + $2 * $3 }

END { if (n > 0)
 print n, "employees, total pay is",

pay, "average pay is", pay/n
 else
 print "no employees are paid more

than $6/hour"
 }

Loop Control

• While
interest1 - compute compound interest
input: amount, rate, years
output: compound value at end of each year
{ i = 1
while (i <= $3) {

printf(“\t%.2f\n”, $1 * (1 + $2) ^ i)
i = i + 1

}
}

Do-While Loops

• Do While
do {

statement1

}

while (expression)

For statements

• For
interest2 - compute compound interest
input: amount, rate, years
output: compound value at end of each year

{ for (i = 1; i <= $3; i = i + 1)
printf("\t%.2f\n", $1 * (1 + $2) ^ i)

}

17

Arrays

• Array elements are not declared

• Array subscripts can have any value:
– Numbers

– Strings! (associative arrays)

• Examples
– arr[3]="value"
– grade["Korn"]=40.3

Array Example

reverse - print input in reverse order by line

{ line[NR] = $0 } # remember each line

END {
for (i=NR; (i > 0); i=i-1) {
 print line[i]
}

 }

Useful One (or so)-liners

• END { print NR }
• NR == 10
• { print $NF }
• { field = $NF }
 END { print field }

• NF > 4
• $NF > 4
• { nf = nf + NF }
 END { print nf }

More One-liners

• /Jeff/ { nlines = nlines + 1 }
 END { print nlines }
• $1 > max { max = $1; maxline = $0 }
 END { print max, maxline }
• NF > 0
• length($0) > 80
• { print NF, $0}
• { print $2, $1 }
• { temp = $1; $1 = $2; $2 = temp; print }
• { $2 = ""; print }

Even More One-liners
• { for (i = NF; i > 0; i = i - 1)

printf(“%s “, $i)
 printf(“\n”)
 }
• { sum = 0
 for (i = 1; i <= NF; i = i + 1)

sum = sum + $i
 print sum
 }
• { for (i = 1; i <= NF; i = i + 1)

sum = sum $i }
 END { print sum }
}

Awk Variables

• $0, $1, $2, $NF

• NR - Number of records processed

• NF - Number of fields in current record

• FILENAME - name of current input file

• FS - Field separator, space or TAB by default

• OFS - Output field separator, space by default

• ARGC/ARGV - Argument Count, Argument
Value array
– Used to get arguments from the command line

18

Operators
• = assignment operator; sets a variable equal to a

value or string
• == equality operator; returns TRUE is both sides

are equal
• != inverse equality operator
• && logical AND
• || logical OR
• ! logical NOT
• <, >, <=, >= relational operators
• +, -, /, *, %, ^
• String concatenation

Built-In Functions
• Arithmetic

– sin, cos, atan, exp, int, log, rand, sqrt

• String
– length, substitution, find substrings, split strings

• Output
– print, printf, print and printf to file

• Special
– system - executes a Unix command

• system(“clear”) to clear the screen
• Note double quotes around the Unix command

– exit - stop reading input and go immediately to the END
pattern-action pair if it exists, otherwise exit the script

More Information

on the website

