
Abstract 

In this paper, we evaluate the Analysis of Com-
peting Hypotheses (ACH) method using a nor-
mative Bayesian probabilistic framework.  We 
describe the ACH method and present an exam-
ple of how to use it to structure an analytic prob-
lem.  We then show how to represent the same 
analytic problem using Bayesian networks and 
compare the result with that using the ACH 
method.  We discuss how Bayesian networks 
generalize ACH tables and why the added gener-
ality might be important to the analyst for hy-
pothesis management.  Finally, we propose an 
approach for acquiring analytic models that in-
terpret situations and for evaluating hypotheses, 
thereby combining the strengths of ACH and 
Bayesian networks. 

1. Introduction 
In general, an intelligence analysis problem comprises 
three phases: (1) the collection phase, when analysts col-
lect all the evidence pertaining to the problem; (2) the 
analysis phase, when analysts evaluate the evidence and 
generate hypotheses; and (3) the reporting phase, when 
the analysts finalize and submit their results. In particu-
lar, the analysis phase involves the management of hy-
potheses and the application of prior knowledge. We ad-
dress both of these topics in this paper.  

The Analysis of Competing Hypotheses, ACH, is a 
method to aid judgment on important issues requiring 
careful weighing of alternative explanations or conclu-
sions. ACH was proposed by Richards Heuer (Heuer 
1999).  Being an effective process that helps avoid com-
mon analytic pitfalls, ACH is particularly appropriate for 
controversial issues when analysts want to leave an audit 
trail to show what they considered and how they arrived 

at their judgment or assessments.  A software tool based 
on ACH, called ACH0, has been implemented at PARC 
(Pirolli and Good 2004).  

A Bayesian network is a graphical model that encodes 
probabilistic relationships among variables of interest. 
Because the model has both a causal semantics and a 
probabilistic semantics, it is an ideal representation for 
combining data with prior knowledge (which often comes 
in causal form). ACH can be extended by representing its 
matrix as a Bayesian network, enabling Bayes reasoning 
to be used and dependencies among the hypotheses to be 
revealed and represented explicitly for more in-depth 
analysis.  

In this paper, we evaluate ACH using a normative 
Bayesian probabilistic framework. Probabilistic frame-
works are normative, because any numerical approach to 
reasoning under uncertainty that satisfies certain obvious 
requirements “intended to insure consistency with classi-
cal deductive logic and correspondence with common-
sense reasoning is isomorphic to probability theory” 
(VanHorn 2003).  So, probability theory is “a faithful 
guardian of common sense,” and any other approach to 
plausible reasoning must be considered an approxima-
tion, at best, of probability theory (Pearl 1988; DeFinetti 
1974). Bayesian networks represent multivariate prob-
ability distributions.  Their expressiveness and efficiency 
make them and their extension, influence diagrams, the 
decision support systems of choice in situations where 
uncertainty needs to be modeled (Jensen 2001).  

The paper is organized as follows.  The second section 
is a survey or some related work. In the third section, we 
describe the ACH method and present an example of how 
to structure an analytic problem using ACH.  In the 
fourth section, we show how to represent the same ana-
lytic problem using Bayesian networks.  The fifth section 
generalizes the example by comparing ACH with Bayes-
ian networks.  The sixth section contains a discussion of 
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how Bayesian networks generalize ACH tables and why 
the added generality may be important.  The seventh sec-
tion describes a new approach to acquisition of analytic 
models for interpretation of situations and evaluation of 
hypotheses.  The approach combines the strengths of 
ACH and of Bayesian networks. 

2. Related Work 
Different analytical methodologies enable analysts to 
organize and focus their energies during analysis, as 
follows (Nunn 2004): (1) A delphi technique finds 
consensus from a group of subject matter experts; (2) 
Formulaic mode is a statistical approach that assigns each 
course of action (COA) a numeric percentage-based 
probability of adoption; (3) Probability diagrams are 
graphic depictions of relationships and activities; (4) 
Inductive reasoning makes broad assumptions based on 
known facts; (5) Deductive reasoning takes a known 
event and breaks it down to determine the exact events. 
Based on the above methodologies, various analytic tools 
have been developed to assist analysts in accomplishing 
their analysis tasks.  

By combining the concepts from structured 
argumentation and ACH, Cluxton et al. (Cluxton 2004) 
constructed an information visualization tool for 
understanding complex arguments. This tool enables 
analysts to manipulate the hypotheses and their 
associated inference networks by linking evidence with 
hypotheses and setting evidence parameters such as 
relevance and credibility. This tool does not, however, 
capture the analysts’ prior knowledge or provide services 
such as sensitivity analysis and surprise detection by 
probabilistic reasoning.  

In addition to ACH, which is the most widely used, 
other techniques have been suggested for analyzing intel-
ligence problems. The following three alternative analy-
sis techniques focus on understanding how to analyze 
industrial trends and how to add insight to information.  
Although specialized to industrial problems, they might 
be adapted to analysis tasks as competitors to ACH.  
Porter's Five-Forces Analysis  
Michael E. Porter’s Five Forces model (Porter 1998) is 
an approach to analyzing industrial structure based on 
five competitive forces acting in an industry or a sub-
industry: threat of entry, threat of substitution, bargaining 
power of buyers, bargaining power of suppliers, and ri-
valry among current competitors. Based on the informa-
tion derived from application of Five Forces Analysis, 
management can decide how to influence or exploit par-
ticular characteristics for their industry. However, the 
model has some limitations in today’s market environ-
ments, because it does not take into account new business 
models and the dynamics of markets.  A similar analysis 
technique, substituting analytical task dynamics for the 
competitive forces, could make this methodology usable 
by intelligence analysts. 
 
 

1. Win-Loss Analysis  
Win-Loss Analysis is a business-to-business research 
tool that attempts to provide high-quality information 
quickly and cost-effectively, targeting the specific people 
that make purchasing decisions. It impacts the sales proc-
ess at every point and provides actionable insight from a 
historical as well as a predictive viewpoint. By obtaining 
reliable and unbiased feedback from recent sales con-
tacts, sales representatives can refine their techniques, 
learn how to effectively target a client’s needs and the 
appropriate decision makers, and place the company in 
the best possible light. 
Unfortunately, actionable and accurate win-loss data is 
difficult to obtain by a single entity. Unbiased, third party 
win-loss data collection and analysis, a comprehensive 
methodology for uncovering the root cause of wins-
losses, and actionable recommendations to improve the 
resultant win percentage remain active areas for further 
development. Most of the literature on win-loss analysis 
is in the form of white papers, such as (Win-Loss, 2005). 

2. Scenario Planning 
Scenario Planning is a model for learning about the fu-
ture in which a corporate strategy is formed by drawing a 
small number of scenarios, i.e., stories about how the 
future may unfold, and showing how these might affect 
an issue that confronts the corporation. It works by un-
derstanding the nature and impact of the most uncertain 
and important driving forces affecting the future. 
Scenario Planning is most widely used as a strategic 
management tool, but it is also used for enabling group 
discussion about a common future (Value-Based Man-
agement, 2005).  Being a group process that encourages 
knowledge exchange and development of mutual deeper 
understanding of central issues important to the future of 
the business, Scenario Planning’s goal is to craft a num-
ber of diverging stories by extrapolating uncertain and 
heavily influencing driving forces.  However, a fairly 
complex set of attributes might have to be determined in 
advance, which limits the extensive application of Sce-
nario Planning (Bradley et al. 1977). 

3. The ACH Approach and Its Use 
One way that some analysts go about their business is via 
a satisficing strategy, whose principal weakness is the 
failure to recognize that most of the evidence for the sin-
gle hypothesis chosen might also be consistent with other 
alternatives not been refuted. However, simultaneous 
evaluation of competing hypotheses is difficult to carry 
out for most people. Fortunately, with the help of ACH, 
that task is accomplished much more easily (Heuer 
1999). The following description outlines the steps taken 
in ACH. 
1. Identify the possible hypotheses to be considered. 

Make a list of significant evidence and arguments 
for and against each hypothesis. 

2. Build a matrix with hypotheses across the top and 
the evidence down the side, and analyze the diag-
nostic value of each piece of evidence with respect 



to each hypothesis. Refine the matrix and repeat this 
step when necessary. 

3. Draw tentative conclusions about the relative likeli-
hood of each hypothesis by trying to disprove the 
hypotheses instead of proving them. 

4. Analyze the sensitivity of each conclusion in step 3 
to a few critical items of evidence, then report final 
conclusions by discussing the relative likelihood of 
all hypotheses rather than the most likely one, and 
identify milestones for future observation that may 
indicate events are taking a different course than ex-
pected. 

While there is no guarantee that ACH will produce a 
correct assessment, it does provide an appropriate proc-
ess of analysis through which the odds of getting the 
right answer increase greatly.  

Throughout the rest of the paper, we use a fictitious ex-
ample. We imagine that an analyst who is a specialist on 
terrorist activities related to the oil infrastructure of Iraq 
and Iran has to evaluate hypotheses in the Abadan region 
of Iran.  The interest in evaluating the hypotheses is high, 
because of the recent interception of a message between 
terrorists.  We emphasize that this is a fictitious example, 
devised to illustrate our techniques.  
Question: Will terrorists try to create conflict in Iran by 
attacking the oil infrastructures in Abadan region? 
Hypotheses: 
H1: Terrorists will bomb the oil refineries in Abadan. 
H2: Terrorists will bomb the oil pipelines in Abadan. 
H3: Terrorists will bomb the oil wells in Abadan. 
H4: Terrorists will bomb the oil facilities in Shiraz.  
H5: Terrorists will not launch an attack. 
Evidence (fictitious for this example): 
E1: A phone wiretap on a suspected terrorist cell in Bei-
rut records a discussion about crippling the Iranian econ-
omy by destroying oil production facilities within the 
Abadan region. 
E2: The oil refinery in Abadan can produce 0.37 million 
barrel per day. Oil is transported through pipeline. 
E3: the oil refinery in Shiraz can produce 0.04 million 
barrel per day.  
E4: There is an oil pipeline with from Abadan to Basra, 
which crosses the border. The capacity of this pipeline is 
over 0.2 million barrel per day. 
E5: Historical analysis allows us to conclude that the 
affected oil industry will cripple the Iranian economy, 
which will lead to the conflict with its neighbors. 
E6: The area near a border is easier for terrorist to infil-
trate.  
E7: Terrorists prefer a target that is near a road. 
The preceding question, hypotheses, and items of evi-
dence lead to the ACH matrix presented in the following 
table. 
 
 
 
 
 

Table 1: An ACH Matrix 
 H1 H2 H3 H4 H5 
E1 + + + - - 
E2 + + + - - 
E3 - - - + - 
E4 + + - - - 
E5 + + + + - 
E6 - + - - - 
E7 - - - - - 

4. Bayesian Network Representation of 
ACH Tables 

Bayesian networks are a space-efficient representation of 
multivariate probability distributions that exploits inde-
pendence information and supports the time-efficient 
computation of posterior probabilities.  The expressive-
ness and efficiency of Bayesian networks make them the 
decision support systems of choice in situations where 
uncertainty needs to be modeled (Jensen 2001). 

More precisely, a Bayesian network (Pearl 1988; Nea-
politan 1990; Jensen 2001) consists of a directed acyclic 
graph (DAG), called a Bayesian network structure, prior 
marginal probability tables for the nodes in the DAG that 
have no parents, and conditional probability tables for the 
nodes in the DAG given their parents.  The network and 
the probability tables define a joint probability distribu-
tion on all variables corresponding to the nodes, with the 
defining property that the conditional probability of any 
variable v given any set of variables that includes only 
the parents of v and any subset of nodes that are not de-
scendant of v is equal to the conditional probability of v 
given only its parents.  

From this property, it follows that the joint probability 
of the variables in a Bayesian network decomposes in a 
multiplicative fashion; more precisely, if V is the set of 
the nodes in the DAG, the following equality (the chain 
rule for Bayesian networks) holds: 

∏ ∈
=

Vv
vparentsvPVP )).(|()(  In turn, this decom-

position allows for the very efficient computation of 
marginal posterior probabilities upon observation of evi-
dence.  
 
 
 
 
 
 
 
 
 

 
Figure 1: A fictitious microscopic model of mental 
retardation. 

We illustrate this definition with a fictitious example 
from the medical domain of mental retardation in infants. 
See (Mani et al. 1997, 2005) for details on a full-scale 
application of Bayesian networks in this domain. The 



Bayesian network structure of Figure 1 illustrates a situa-
tion in which Child_Ravn (the IQ score of a child) is 
conditionally independent of Fam_Inc (Family Income) 
given Mom_Age_Birth (the age of the mother at birth) 
and Mom_Smoke (whether the mother smokes); more-
over, the IQ Score of the mother (P_Mom) is condition-
ally independent of any subset of the other variables 
given Mom_Smoke.  The independence constraints en-
coded in Figure 1 allow the factorization P(Fam_Inc, 
Mom_Age_Birth, Mon_Smoke, Chld_Ravn, P_Mom)= 
P(Fam_Inc) P(Mom_Age_Birth|Fam_Inc) 
P(Mom_Smoke|Fam_Inc) 
P(Chld_Ravn|Mom_Age_Birth,Mom_Smoke) 
P(P_Mom|Mom_Smoke). In turn, this factorization allows 
a great reduction in both the number of probability pa-
rameters to be assessed and the time needed to compute 
posterior marginal probabilities for each variable.  

We now show that the ACH table of Table 1 can be 
represented as a bipartite graph, where the nodes are di-
vided into two exhaustive and mutually exclusive sets, 
corresponding to hypotheses (columns in the ACH ma-
trix) and items of evidence (the rows in the ACH matrix, 
also called findings).  Figure 2 below shows the resulting 
Bayesian network structure.  
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Bayesian network corresponding to the 
ACH matrix in Table 1 

Heuer suggests using a simple linear, additive scoring 
mechanism to assess the probability of a hypothesis.  
Such a scheme can easily be incorporated within the 
Bayesian network framework, as described in (Olesen 
and Andreassen 1993).  However, as Heuer himself 
notes, it is sometimes preferable to use probabilities 
rather than a plus and minus notation.  In particular, we 
observe that it is also possible and preferable to represent 
the sensitivity and specificity (or “diagnosticity,” to use 
Heuer’s term) of items of evidence for hypotheses di-
rectly in conditional probability tables.  For example, we 
can represent a situation for which E4 (“CrossBorder”) is 
a moderately sensitive but very specific item of evidence 
for the hypothesis H2 (“BrokenPipeline”) as indicated in 
Table 2.  
 
 
 
 
 

Table 2: CrossBorder is highly diagnostic for Bro-
kenPipeline, but only moderately sensitive to Broken-
Pipeline 
P(CrossBorder| 
BrokenPipeline) 

BrokenPipe-
line = yes 

BrokenPipeline 
= no 

CrossBorder=yes 0.7 0.01 
CrossBorder=no 0.3 0.99 

 
In his book, Heuer makes it clear that it is very impor-

tant to specify prior beliefs in order to obtain correct pos-
terior beliefs.  The translation of ACH matrices to Bayes-
ian networks ensures that prior probabilities of hypothe-
ses are assessed. 

5. Comparing ACH Matrices and Bayes-
ian Networks 

By ACH, an analyst explicitly generates all reasonable 
hypotheses and compares them by analyzing the diagnos-
ticity of a list of related evidence and arguments, and 
then draws the tentative conclusions about the likelihood 
of each hypothesis. The BN reasoning service that we 
have developed within the Novel Intelligence from Mas-
sive Data (NIMD) program can be used to enhance ACH 
by automating some of the analysis steps and by support-
ing extensions to the representation of uncertainty used 
by ACH. Here we go through ACH by comparing it with 
our BN reasoning service.  The discussion that immedi-
ately follows is organized around the eight steps of the 
ACH technique as written by Heuer (1999). 
1. Identify the possible hypotheses to be considered.  
In BN Reasoning, the possible hypotheses are repre-
sented by nodes in Bayesian networks. The hypotheses 
that appear to be disproved and the hypotheses that are 
simply unproven are both nodes with the near-to-zero 
probability values in BNs. The difference between them 
is that the disproved hypothesis nodes have evidence 
nodes that link to them, while unproven hypothesis nodes 
don’t.  We keep the unproven hypotheses until they are 
disproved by items of evidence (typically contained in 
incoming messages).  
2. Make a list of significant evidence and arguments for 
and against each hypothesis. 
Explicit evidence is represented by the messages and the 
assumptions or arguments that the analysts made are cap-
tured as the prior knowledge and stored in our BN frag-
ments repository. 
3. Prepare a matrix with hypotheses across the top and 
evidence down the side. Analyze the "diagnosticity" of the 
evidence and arguments--that is, identify which items are 
most helpful in judging the relative likelihood of the hy-
potheses. 
4. Refine the matrix. Reconsider the hypotheses and de-
lete evidence and arguments that have no diagnostic 
value. 



5. Draw tentative conclusions about the relative likeli-
hood of each hypothesis. Proceed by trying to disprove 
the hypotheses rather than prove them. 
Diagnosticity of evidence is captured by the conditional 
probability tables residing in the BN fragments. To judge 
the relative likelihood of hypotheses, we can compute the 
probability values of each hypothesis after matching the 
messages with the BN fragments and composing the BN 
fragments into a situation-specific scenario. The prob-
ability representation of the likelihood is finer than the 
notation of minus/plus or the numerical scale in ACH.  
6. Analyze how sensitive your conclusion is to a few 
critical items of evidence. Consider the consequences for 
your analysis if that evidence were wrong, misleading, or 
subject to a different interpretation. 
Our program provides a sensitivity analysis service that 
can be used to evaluate how sensitive the target (hy-
pothesis) is to the provided evidence.   
7. Report conclusions. Discuss the relative likelihood of 
all the hypotheses, not just the most likely one. 
8. Identify milestones for future observation that may 
indicate events are taking a different course than ex-
pected. 
The tacit knowledge is captured in the form of additional 
BN fragments.  Our program provides a value of infor-
mation service that recommends which additional pieces 
of evidence should be collected in order to increase the 
confidence in the conclusions reached. 

6. How Bayesian Networks Enhance 
ACH Matrices 

Since ACH tables can readily be converted to bipartite 
Bayesian networks, it is natural to ask whether we can 
exploit this translation.  Fortunately, the answer is posi-
tive.  We begin by observing that bipartite Bayesian net-
works are a special case of Bayesian networks.  There are 
limitations to the expressiveness of bipartite Bayesian 
networks. First, it is impossible to represent dependency 
among hypotheses that is not mediated by items of evi-
dence.  In other words, in the absence of evidence, one’s 
belief in a hypothesis cannot affect the belief in another 
hypothesis.  This is clearly inappropriate in situations in 
which a model exists of how hypotheses affect each 
other. Second, it is impossible to represent dependencies 
among items of evidence that are present even when the 
hypotheses are known.  Such dependencies would be 
modeled by introducing intermediate variables between 
hypotheses and items of evidence. We note that this is a 
particularly serious issue when trying to model rumors 
and deception. Third, it is impossible to model context 
for hypotheses. As an illustration, we develop a more 
complex model for our motivating example, as shown in 
Figure 3, to overcome all these limitations: 
1.) We model a conflict situation, in which context is 
represented by the two related variables Conflict and Af-
fectedOilProduction.  

2.) We introduce the intermediate nodes such as Terroris-
tAction and ThreatLevel to represent the dependencies 
among items of evidence in Bayesian Network.  
3.) We represent the argument, the assumption the ana-
lyst made in ACH, as the structure of the BN fragment, 
instead of nodes in bipartite graph model. 
4.) In our model, the hypotheses are related through the 
context, even in the absence of evidence.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: A more complex model for the oil facility 
example of Table 1 and Figure 2 
 

7. How to Integrate ACH and Bayesian 
Networks 

From an ACH table, we can obtain a bipartite graph by 
adding a link from the hypothesis node to the evidence 
node if the corresponding value in the ACH matrix is 
either + or -. To assign the initial conditional probability 
values, we define the number of items evidence as n, 
which is 7 in our example, and let the initial probability 
P(Ei|Hj) be 1/n if there is a link from Hj to Ei. The prob-
ability of P(-Ei|-Hj) is assumed to be 0.9. We emphasize 
that this is only an initial assignment. 

By creating BN fragments (bipartite graphs and associ-
ated conditional probabilities) from ACH tables, we cap-
ture prior knowledge, which we then refine by adding 
context variables and intermediate nodes. Many prior or 
conditional probability values can be obtained from the 
statistical information available in databases.   

8. Conclusions and Future Work 
In this paper we have extended the concept of ACH by 
incorporating Bayesian reasoning. The ACH matrix is 
represented as Bayesian network fragments and our rea-
soning services facilitate a detailed study of the intelli-
gence analysis problem by the analyst. However, we have 
not yet addressed all of the implications or tested the ex-
tension in an operational environment.  To perform such 
testing, we will first develop a tool that generate Bayes-
ian Network fragment from the ACH table. Moreover, 
our tool will support the analysts in discovering inade-
quacies in the bipartite Bayesian network obtained from 
the ACH table. Such support will be provided by a tool 
that uses sensitivity analysis and a collection of past 
cases. 
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