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ABSTRACT 

The performance of a new heuristic search algorithm is analyzed. The algorithm uses a 
formal representation (semantic representation) that contains enough information to compute 
the heuristic evaluation function h (n). as defined in the context of A *. without requiring a 
human expert to provide it. The heuristic is computed by �olving less constrained subproblems 
(auxiliary problems) of the given problem. The new algorithm is shown to be less efficient than 
the Dijkstra algorithm. according to the complexity measure" number of node expansions." 
This proves that it is not efficient to compute heuristics for A* by solving auxiliary problems 
with backtracking. 

INTRODUCTION 

Concluding "Problem Representation and Formal Properties of Heuristic 
Search," in which he describes the state-space approach to problem solving, 

Gordon Vanderbrug states: "Efforts [in the current research on heuristic search 

methods] are directed towards including semantic information by concentrating 
on the meaning of the symbols being manipulated" [26]. 

In this paper I describe a way to enrich the well-known graph formalism with 
more information from the problem domain, and an admissible search al­
gorithm based on the new representation. The core of the paper is the analysis 
of the complexity of this new algorithm; specifically, I compare it with the 
classic Dijkstra algorithm [2]. 

tThe writing of this paper was supported by the U.S. Air Force Office of Scientific 
Research under grant AFOSR-81-0221. The paper is based on work done at the Politecnico di 
Milano, Milan, Italy. A shorter version of this paper was presented at the Eighth International 
Joint Conference on Artificial Intelligence in Karlsruhe, F.R.G. [25]. 
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Kowalski [lOJ notes that every computable problem (in this paper, problem 
always means computable problem) can be formulated as the problem of 

finding a path through a graph. This approach, often referred to as the 
.. state-space approach," is described in numerous books and articles on auto­
mated problem solving [23, 15, 26, 16J; moreover, there are well-studied connec­
tions between this approach and automata theory (see (121). 

In 1968, Hart, Nilsson, and Raphael published a paper [7] in which they 
described an algorithm for finding the shortest path in a graph from an initial 
node to a final node, using heuristic information to direct the search. This 

algorithm, called A*, is admissible, in the sense that it always finds a solution of 
minimal cost if such a solution exists. The heuristic information (a function of 
the nodes in the graph having certain properties) is provided by an expert and is 

dependent on the problem domain. A * has been used in various application 

domains ([14, 22J are just two examples chosen from two vastly different fields), 
and its complexity has been investigated in detail [20, 21, 13, 4, 8, 17, 24, 19]. 

A* requires less time (on a sequential computer) than the Dijkstra algorithm 
[2] in solving a shortest-path problem, but it requires an expert to provide 

information not contained in the problem representation formalism. To avoid 
this, Marco Somalvico and other researchers at the Politecnico di Milano [12, 6, 
24] have proposed a representation (the "semantic representation") which 
contains the information necessary to compute the heuristics used by A·. 

Reference [5J summarizes the results of this research program through 1978. The 
reader who feels that the definitions and results of the following section are too 
sketchy is invited to read [5]. The facts given are also discussed in more detail in 
my thesis [24]. 

BASIC RESULTS 

I start by giving two definitions of (formalized) problem: 
A syntactic problem is a 5-tuple 

p= (N,E, W,i,kL 

where: 

N is a set of states, called the state space; 
E is a set of directed edges; 
W is a set of nonnegative costs, greater than an arbitrary small constant 8, 

associated to each edge; 
i is a distinguished member of N, the initial state; 
k is a distinguished member of N, the final state. 
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Given a syntactic problem P = (N, E, W, i, k), M = (N, E, W) is called the 

problem schema of P. Note that M is a directed graph. A solution of a problem 

P is a path in the graph G = (N, E, W) from i to k. Because of the restriction 
on the costs associated to the edges of M, M is sometimes called a 8-graph. 

The optimal solution of a problem P is a path in the graph G = (N, E, W) 
from i to k of minimal cost, where the cost of a path is the sum of the costs of 

its edges. 
The notion of state in the (classic) syntactic formalism will now be enriched 

to define the "semantic" formalism. 
Given a set A of attributes, and a set 1: of values for each attribute in A, I 

define a semantic (or structured) state. A semantic problem is a 6-tuple 

where 

A is a set of attributes; 

1: is a set of values; 

l' = (.1,1:, II, A, t. k), 

II is  a set of  predicates (called properties, each indicated by 'IT) whose 

domain is the set of all possible states; 

A is a set of predicates of two arguments (called legal conditions, each 

indicated by A), each one being one of the possible states; 

i is a distinguished sequence of attribute-value pairs; 

k is a distinguished sequence of attribute-value pairs; 

A sequence of attribute-value pairs is called a semantic (or structured) state. 
A semantic state has a structure: the sequence of attribute-value pairs that 
constitute its meaning. In the classic, "syntactic" framework, instead, a state is 
just an atomic concept: all the information carried over from the problem 

domain is contained in the graph. 

Two facts that support the view that the information contained in the 

"syntactic" graph does not permit an efficient search are the usefulness of the 

heuristic evaluation function used by A* (which cannot be computed efficiently 

from the "syntactic" problem representation), and the success of expert systems 
(which rely heavily on domain-dependent heuristics). 

Let us now consider how the structure of every semantic state is used to 
determine the state space and the legal moves in a semantic problem. The 
candidate states are all possible sequences of attribute-value pairs (I indicate 
them by an underlined letter, such as ll); the state space, Jj, consists of all the 
candidate states which satisfy all the properties (the states in Jj are called legal 
states); the candidate moves are all possible pairs of legal states; the legal moves 
are all the moves (nl, n2) that satisfy all the legal conditions. 
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To every semantic problem one can associate a graph called the skeleton of 
the semantic problem. G = (N, E, W) is defined by 

N = { n EN I(V17)( ( 17 E II) = 17( n))} 

E = { (nl, n2)I(Vi\)( (i\ E A) = i\( nl, n 2)) } 

W is the set of costs associated to the edges in E. Each edge has a nonnegative 
cost greater than a small constant 8 associated to it. (The method of determin­
ing the cost of each edge does not affect the results of this paper.) 

The reader might find it useful to try to express the eight-tile puzzle [15] in 
the semantic problem formalism: define a set of attributes (the tiles), a set of 
values (the positions of the tiles on the board), a set of properties (which, by 
using the attributes and the values composing a state, tell when a state is legal), 
and set of legal conditions (which also use the rich structure of semantic states). 
A property might, for example, express that in a legal state (i.e., a permissible 
board configuration) no two attributes can have the same value (i.e., no two tiles 
can occupy the same position on the board). A legal condition might state that a 
move is legal only if the state after the move has one distinguished attribute (i.e., 
the one corresponding to the blank: tile) whose value (i.e., its position) is 
different from the value of the same attribute in the state before the move (i.e., 
to sum up, a move is legal only if the space on the board is in a different 
position after the move than it was before the move). The reader can find a 
solution to this drill in [5], or in [12, 24]. These two latter reference also contain 
another example. 

One could solve a semantic problem by solving the problem corresponding to 
its skeleton with the Dijkstra algorithm, but this method does not take any 
advantage from the extra information contained in the structure of the states. 
Reference [24] discusses some ways to exploit this information. One of them, 
algorithm M, will be discussed in the following. In order to introduce 
the algorithm of general applicability that I want to compare with the Dijkstra 
algorithm, a few more definitions and facts must be given. This is the purpose of 
the next section. 

AUXILIARY PROBLEMS 

Informally speaking, a problem is auxiliary to another one if it is less 
constrained. The notion of auxiliary problem is formalized on the following 
definition: 

DEFINITION. A semantic problem 

l!' = (A',Y', II', 11.', i', /s,') 
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is an auxiliary problem of 

l' = (A,E, II, A, i, h;) 

if 

1:" = 1', 

II'= II, 

A'cA, 

(=i, 

h;'=h;, 

(I indicate that ]!' is auxiliary to l' by 1" -1'.) 

The following theorem provides a basis for computing an heuristic evaluation 
function h(n), as used by A* to focus its search [16], from the information 
contained in the semantic representation of a computable problem. (In this 
paper I follow the convention used in [16} in that I indicate the heuristic 
estimate with h(n) and its exact value with h*(n).) 

THEOREM. If]!' -1', where the initial state for 1" and l' is n, then the length 
of the optimal solution of ]!' is a possible value for an admissible heuristic estimate 
h(n) for the problem 1'. 

The reader should convince himself that the theorem is true, or check the 
summary given in [5} or the proof in [12}. 

The following section presents an algorithm built on the previous theorem. 

ALGORITHM M 

This algorithm is a special case of both algorithm G given in [5] and 
algorithm S in [24]. 

Input: a semantic problem 1'. 
Output: an optimal solution of 1'. 
Method: Solve the problem corresponding to the skeleton of l' using A*, 

where each necessary value of h (!1) is computed by solving an auxiliary problem 
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of 

Q = (A,l:', II, A,n,k) 

using the Dijkstra algorithm. 

All the auxiliary problems have the same set of legal conditions- A'. This 

ensures that the "consistency" condition [15, 16] is satisfied for h(n) computed 

by solving the auxiliary problems of Q. This result is now shown to hold. 

THEOREM. If h (m) and h (n) are computed as costs of shortest paths from m to 
k and from n to k respectively on the skeleton of the same auxiliary problem, then 
h(m)- h(n).;:; d(m, n), where d(m, n) is the cost of the shortest path from m to n 
on the skeleton of the problem. 

Proof. The proof consists of a reductio ad absurdum. (Refer to Figure 1 while 
following the proof.) Assume that the consistency assumption is not satisfied, 
i.e. that 

hem) > h(n)+d(m,n). 

Note that d(m, n) is an upper bound on the length of the shortest path from m 
to n in the skeleton of the auxiliary problem. Therefore the shortest path from 

m to k in the skeleton of the auxiliary problem must pass through n. And if the 

m 

d (m. n) 

hen) 

k 

Fig. 1. Two estimates computed on the same graph satisfy the consistency assumption. 
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shortest path from m to k in the skeleton of the auxiliary problem passes 
through n, it must be that 

h ( m) " h ( n) + d( m, n}, 

which can be rewritten as 

h(m)-h(n) "d(m,n). • 

I have shown in the previous section how to compute the heuristic function 
h (n) from the information contained in the semantic representation. I can 
proceed to analyze the complexity of this totally automatic procedure. This is 
the purpose of the next section. 

COMPLEXITY OF ALGORITHM M 

In this section, I compare algorithm M with the Dijkstra algorithm. It would 
be senseless to compare M with the A* algorithm, since, to focus its search, A* 
relies on information [i.e., h(n)] that is outside the problem-representation 
formalism used (i.e., the syntactic graph). Dijkstra's algorithm can be considered 
a special case of A* where h(n) = 0 for all n, i.e., no heuristic information is 
given. 

I compare these algorithm according to the criterion "number of node 
expansions," which is discussed and generally accepted in the published litera­
ture [15, 131. A remarkable shortcoming of this criterion in our case is that it 
considers the cost of expanding a node in an auxiliary problem to be the same 
as the cost of expanding a node in the original problem. Still, I think that the 
result I obtain using this approach is sufficiently interesting to justify the 
simplification. 

In order to prove our fundamental result, I shall make use of some results 
which can be found in [24, 13, 4). I now recall these results in a compact form. 

Let a (directed) graph G = (N, E, W) be given. Let g(n) be the length of the 
path from node i, the initial node, to node n, in graph G, passing through 
already expanded nodes. [This is the "standard" definition of g(n), as given in 
most of the referenced literature.] 

FACT 1. The Dijkstra algorithm will find a shortest path in G by expanding 
only the nodes n that satisfy the follOWing inequality: 

g(n) < h*(i). (1) 
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[Note that here and in Fact 2, h*(i) is the shortest path from i to k because 
of the definition of h*(n).] 

FACT 2. The A * algorithm will find a shortest path in G by expanding only the 
nodes n that satisfy the following inequality: 

g(n)+h(n)<h*(i) (2) 

and some of the nodes that satisfy 

g( n) + h (n) = h*( i). (3) 

I define the distance from node m to node p in the graph G = (N, E, W) to 
be the length of the shortest path from m to p in G. (If no path from m to p 
exists in G, then the distance is conventionally assumed to be infinite.) I can 
now prove the following result: 

MAIN THEOREM. Let a semantic problem 

E = (A,£" II, A,i, k) 

be given. To solve the problem E, algorithm M expands at least every node 
expanded by the Dijkstra algorithm to solve the syntactic problem corresponding to 
its skeleton. 

A corollary to this theorem descends from the fact that algorithm M computes 
consistent and admissible estimates: algorithm M uses at least the same number of 
node expansions as the Dijkstra algorithm. I can conclude this because the number 
of node expansions and the number of expanded nodes are the same when 
consistent and admissible estimates are used in the A* algorithm [15, 16]. 

Proof of the theorem. The proof is long, but straightforward. 
Algorithm M expands nodes in two phases: 

(a) to compute hen); 
(b) to solve E, with the same strategy used by A*. 

The estimates computed by M, of the form hen), can be divided in three 
classes; I shall therefore consider three cases, and show that for each case the 
computation of the estimate plus the solution of the problem using it is more 
expensive than the solution of the problem by using the Dijkstra algorithm, 
which does not require any estimate to be computed. 

The first two cases are very simple. 

Case 1. The estimate h (n) does not disallow node n to be expanded in phase 
(b). An example is given in Figure 2. The computation of the heuristic, in this 
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case, does not allow us to save even a single node while using it in phase (b). 
Since to compute h (n) by solving an auxiliary problem one needs to expand at 
least a node (in the nontrivial case in which n is the final node, when it is 
obviously unuseful to compute the heuristic!), it would have been better not to 
compute the estimate at all in the first place. 

Case 2. The estimate h (n) is such that n is not expanded because 

g(n)+h(n) � h*(i). 

(Note that if the above is true with" > ", node n will not be expanded for sure; 
if it is true with" = ", it might.) If the only effect of h (n) is that node n will not 
be expanded, the cost of the estimate computation in phase (a), which necessi­
tates at least the expansion of node n itself, is not sufficient to compensate the 
saving arising from not expanding n in phase (b). 

Case 3. There are nodes gi that are expanded by the Dijkstra algorithm, but 
are not expanded by algorithm M in phase (b) because, in order to be expanded, 
they have to be reached through a node m whose estimate h (m) is so large that m 
is not expanded in phase (b). Figure 3 provides an example of this case: note 
that h ( m) is so large that the nodes gi are not expanded in phase (b) of 
algorithm M. 

i d node g h f=g+h i d 
i 0 0 0 
a 1 0 1 

a b 2 0 2 a 
c 3 0 3 
d 1 1 2 

b k 4 0 4 b 

c c 

k ! k 

The akeleton of The akeleton of an 
a problem auxiliary problem 

Fig. 2. The estimate for d is not useful. 
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The nodes g; are, at most, the ones for which the following holds: 

g( m) + d( m, g;) < h"'( i), ( 4) 

which can be rewritten as follows: 

d( m, g;) < h"'(i) - g( m). (5) 

This is the property that characterizes the set of nodes that, at most, are not 
expanded if h ( m) is large enough to avoid expanding m. 

By Fact 2, m is not expanded if h(m) is at least so large that the following 
holds: 

g(m)+h(m) =h"'(i), ( 6) 

which can be rewritten as 

h(m) =h"'(i)-g(m). (7) 

Since h (m) is computed, in phase (b), by solving an auxiliary problem of P 
using the Dijkstra algorithm, one must expand, according to Fact 1, all the 
nodes at distance less than h (m) from m on the skeleton of the auxiliary 

i node g h f = g + h 
gl i 0 0 0 

a 1 0 1 
a g2 b 2 0 2 

c 2 0 2 
m 2 4 6 

b g3 gl 3 (h is not computed) 
g2 3 ( h is not computed) 
g3 3 (h is not computed) 

c d 4 0 4 
k. 5 0 5 

d 

k. 

Fig. 3. h(m) is so large that h(gl), h(g2), h(g3) are not computed. The figure shows the 
skeleton of a problem. It does not show the skeleton of the auxiliary problem used to compute 
h(m). (Can you draw it?) 
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problem. 
But we know that h(m) is at least so large that (7) holds. Therefore, at least 

the nodes at distance less than h*(i)- g(m) from m in the auxiliary problem 
must be expanded. A fortiori, since the distance from i to m in the auxiliary 

problem is not greater than the distance from i to m in P, at least the nodes at 

distance less than h*(i)- g(m) from m in P must be expanded. Therefore, at 

least the nodes satisfying the following ineqUality must be expanded by al­

gorithm M in phase (b): 

d( m, hi) < h*(i)- gem). (8) 

By comparing (8) with (5), one concludes that, even in the most favorable 

case, the set of nodes gj which are not expanded in phase (a) because of the 

computation of the estimate h ( m) in phase (b) is a subset of the set of the nodes 

hi expanded to compute the estimate in phase (b). Therefore, even in this last 

case, it is better not to compute the heuristic at all, but to solve P by using the 
Dijkstra algorithm directly. • 

CONCLUSION 

In this conclusion, I state two definitions and a theorem, and I present an 
interpretation of the Main Theorem. 

DEFINITION. An algorithm to find the minimum-cost path in a graph is blind 
if it relies only on the information contained in the syntactic graph to find the 

minimum-cost path (i.e., blind algorithms do not use heuristic information). 

DEFINITION. An algorithm to find the minimum-cost path in a graph is 
unidirectional if it expands nodes at nondecreasing distances from the initial 

node. 

(This definition is arbitrary: what should one call algorithms which expand 
nodes at increasing distances from the final node?) 

The following result can be shown to hold: 

THEOREM. The Dijkstra algorithm is the algorithm that uses the least number of 
node expansions among blind, unidirectional, deterministic algorithms. 

Proof. The proof of this result consists of an "adversary" (or" oracle") based 
argument. Assume that another algorithm, B, can find a shortest path from i to 

k without expanding a node n for which the following holds: 

g(n) < h*(i). (8) 
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Then the adversary can find a problem such that there is an edge from node n 

to node f of such small cost that the minimum-cost path from i to f passes 
through n. This means that algorithm B does not find the minimum-cost 
solution. • 

The above result, together with the Main Theorem, indicates that it is not 
efficient to compute heuristics by solving auxiliary problems with a trial-and­
error strategy (i.e., a strategy involving backtracking). 

Recognizing that an auxiliary problem can be solved by means of a method 
that does not require backtracking seems to be an extremely difficult task, 
strictly related to the "change of representation" problem [1], which is consid­
ered to be beyond the state of the art. (See, for example [11, pp. 237-241].) Even 
auxiliary problems whose solution leads to the computation of simple heuristics 
do not display any apparent structure (as far as their skeleton is concerned) 
which may lead to their simple solution. An interesting example of this phenom­
enon is described in [12, 24], where the auxiliary problem whose solutions 
compute the heuristic "number of misplaced tiles" for the eight-tile puzzle is 
presented. This heuristic is described in [15, 16]. 

RELATED RESEARCH 

Judea Pearl and the late John Gashnig have discovered, independently of the 
Milan team, that admissible heuristics for A* can be computed by solving 
auxiliary problems. Judea Pearl calls the auxiliary problems "relaxed models." 
John Gashnig calls them "edge supergraphs" [3]. Gashnig uses the syntactic 
formalism, and he does not propose an algorithm that finds auxiliary problems 
automatically, the way algorithm M does, thanks to the "semantic" formalism. 

Judea Pearl [17] and Dennis Kibler [9] have postulated the need for changing 
the representation paradigm to solve auxiliary problems efficiently. Their postu­
lation is grounded on the negative result discussed in this paper. They quote this 
result explicitly in their reports [17, p. l31; 9, p. 4]. 
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