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A Causal Probabilistic Network for Optimal
Treatment of Bacterial Infections

Leonard Leibovici, Michal Fishman, Henrik C Schgnheyder, Christian Riekehr,
Brian Kristensen, llana Shraga, and Steen Andreassen

Abstract—The fatality rate associated with severe bacterial infections is about 30 percent and appropriate antibiotic treatment reduces
it by half. Unfortunately, about a third of antibiotic treatments prescribed by physicians are inappropriate. We have built a causal
probabilistic network (CPN) for treatment of severe bacterial infections. The net is based on modules, each module representing a site
of infection. The general configuration of a module is as follows: Major distribution factors define groups of patients, each of them with a
definite prevalence of infection caused by a given pathogen. Minor distribution factors multiply the likelihood of one pathogen, without
changing much of the prevalence of infection. Infection caused by a pathogen causes local and generalized signs and symptoms.
Antibiotic treatment is appropriate if it matches the susceptibility of the pathogens in vitro and appropriate treatment is associated with
a gain in life expectancy. This is balanced against the cost of the drug, side effects, and ecological damage, to reach the most cost
effective treatment. The net was constructed in such a way that the data for the conditional probability tables will be available, even if it
meant sometimes giving up on fine modeling details. For data, we used large databases collected by us in the last 10 years and data
from the literature. The CPN was a convenient way to combine data from databases collected at different locations and times with
published information. Although the net is based on detailed and large databases, its calibration to new sites requires data that is

available in most modern hospitals.

Index Terms—Causal probabilistic networks, bacterial infections, bacteremia, antibiotic treatment, cost-effectiveness.

1 INTRODUCTION

THE fatality rate associated with severe bacterial infec-
tions is about 30 percent [1], [2], [3], [4], [5], [6], [7], [8].
Antibiotic drugs are the mainstay of treatment in this
condition. Patients treated with appropriate and early
antibiotic treatment have a much better chance of survival
than patients given inappropriate antibiotics or no anti-
biotics at all [1], [3], [6], [7], [8].

The suspicion of a severe bacterial infection is usually

raised because of nonspecific complaints, the main one
being fever. Within the first hour of encountering such a
patient, the physician should decide whether the likelihood
of a bacterial infection is high enough to start early (and
empirical) antibiotic treatment, whether the infection is
severe enough to warrant intravenous treatment, and, if so,

which antibiotic drug(s) to prescribe.
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To reach these decisions, the physician is aided by several
time-honored associations. The likelihood of a bacterial
infection is assessed by the presence of evidence in favor of
a localized infection (e.g., an infection of the urinary tract or
pneumonia) and by signs and symptoms that are more closely
associated with a bacterial infection than with other causes of
fever. The severity of infection is estimated mainly by its
influence on blood pressure, capillary permeability, and
oxygen supply to vital organs (kidneys, lungs, brain). These
are mediated through responses of the body and are not
specific to the infection [9].

To choose an antibiotic drug, the physician should
appraise which are the most likely pathogens of infection,
and what their susceptibility to antibiotics is. The main
determinant of the pathogen is the site of infection (e.g.,
urinary tract or the lungs), in addition to other factors, such
as the place of acquisition of the pathogen causing the
infection (hospital or community), defects in the patient’s
defense mechanisms, etc. [10]. The patterns of susceptibility
to antibiotics differ from region to region and from hospital
to hospital. Even in the same hospital, different units have
distinct patterns of susceptibility. The main predictor of
resistance that is related to the individual patient is whether
he has been treated with antibiotics before the present
infection [11].

Last, the physician should balance the benefits associated
with each antibiotic drug against its detriments. The
benefits are coverage (given the likely pathogens and their
susceptibility to antibiotics) and activity at the site of
infection. These can be translated into a reduction in
mortality and morbidity [6]. [8]. The detriments are the
cost of the drug, side effects, and development of resistance.
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Unfortunately, the results of these mental computations
are often erroneous. About a third of patients with severe
bacterial infections are given inappropriate empirical
antibiotic treatment and 20 percent are prescribed super-
fluous drugs [8], [12], [13]. Moreover, the overall balance of
antibiotic treatment vs. pathogens is tipping worldwide to
the wrong side. Antibiotic drugs account for 20 to 50
percent of a hospital’s pharmaceutical expenditure [14].
Resistance to antibiotics is a major problem [15] and strains
of bacteria resistant to almost all drugs are emerging [16],
[17]. The last major new group of antibiotic drugs was
introduced into clinical practice more than a decade ago.

A simple computerized decision support system (DSS)
employed at LDS Hospital, Salt Lake City, Utah, was shown
to improve antibiotic therapy of individual patients while
reducing the costs related to antibiotic treatment and
probably curbing the development of resistance [18], [19].
Our experience was similar. We showed that inappropriate
antibiotic treatments are biased and that five pathogens
accounted for 60 percent of inappropriate treatments, but
for only 20 percent of appropriate ones [12]. We built a DSS
that was based on the basic distribution of pathogens in our
hospital. It used likelihood ratios derived by logistic
regression analysis from our databases to adjust the ranking
of the five pathogens and to look for patients at high risk of
harboring a resistant microorganism. The DSS outper-
formed the attending physicians at guessing the pathogen
of the infection and its susceptibility to antibiotics. It
reduced the percentage of inappropriate treatments by half,
while prescribing fewer broad-spectrum and costly
antibiotics [10].

One problem with the system became evident on
analyzing the results. The physician supplied the site of
infection to the DSS and, in 20 percent of cases, it was
incorrect. A second (and major) problem emerged when
trying to transfer the DSS to another location [20]. The
adjustment of the logistic models on which the DSS was
based to another location required databases similar in size
and detail to our original one; although it was quite clear
that some factors are universal, some are only local and
some needed to be changed.

Nevertheless, it seemed likely that better use of knowl-
edge and data through a computerized DSS can improve
the management of patients with severe bacterial infections,
while reducing the use of broad-spectrum and costly
antibiotics [10], [18], [19]. To obviate the problems of the
previous DSSs, we decided to build a normative system,
where a causal probabilistic network (CPN) was used to
calculate the probability distributions for the relevant
output variables and decision theory was used to balance
the therapeutic benefit of antibiotic therapy against the
detriments associated with antibiotic drugs.

CPNs have been proposed as useful knowledge repre-
sentation in medicine [21], [22], [23] and have been used for
diagnosis [24], [25] and, in combination with decision
theory, also for advising on therapy [26]. One of the
advantages of using CPNs to represent knowledge is that
knowledge derived from literature can be integrated
smoothly with data derived from case databases, a property
that will be exploited extensively.

2 OBJECTIVES

The aim of our project was to build a DSS for treatment of
patients suspected of harboring a moderate to severe
bacterial infection, based on a CPN. An explicit distinction
was to be made between local and universal factors, so the
calibration of the system to new sites will be natural.

We intended to build a normative system (i.e., corre-
sponding to the real distribution of the population). The
input of the DSS should be simple data, readily known or
obtainable within hours of suspecting an infection. The
outputs the DSS was planned to supply were:

the likelihood of a bacterial infection,

a measure of its severity,

the most likely site of infection,

the most likely pathogen(s),

the susceptibility of the pathogens to antibiotic

drugs,

6. the gain in life expectancy of the patient related to
the treatment with a specific antibiotic drug,

7. the cost of the antibiotic drug, including purchase,
side effects, and ecological impact on future resis-
tance, and

8. ranking of the antibiotic drugs according to a

summation of 6 and 7, i.e., a cost-effectiveness index.

ARl B

3 RESOURCES AND METHODS

To obtain the needed data, we used (besides the literature
cited below) databases that were collected prospectively by
us since 1988. Databases that are available to us include
data on approximately 4,000 bacteremic patients seen at
Beilinson Campus (Petah-Tiqva, Israel) [6] and about 1,000
bacteremic patients detected in the County of Northern
Jutland, Denmark [8]; about 1,400 patients suspected of
harboring a moderate to severe bacterial infection [10];
about 400 young women with urinary complaints [27], [28];
and 250 patients with urinary tract infections [29]. The
details on each patient included demographic data, under-
lying disorders, presentation of infection, pathogen and its
susceptibility to antibiotics, treatment, and outcome.

The CPN was built with the use of a graphic interface for
building of CPNs (HUGIN, Hugin Inc., Aalborg, Denmark).
For data handling and analysis, we used the SAS software
(SAS Inc., Cary, North Carolina).

4 GLOSSARY

Empirical antibiotic treatment: Treatment prescribed be-
fore the results of cultures or serological tests (that can point
at the pathogen of infection) are known by making an
educated guess as to the most likely pathogen and its
susceptibility to antibiotics.

Pathogen: A microorganism capable of causing infection
in humans.

Resistance and susceptibility to antibiotic drugs: The
susceptibility of a microorganism to antibiotic drugs is
tested in-vitro, usually by culturing the microorganism on
an agar plate on which paper disks impregnated with a
fixed amount of an antibiotic drug were placed. The zone of
growth-inhibition around the disk is relative to the
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Fig. 1. A general scheme for a site-of-infection network.

susceptibility. A second technique, more expensive and
laborious, is to measure the growth of a microorganism in a
liquid medium, under exposure to increasing concentra-
tions of an antibiotic drug. There is a good correlation
between susceptibility in-vitro and clinical response.

Coverage: The percentage of pathogens of a given
infection susceptible to an antibiotic drug.

Plasmid: A ring-like fragment of DNA in bacteria, which
can be transferred horizontally to another bacterium by
conjugation. Many of the genes resistant to antibiotics
reside on plasmids.

5 A GENERAL MODEL FOR A SITE OF INFECTION

The CPN was built from distinct modules, each module
representing one site of infection. Fig. 1 depicts a general
model of a site of infection. Pathogenl to Pathogen_n
represent the potential pathogens of infections at the given
site. The states of the Pathogen nodes are severity states,
with a risk of mortality associated with each state.

The probability of an infection caused by a Pathogen is
determined by its prevalence in major patient-groups
(M_Distrib_1 to M_Distrib_3). We selected a factor as
defining a major patient-group (a major distribution factor)
if it emerged as a strong and independent predictor for
infection and distribution of pathogens on statistical
analysis of our databases, if, according to present knowl-
edge, it has a clear patho-physiological contribution to the
risk of infection at this site, and if the data on the prevalence
of infection and distribution of severity-states and patho-
gens are available.

Several factors qualified as minor distribution factors
(Minor), i.e., factors that change the likelihood of one (or a
few pathogens) without affecting the overall risk for
infection.

Overall, the percentage of polymicrobial infections
predicted by the net is less than found in our databases.
To overcome this, we need node(s), which link some (or all)
of the Pathogen nodes and indicate a breach in the defense
mechanisms that is not specific for one pathogen (these
nodes are not shown in Fig. 1). Thus, an increase in the
likelihood of one pathogen will increase (by a small
amount) the likelihood of other pathogens that are linked

S
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Antibiot_tr Underlying
Coverage 3

<o
'

to it, enough to reach the expected prevalence of poly-
microbial infections. For some sites, a mechanism can be
postulated for this node (e.g., aspiration for infections of the
lungs).

Any of the pathogens can cause an infection and
infections can manifest as different patterns (Infectionl
and Infection2). Infection will cause a local response
(Local_respo), specific to each site of infection, and the
local response will manifest as local signs and symptoms,
e.g., cough and pains on inspiration caused by pneumonia
(Local_sign1 to Local_sign3). It will also cause a systemic
response (Sys_respon) common to all sites of infection and
manifesting as generalized signs and symptoms (Sign1 to
Sign3), such as fever, rapid pulse, and hypotension.

A pathogen causing an infection will grow in local
specimens (e.g., urine or sputum, Spec_cultur) and in the
blood (Blood_cultu). It can cause other changes, detectable
by tests and specific for the site (e.g., leukocytes in the urine,
Lab_site).

Antibiotic treatment (Antibiotic_tr) will be appropriate
(Coverage) if it matches the in-vitro susceptibility of the
pathogens and if it reaches appropriate levels in the blood
and at the site of infection. The in-vitro susceptibility is
determined by the pathogen and by local factors (mainly
time and place of acquisition of infection and prior
antibiotic treatment, Resistance).

The net gain in life expectancy obtained by prescribing
an antibiotic drug (Gain) is determined by the Coverage
and by the underlying disorders of the patient (Under-
lying). Cost is a utility node associated with antibiotic
treatment. For each possible choice of antibiotic therapy, the
cost node accounts for the total cost associated with the use
of the antibiotic, including the cost of purchasing, side
effects, and ecological impact. It is assumed that the best
antibiotic therapy is the one with the highest net gain,
where the net gain is calculated as the gain minus the cost.

In a complete net that includes all major sites of infection,
the sites of infection “compete” with each other to explain
the systemic response (Sys_respon), positive blood-cultures
(Blood_cultu), and other signs or symptoms that may be
common to many sites. Local signs and symptoms
(Local_signl to Local_sign3), and site-specific laboratory
tests (Lab_site) will argue strongly in favor of a specific site.
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Fig. 2. A network for urinary tract infections.
TABLE 1
States of Major Distribution Factors (see Fig. 2)
Factor Node States
Identifier
Place and time of Acquisition | 1) Community
acquisition of UTI 2) Nursing home
3) Hospital, duration of stay < 2 days
4) Hospital, medical department, duration
of stay > 2 & <7 days
5) Hospital, surgical department, duration
of stay > 2 & <7 days
6) Hospital, medical department, duration
of stay > 7 days
7) Hospital, surgical department, duration
of stay > 7 days
8) Intensive care unit
Gender Sex 1) Female
2) Male
Indwelling urinary catheter | U_Catheter | 1)Present for > 24 hours in the last 2
weeks
2) Absent

In their absence, the a priori prevalence of infections in the
population takes precedence. The overall Gain constitutes
from the gain at each site. Most of the time, one site will
predominate.

6 EXAMPLE OF A SPECIFIC SITE: INFECTIONS OF
THE URINARY TRACT

Fig. 2 depicts a net for urinary tract infections (UTI). For
simplicity’s sake, only five of 12 pathogens are presented,
and some of the other nodes (e.g., some minor distribution
factors and the details on blood cultures) were omitted. In
this version, the net was calibrated for Beilinson Hospital,
Petah-Tiqva, Israel.

6.1 Prevalence of Infection and Distribution of

Pathogens
As an approximation for prevalence of new infections, we
used daily incidence. The major determinants for the
incidence of UTI and the distribution of the pathogens are

the place and time of acquisition of infection (Acquisition),
gender (Sex), and the presence of an indwelling urinary
catheter (U_Catheter) [29]. The states of these nodes are
given in Table 1. The states of the pathogen nodes
(Escherichia coli (E_coli), Klebsiella pneumoniae (Klebsiel-
la), etc.) are detailed in Table 2.

Thus, we are looking at an 8 x 2 x 2 table for each
pathogen. The source of data for each layer is given in
Table 3. Obtaining the data involves two separate questions:
What is the incidence of UTI in a given patient-group (e.g.,
what is the percentage of women without a catheter in the
community that have asymptomatic UTI, cystitis, etc.) and
what is the percentage of UTI caused by the specific
pathogen? The first question probably addresses universal
factors: We can assume that the predisposition to infection
and its severity are related to biological risk-factors, which
are not much different all over the world. Table 3 details the
sources of data for the incidence of urinary tract infections
according to the major distribution factors. The only item
for which data was completely missing in our databases
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TABLE 2
States of the Pathogens Nodes (Escherichia coli (E_coli), Klebsiella pneumoniae (Klebsiella), etc.)
State Description Fatality | Bacteremia
(%) (%)

No No infection caused by the pathogen 0 0

Asymptomatic | Laboratory evidence of infection without 0 0
signs or complaints

Cystitis Urinary complaints, without fever or other 0 0.01
signs and symptoms of a systemic
response

Pyelonephritis | Urinary infection with a systemic 1 10
response and/or evidence for involvement
of the kidneys

Urosepsis Urinary infection with manifestations of 10 30
sepsis

Septic shock Septic shock 60 60

The states were defined in such a way as to correspond to conventional clinical entities, but also to outline groups with a fixed and increasing

likelihood of fatality (associated with the infection) and bacteremia.

was the incidence of asymptomatic bacteriuria and that was
drawn from the literature [30], [32], [34], [36], [37], [39], [41],
[42], [45]. For the rest of the data, we calculated incidence
data from our databases (number of infections per year per
population in our cachement area), but checked that the
data was within the interval reported in the literature
(Table 4).

The frequency of pathogens and susceptibility to anti-
biotics are specific to the location. Thus, the answer to the
second question can be obtained entirely from our
databases, but for the distribution of bacteria that cause
asymptomatic bacteriuria. An example, part of the final
conditional probability table for the node E_coli, is given in
Table 5.

The minor distribution factor shown in Fig. 2 is an
antibiotic treatment prior to the infection (Antibiotics).
Prior antibiotic treatment multiplies the likelihood of an
infection caused by Pseudomonas aeruginosa (Pseudomon)
by a factor of 2. This ratio is a result of multivariable logistic
analyses and independent of other factors [29], [52]. We
assumed that the net effect of prior antibiotic treatment on
the prevalence of UTI is negligible.

The a priori distribution for the parent nodes was
obtained from official publications (male: female ratios,
age distribution, and number of hospital and nursing beds
in the Beilinson cachement area [53], [54]); literature
(percentage of people with an indwelling urinary catheter
in and out of hospital [55], [56] and percentage of prior
antibiotic treatment in the general population and in
inpatients [57], [58]).

6.2 Signs and Symptoms of Urinary Tract Infection:
Local Manifestations
The manifestations of UTI do not depend on the pathogen.
The local complaints associated with UTI are dysuria
(burning on urination, Dysuria), frequent micturition
(Frequency), urgency (Urgency), suprapubic pain (Supra),
and incontinence (Incontinenc). The main problem with
using the presence of these complaints to favor a bacterial

UTI is that the complaints are highly correlated. If we were
to count them separately, we will grossly exaggerate the
strength of the evidence in favor of UTIL

To address these problems, we performed a factor
analysis on the matrix of urinary complaints in patients
with urinary complaints and UTI. Factor analysis builds
new axes (factors), perpendicular to each other, where each
factor represents correlations between variables. Thus, the
dimensions of the matrix are reduced while keeping as
much as possible of the original variance. Two factors
explained more than 80 percent of the variance in the
urinary complaints matrix. The first represented the
correlation of dysuria, frequency, and suprapubic pain.
The variables that contributed to the second factor were
frequency and incontinence (Table 6). We dichotomized the
factors by using the mean of the factor as the division point.

Thus, the following net was reached: UTI causes urinary
symptoms (Urinary_sy), which causes Dys_factor, a
nonobservable factor. Dys_factor causes Dysuria, Fre-
quency, Urgency, and Supra (suprapubic pain). Urinary_sy
also causes a second nonobservable factor, Incont_factor,
which leads to complaints of frequency and incontinence.
(Fig. 2).

Flank pain (Flank) is a sign of kidney infection and the
data was derived directly from our databases. The
percentage of leukocyturia (Leukocyturi) and hematuria
(Hematuria) in patients with UTI (the presence of white and
red blood cells in the urine) was similar in our databases
and in the literature [48], [59], [60]. To complete the tables,
the percentage of each urinary symptom, leukocyturia, and
hematuria in the general population (without urinary
infections) was abstracted from the literature [56], [59],
[61], [62], [63], [64], [65], [66], [67], [68].

6.3 Signs and Symptoms of Urinary Tract Infection:
Systemic Response

The systemic response to infection affects many clinical

variables (temperature, pulse, blood pressure, white blood

cell count, serum creatinine, urea, and albumin, etc.). These
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TABLE 3
Sources of Data for the Incidence of UTI and Distribution of Pathogens, According to Place and Time of Acquisition

Place and time of
acquisition of UTI (states
of the Acquisition node)

Source of data

Prevalence of UTI

Distribution of pathogens

Community

Lit. (ref (30-35))

LDB (ref (27-29))

Nursing home

Lit. (ref (30,33,36-40))

Lit. (ref (36,41-48)) & LDB
(ref (6,29))

Hospital, duration of stay
< 2 days

LDB (ref (6,29))

LDB (ref (6,29))

Hospital, medical
department, duration of
stay > 2 & < 7 days

LDB (ref (6,10,29))

LDB (ref (6,10,29))

Hospital, surgical
department, duration of
stay > 2 & < 7 days

LDB (ref (6))

LDB (ref (6))

Hospital, medical
department, duration of
stay > 7 days

LDB (ref (6,10,29))

LDB (ref (6,10,29))

Hospital, surgical
department, duration of
stay > 7 days

LDB (ref (6))

LDB (ref (6))

Intensive care unit

Lit. (ref (31,33,49-51)) &
LDB (ref (6))

Lit. (ref (50,51)) & LDB
(ref (6))

Lit.— Literature
LDB—Local databases

TABLE 4
Daily Incidence of Urinary Tract Infection in Women without a Urinary Catheter,
Grouped by the Place and Time of Acquisition, per 100

Com Nurs H,<2d M,2-7d M,>7d S,2-7d  S,>7d ICU
Asymptomatic  1.33 8.83 3.13 9.00 10.80 9.00 11.00 1.26
Cystitis 0.10 0.66  0.77 1.00 1.28 1.20 2.20 0.32
Pyelonephritis  0.005  0.06 1.65 0.48 1.86 0.42 1.61 0.45
Urosepsis 0.002 005 0.64 0.18 0.70 0.16 0.63 0.17
Septic shock 0.000 0.002 0.07 0.02 0.07 0.02 0.06 0.02

Com: Community acquired; Nurs: Nursing home; H,<2d: Community acquired, but admitted to hospital; M, 2-7d: Acquired in a department of
medicine during the first week of hospital stay. M,>7d: Acquired in a department of medicine after the first week of hospital stay; S: surgical
department as opposed to medical; ICU: acquired in the intensive care unit.

variables are again highly correlated. Factor analysis
showed four factors to account for more than 80 percent
of the variance of the original matrix:

1. BP_Shock: The variables contributing to these
factors were blood pressure (BP), evidence of
disseminated intravascular coagulopathy (DIC),
and evidence of other end-organs involvement
(End_Organ).

2. Fever_factor: Main contributions from body tem-
perature on admission (Fever) and the presence of
chills (Chills).

3. Leuko: A factor that shows a correlation between the
white blood cell count (WBC_Count) and serum
creatinine (Creatinine).

4. Alb_factor: Main contributions from serum albumin
(Albumin), erythrocyte sedimentation rate (ESR),
and C-reactive protein (CRP).

Data were obtained from the local databases and
information on the distribution of the body temperature,
serum creatinine and albumin, erythrocyte sedimentation
rate, etc., in the normal population—from the literature [69],
[70], [71], [72], [73]. To give an example of the conditional
probabilities, Table 7 shows the dependency of Fever_factor
on UTI and Table 8 the conditional probability of Fever,
given Fever_factor.

The four factors are statistical constructs. The inflamma-
tory systemic effects are caused by mediators (mostly
cytokines) released by macrophages in response to bacterial
products [9]. Carlstedt et al. [74] tested the levels of the two
main proinflammatory cytokines, tumor necrosis factor a;
(TNF-a) and interleukin 6 (IL-6), in a group of 140 patients.
We performed a factor analysis on their data with similar
results to our own. It was of interest to note that IL-66 had a
major contribution to the Fever_factor (loading of 0.91) and
to no other factor, while TNF-«; contributed to the
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TABLE 5
Daily Incidence of Urinary Tract Infections Caused by Escherichia coli, per 1,000: Conditional Probability Table for Node E_coli

Sex female
U_Catheter no
Acquisition Com Nurs H,<2d | M,2-7d | M,>7d S,2-7d | S,>7d ICU
No UTI 9773 | 9454 | 949.7 | 911.9 | 928.0 | 914.1 | 929.7 | 998.2
Asymptomatic 20.9 49.8 26.8 78.2 55.6 80.4 52.6 1.00
Ciystitis 1.69 4.21 5.90 6.00 5.56 3.71 8.85 0.27
Pyelonephritis 0.04 0.38 | 12.33 2.77 7.78 1.24 6.22 0.33
Urosepsis 0.017 0.16 4.72 1.07 2.78 0.43 2.39 0.13
Septic shock 0.000 | 0.017 0.54 0.12| 0.28 0.05 0.24 0.02

Only part of the table is shown: Female patients, with no urinary catheter, for all the states of Acquisition (place and time of acquisition of infection).

For states of the Acquisition node, see Table 1.

TABLE 6
Factor Analysis of the Matrix of Urinary Complaints, Coded from 0 (absent) to 3 (maximum)
in 398 Patients with Urinary Tract Infection

Complaint Factor1 Factor2
Dysuria 0.82 0.09
Frequency 0.57 0.32
Supra-pubic pain 0.80 0.02
Urgency 0.11 0.83
Incontinence 0.07 0.58

The table shows the loading of the variables on the two main factors. Loading of > 0.5 was considered as significant and is emphasized in bold type.

TABLE 7
Urinary Tract Infection (UTI) Causes the Elevation of an Unobservable Factor (Fever_factor, probably IL-6):
Conditional Probability Table for Fever_factor

States of States of UTI
Fever_fa
ctor
No UTI Asympto | Cystitis Pyelonep | Urosepsis | Septic
matic hritis shock
Very low 999 999 990 9.9 9.9 9.9
Low 0.7 0.7 7 297 277.0 208.0
High 0.3 0.3 3 693.1 713.1 782.1

The total of each column is 1,000 patients.

BP_Shock factor (loading of 0.50). Thus, Fever_factor can
be renamed as IL-6 and given real units and TNF-«a is
probably a major cause of BP_Shock. This preliminary
analysis shows that the four factors are not peculiar to our
databases and that the statistical constructs have biological
correspondences which can be measured.

6.4 Urinary Tract Infection: Bacteriological Tests

Growth of microorganisms in the urine can be currently
detected by two means. Some pathogens reduce nitrate to
nitrite and that can be detected by a simple dipstick test.
The sensitivity and specificity of the nitrite test (Nitrite) for
each pathogen was derived from the literature [75], [76],
[77]. The urine can be cultured on an agar plate
(Urine_Cultu). The false positive rate of a growth on agar
is about 20 percent because of external contamination of the
urine. This is the number of patients in our database with a
positive urine culture, but no other evidence of UTI, out of
the total number of patients with positive cultures. The false

negative rate is again about 20 percent. To reach this
number, we looked at patients with urinary complaints,
leukocytes in the urine, a positive blood culture, and a
negative urine culture, out of the total number of patients
with bacteremic UTL

Growth of microorganisms in the blood (Blood_Grow)
is detected by injecting 20 ml of asseptically drawn blood
into two bottles (a set) containing different growth media.
The procedure is repeated two to three times (Blood_cull to
Blood_cul3). The bottles are incubated and growth is
detected automatically by an increase in infrared adsorption
caused by a rise of CO, in the bottle. The fluid in the bottle
is stained to look for microorganisms and it is cultured
again on agar plates to identify the microorganisms and to
test for susceptibility to antibiotics. Local data was used to
assess the false positive and false negative rates of each step
and to predict the pathogen by its features in the stained
preparation.
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TABLE 8
The Distribution of Body Temperature (Fever)
According to the States of Fever_factor.

States of Fever (body States of Fever_factor
temperature, 0C)
Very low Low High
<36.0 59.7 0.01 37.0
36.1-36.5 149.7 10.0 37.0
36.6 - 38.0 788.3 277.2 556.0
38.1 - 38.6 2.0 198.0 185.0
>38.7 0.001 514.8 185.0

Conditional probability table for Fever. The total of each column is 1,000
patients.

6.5 Antibiotic Treatment: Resistance, Coverage,
and Gain

The susceptibility of a pathogen to antibiotic drugs is

determined by intrinsic factors of the pathogen and by

acquired features. The strongest predictors of resistance are

acquisition of infection in the hospital and antibiotic

treatment in the month preceding the present infection [11].

Usually, a single antibiotic drug is prescribed, but
treatment of severe infections with two drugs is not
unusual. There are three reasons commonly given for that:
1) to increase the spectrum covered by empirical antibiotic
treatment; 2) to use drugs that are synergistic; and 3) to try
and prevent the development of resistance to one drug.
Resistance to different antibiotic drugs is not independent,
mainly because the genetic information on resistance to
several drugs can be transmitted on the same plasmid.
Thus, the coverage afforded by two drugs is not a simple
multiplication of their coverage, but usually less than that,
and should be derived from local data.

Therefore, the coverage of a pathogen (Coverage)
depends on whether the pathogen caused an infection or
not (the pathogen node, e.g., E_coli), which antibiotic(s)
were prescribed (Antibiotic_tr), whether the infection was
acquired in the hospital, and whether the patient was given
prior antibiotic treatment (Resistance). We included in the
net 26 antibiotic drugs that are used for treatment of
moderate to severe infections and one additional state for
no treatment. Thus, we are looking at a table of 27 x 27 x 3.
However, some of the cells are a priori empty, as certain
drugs are used only against a few microorganisms and not
against others. Local data on the susceptibility of pathogens
in the different subgroups were available from microorgan-
isms that grew in blood-cultures.

Given the underlying condition of the patient (Under-
lying), including data on age, functional capacity, neutro-
penia, malignancy, atherosclerotic heart disease, congestive
heart failure, serum albumin and creatinine, and sex, we
can calculate the patient’s life expectancy [6]. Coverage by
an antibiotic drug will increase the chance of a 30-day
survival by an odds-ratio of 1.6 [78]. Thus, we can calculate
in life years what the Gain associated with each drug is. To
do this, a synergistic combination of drugs will add (only
for some pathogens and conditions) a small benefit.
Appropriate antibiotic treatment is associated with a short-
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er stay in the hospital (by a median of one day) and, thus,
with less expense.

Each drug has an associated cost, with contributions
from cost of purchase, side effects, and development of
future resistance. To calculate the net gain, i.e., the
difference between Gain and Cost, we have used the
common assumption in medicine that one life year is the
equivalent of $55,000, this being the cost of keeping a
patient with chronic renal failure on hemodialysis for one
year.

7 COMMENTS

We have built a CPN to support decisions for treatment of
bacterial infections. The CPN includes such elements that
were thought by us to be crucial for the initial management
of an infection. Our considerations included, from the
beginning, availability of the data for the conditional
probabilities tables, even if it meant sometimes giving up
on fine modeling details. For example, a detailed causal
model is available for the correlation between resistance to
antibiotic drugs. Some of the correlation is explained by
common mechanisms (e.g., an enzyme that can inactivate a
whole family of antibiotics). Some is accounted for by
linkage of genetic data on transposons and plasmids.
However, data on the prevalence of these vectors in
hospitals is lacking and we chose the less elegant solution
of using a 27 x 27 x 3 matrix for which data were available.
The advantage of a causal net is that these avenues can be
explored to generate and test hypotheses while using the
present version for decision support.

The part of the net on systemic response to infection is a
good example of that. We started with a statistical construct
(factors derived by factor analysis) to reduce the dimen-
sions of the matrix and to avoid repetitive donations of
correlated variables. It turned out that the statistical factors
have biological correspondences. We continue to develop
this part of the net, not only as a support decision tool, but
also to generate and test hypotheses on the clinical meaning
of mediators in infection.

In many medical situations, we observe a number of
manifestations, which are obviously correlated (e.g., all
urinary complaints or septic manifestations). Counting
them separately as evidence will induce bias. To reduce
the dimensions of the matrix while retaining as much of
the variance of the original dataset as possible (usually
> 80 percent), we used factor analysis. This technique
builds a number of factors (fewer than the original
number of variables), which represent correlations among
the original variables. The factors are rotated so the
contribution of the variables to factors will be as close as
possible to 0 or +1.The final factors are uncorrelated with
each other [79].

For our purposes, factor analysis offers a number of
advantages. The donation of correlated variables is counted
just once. Many times, the common factors correspond to a
real biological vector. It also reduces the problem of missing
data while using the system. (If a factor causes a number of
manifestations, even if one of the manifestations is un-
observable in a patient, the others will probably provide a
good approximation as to the magnitude of the common
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TABLE 9
Data Needed to Calibrate the System To a New Location
Data Source Availability
Incidence of infections in 1) Computerised hospital *
the population, according records
to the strata of the major 2) Administrative data
distribution factors 3) Demographic data on
the hospital cachement
area.
Distribution of pathogens, | 1)Laboratory and clinical wk
according to site of hospital records
infection and major 2)Regional and national
distribution factors data
Susceptibility of Hospital records ok
pathogens, according to
place of acquisition and
prior use of antibiotics
Costs of antibiotic and Administrative data wokE
administration, costs
related to hospital-stay

* Available in some hospitals; can be guessed or assessed.
** Available in most hospitals; can be guessed or assessed.
*** Available in almost all hospitals.

TABLE 10
Decision-points in Managing Patients with a Bacterial Infection

Time Description of decision-point

DSS output

preliminary tests available

30-45 min | History, physical examination and

1) Most likely site of infection

2) Most likely pathogen/s and
susceptibility to antibiotics

3) Estimate as to severity of
infection

4) Preferable antibiotic drug/s

5) Details on drug/s (e.g. side-
effects)

1-2h Direct stains available

idem, revised

24-48 h Cultures negative; an estimate on
how the infection responded to
empirical treatment is available.

idem, revised

24-48 h Cultures positive and results
available

1) Most likely site of infection

2) Estimate as to severity of
infection

3) Preferable antibiotic drug/s

4) Details on drug/s (e.g. side-
effects)

Time 0 is on encountering the patient for the first time.

factor). To our knowledge, factor analysis has not been used
previously to shape a CPN from a database. We intend to
explore if other “data mining” methods [80], [81] will
uncover the same structure of the CPN as the one derived
by the use of factor analysis.

Strictly speaking, the whole net is not a CPN, but is quite
similar to an influence diagram [82]. Acknowledging the
influence diagram tradition, we have used diamond shapes
to represent utility nodes (Gain and Cost) and squares to
represent decision nodes (Antibiotic_Tr). We have chosen
not to call the net an influence diagram because we have

used a different algorithm [22] to solve the influence
diagram.

For accreting evidence, we used databases that were
collected in two different countries at several locations and
at different points in time and data from the literature.
Many times publications supply different numbers for the
same relation. To obtain one estimate from the published
data, we weighted the parameters by inverse-variance,
using a fixed-effect model [83].

The databases that were used for extraction of data were
analyzed before, using statistical methods. The “knowl-
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edge” incorporated in the CPN is both knowledge in the
classical sense and insights derived from analysis of the
databases. The causal network turned out to be an ideal tool
for combining knowledge with data and data from several
sources. There is no other methodology used for decision
support in medicine that allows the combination of data
from several sources with knowledge with such ease.

How convenient will it be to transfer and calibrate the
system to another location? Although the data that was
used to build it is extensive, we can state explicitly which
data is needed to calibrate it to a new location (Table 9). The
data is available (or can be easily estimated) in most
hospitals, often on magnetic media.

The main purpose in constructing the CPN was to use it
in a DSS to improve treatment of infections. The first step
before developing a DSS is to ask whether the problem we
address is real, whether the decision-makers are in need of
help, and what our criteria for improvement of process and
outcome are. We have shown that the fatality associated
with severe infections is substantial [6], that it is reduced by
appropriate antibiotic treatment regardless of other risk-
factors for fatality [6], [8], [78], and that the physicians often
err in prescribing treatment. This situation involves an
objective process variable (the rate of appropriate antibiotic
treatments) and fatality can be used as the outcome
variable.

The CPN addresses all the important decision-points in
the first days of managing a patient suspected or known to
have a bacterial infection (Table 10). Based on previous
experience [10], [18], [19], we expect the CPN to perform
better than the clinician, but will it improve clinical practice
and patient’s outcome? The answer probably depends on
more factors than just the performance of the system. The
user’s interaction with the system should be as convenient
as possible. In a computerized environment, most of the
data can be imported into the system, saving the physician
the need to enter it manually. The encounter between the
user and the system can be initiated by the system, as well
as by the user. In a computerized environment, the system
can initiate an encounter if an antibiotic drug was
prescribed, if growth was detected in a blood culture, or
even if a patient with fever or other possible evidence of
infection was entered into the hospital computerized

database.

The ultimate question that must be answered is whether
the system can be shown, in a clinical trial, to improve
process and outcome variables, i.e., increase the percentage
of appropriate antibiotic treatments, curtail costs and use of
broad-spectrum antibiotics, reduce the fatality rate asso-
ciated with infection, and curb progress of future resistance.
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