Default Reasoning

- When giving information, you don't want to enumerate all
 of the exceptions, even if you could think of them all.
- In default reasoning, you specify general knowledge and modularly add exceptions. The general knowledge is used for cases you don't know are exceptional.
- Classical logic is monotonic: If g logically follows from A, it also follows from any superset of A.
- Default reasoning is nonmonotonic: When you add that something is exceptional, you can't conclude what you could before.

Defaults as Assumptions

Default reasoning can be modeled using

- *H* is normality assumptions
- F states what follows from the assumptions

An explanation of g gives an argument for g.

Default Example

A reader of newsgroups may have a default: "Articles about AI are generally interesting".

$$H = \{ int_ai(X) \},$$

where $int_ai(X)$ means X is interesting if it is about AI. With facts:

$$interesting(X) \leftarrow about_ai(X) \land int_ai(X).$$

 $about_ai(art_23).$

 $\{int_ai(art_23)\}\$ is an explanation for $interesting(art_23)$.

Default Example, Continued

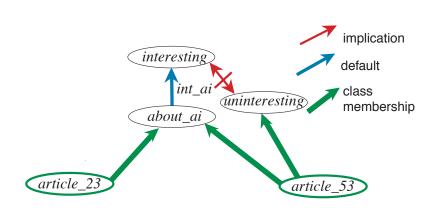
We can have exceptions to defaults:

$$false \leftarrow interesting(X) \land uninteresting(X).$$

Suppose article 53 is about AI but is uninteresting:

We cannot explain *interesting*(*art*_53) even though everything we know about *art*_23 you also know about *art*_53.

Exceptions to defaults

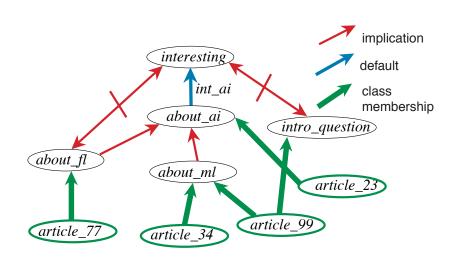


Exceptions to Defaults

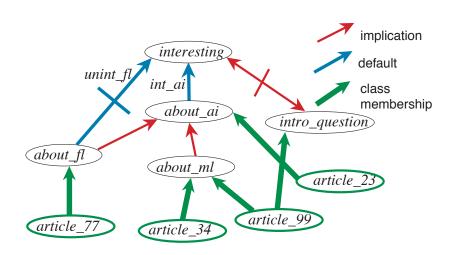
```
"Articles about formal logic are about Al."
"Articles about formal logic are uninteresting."
"Articles about machine learning are about AI."
     about\_ai(X) \leftarrow about\_fl(X).
     uninteresting(X) \leftarrow about_fl(X).
     about\_ai(X) \leftarrow about\_ml(X).
     about_fl(art_77).
     about_ml(art_34).
You can't explain interesting(art_77).
```

You can explain interesting (art_34).

Exceptions to Defaults



Formal logic is uninteresting by default



Contradictory Explanations

Suppose formal logic articles aren't interesting by default:

$$H = \{unint_fl(X), int_ai(X)\}$$

The corresponding facts are:

```
interesting(X) \leftarrow about\_ai(X) \land int\_ai(X).

about\_ai(X) \leftarrow about\_fl(X).

uninteresting(X) \leftarrow about\_fl(X) \land unint\_fl(X).

about\_fl(art\_77).
```

uninteresting(art_77) has explanation {unint_fl(art_77)}. interesting(art_77) has explanation {int_ai(art_77)}.

Overriding Assumptions

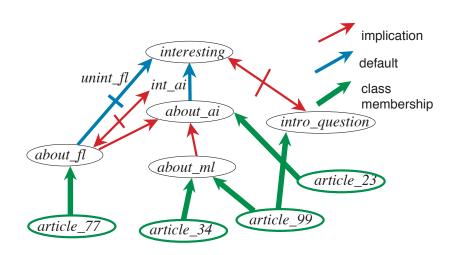
- Because art_77 is about formal logic, the argument "art_77 is interesting because it is about Al" shouldn't be applicable.
- This is an instance of preference for more specific defaults.
- Arguments that articles about formal logic are interesting because they are about AI can be defeated by adding:

$$false \leftarrow about_fl(X) \land int_ai(X).$$

This is known as a cancellation rule.

• You can no longer explain interesting(art_77).

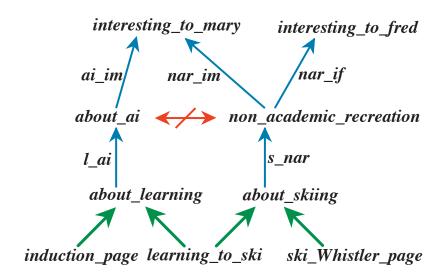
Diagram of the Default Example



Multiple Extension Problem

- What if incompatible goals can be explained and there are no cancellation rules applicable?
 What should we predict?
- For example: what if introductory questions are uninteresting, by default?
- This is the multiple extension problem.
- Recall: an extension of $\langle F, H \rangle$ is the set of logical consequences of F and a maximal scenario of $\langle F, H \rangle$.

Competing Arguments



Skeptical Default Prediction

- We predict g if g is in all extensions of $\langle F, H \rangle$.
- Suppose g isn't in extension E. As far as we are concerned E could be the correct view of the world.
 So we shouldn't predict g.
- If g is in all extensions, then no matter which extension turns out to be true, we still have g true.
- Thus g is predicted even if an adversary gets to select assumptions, as long as the adversary is forced to select something. You do not predict g if the adversary can pick assumptions from which g can't be explained.

Minimal Models Semantics for Prediction

Recall: logical consequence is defined as truth in all models. We can define default prediction as truth in all minimal models.

Suppose M_1 and M_2 are models of the facts.

 $M_1 <_H M_2$ if the hypotheses violated by M_1 are a strict subset of the hypotheses violated by M_2 . That is:

$$\{h \in H' : h \text{ is false in } M_1\} \subset \{h \in H' : h \text{ is false in } M_2\}$$

where H' is the set of ground instances of elements of H.

Minimal Models and Minimal Entailment

- M is a minimal model of F with respect to H if M is a model of F and there is no model M_1 of F such that $M_1 <_H M$.
- g is minimally entailed from $\langle F, H \rangle$ if g is true in all minimal models of F with respect to H.
- Theorem: g is minimally entailed from $\langle F, H \rangle$ if and only if g is in all extensions of $\langle F, H \rangle$.