Top-down Ground Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of $K B$.
An answer clause is of the form:

$$
\text { yes } \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

The SLD Resolution of this answer clause on atom a_{i} with the clause:

$$
a_{i} \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

is the answer clause

$$
\text { yes } \leftarrow a_{1} \wedge \cdots \wedge a_{i-1} \wedge b_{1} \wedge \cdots \wedge b_{p} \wedge a_{i+1} \wedge \cdots \wedge a_{m}
$$

Derivations

- An answer is an answer clause with $m=0$. That is, it is the answer clause yes \leftarrow.
- A derivation of query "? $q_{1} \wedge \ldots \wedge q_{k}$ " from $K B$ is a sequence of answer clauses $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}$ such that
- γ_{0} is the answer clause yes $\leftarrow q_{1} \wedge \ldots \wedge q_{k}$,
- γ_{i} is obtained by resolving γ_{i-1} with a clause in $K B$, and
- γ_{n} is an answer.

Top-down definite clause interpreter

To solve the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
\text { ac }:=\text { "yes } \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select atom a_{i} from the body of $a c$; choose clause C from $K B$ with a_{i} as head; replace a_{i} in the body of $a c$ by the body of C until $a c$ is an answer.

Nondeterministic Choice

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives. select
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

Example: successful derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k . \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a

$\gamma_{0}:$	yes $\leftarrow a$	$\gamma_{4}:$ yes $\leftarrow e$
$\gamma_{1}:$	yes $\leftarrow e \wedge f$	$\gamma_{5}:$
$\gamma_{2}:$	yes \leftarrow	
$\gamma_{3}:$	yes $\leftarrow f$	yes $\leftarrow c$

Example: failing derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k . \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a
$\gamma_{0}:$ yes $\leftarrow a$
$\gamma_{1}:$ yes $\leftarrow b \wedge c$
$\gamma_{2}: y e s \leftarrow f \wedge k \wedge c$
$\gamma_{3}: y e s \leftarrow c \wedge k \wedge c$
$\gamma_{4}: \quad y e s \leftarrow e \wedge k \wedge c$
$\gamma_{5}:$ yes $\leftarrow k \wedge c$

Search Graph for SLD Resolution

