
The Computing Field: Structure

Peter J. Denning, Naval Postgraduate School, Monterey, California

April 2008
(rev 9/14/08)

Abstract: This article examines the development of the computing field.
Our account considers the computing field in four stages: infancy (1935-
1950), childhood (1950-1970), adolescence (1970-1990), and young
adulthood (1990-2010). The computing profession is a product of the
fourth stage. The relationships between computing and other fields are
vitally important.

Keywords: computing field, computing profession, IT profession,
computer science, computer engineering, software engineering,
information systems, computational science

The computing field has grown enormously since its inception in the 1930s. It
began with the marriage of mathematical logic and digital electronics. It has
matured into a complex of fields gathered under the large umbrella called
computing (in the United States), informatics, and sometimes information
technology (IT). As the field has grown, various individuals and groups have
offered snapshots, which give their perceptions of its structure at their times.
Considered in a sequence, these snapshots become a fascinating, animated story
of how the field organized to accommodate its growth and its challenges. Some
of the contributors to the sequence are ACM (1968), National Academy of Science
(1968), Hamming (1969), Wegner (1970), Forsythe (1970), Amarel (1971), Arden
(1976), Denning (1989), Hartmanis (1992), Tucker (1996), and ACM (2001, 2005).
(See Refs. 1-11.)

This article examines the development of the computing field. Our account
considers the computing field in four stages of development:

Infancy 1935-1950
Childhood 1950-1970
Adolescence 1970-1990
Young Adulthood 1990-2010

© 2008, Peter J. Denning 2

We will conclude with a discussion of the importance of the relationships
between computing and other fields.

Although many consider the computing field to be mature, we have avoided
that term because we do not want to give the impression that the next stages are
decline and death. James Burke (12) points out how all major scientific
revolutions took a century or more before their full impacts were felt. The
computing revolution still has another half century before its maturity.

Our focus is on the structure of the field. Details about subareas will be found
in separate articles.

The Infancy of Computing (1935-1950)
Machine-aided calculation of mathematical functions can be traced back many
centuries. Algorithms devised by Pascal, Leibniz, and Gauss were used
extensively to create tables of trigonometric, logarithmic, and exponential
functions used by astronomers, navigators, and engineers. In the 1830s, Charles
Babbage offered an escape from the tedium and errors of hand-calculated tables.
He built a Difference Engine that calculated these tables automatically using
difference equations. In a few hours, the Engine could produce without error
entire tables that used to take years to develop. Spurred by the Engine’s success,
he undertook the design of an Analytic Engine that would calculate general
mathematical functions, not just ones that satisfied difference equations. His
design, never completed, lay dormant for nearly seventy years.

In the 1920s, Vannevar Bush of the Massachusetts Institute of Technology
(MIT) built a large mechanical Differential Analyzer that solved partial
differential equations of the kind frequently encountered in engineering. Unlike
Babbage’s discrete Difference Engine, Bush’s Analyzer was analog.

In 1939, John Atanasoff built the first digital electronic computer at the Iowa
State University. In the late 1930s, Konrad Zuse in Germany built calculating
machines, which culminated with an all digital computer (“Z4”) in 1941; but the
German government did not take it seriously. Also in the 1930s, Alan Turing of
the United Kingdom became interested in what such calculating machines could
actually do. In his famous 1936 paper, he introduced an abstract computing
device (now called a Turing machine), showed how to build a universal machine
that could simulate any other, and showed that a centuries-old decision problem
about the halting of computations could not be solved by any computing
machine. Turing dashed the hopes of mathematicians that there might be some
“by-inspection” method of determining whether a computation halts. He did this
by demonstrating that the very process of “inspection” is inherently
computational. Computation, said Turing, is fundamentally unavoidable (13).

Soon thereafter, Turing joined the team at Bletchley Park to design a computer
to crack the German Enigma code. Because the British government classified
that project for 25 years after the war, we did not know until around 1970 that
Turing had helped build one of the first electronic computers.

At the start of World War II, the US and UK governments took a keen interest
in electronic computing machines. The first of these machines were used to

© 2008, Peter J. Denning 3

calculate ballistic firing tables for the many new munitions that were being
designed for the war. These governments commissioned electronic computer
projects at many universities including Pennsylvania, Princeton Institute for
Advanced Studies, MIT, Harvard, Cambridge, and Manchester. Those projects
all had tremendous impact on the design of computing machines. Those
universities also established courses of study in the new field.

John Mauchly and Presper Eckert, who were the builders of the Pennsylvania
machine ENIAC, founded the Univac company to build computers for business.
Univac delivered the first commercial electronic computer to the US Census
Bureau for analysis of the 1950 census data. IBM soon expanded from its
business machines market into the electronic computing market as well. These
first machines were delivered with great fanfare. The newspapers called them
“electronic brains”. The nascent computing industry developed rapidly in the
1950s. Many universities offered courses in computing, mostly in electrical
engineering or mathematics departments, and a few in business schools. These
courses focused on the design of digital circuits, programming machines,
processing data, and the theoretical limits of computation.

Many of the people involved in the first projects came together in 1947 to
found the Association for Computing Machinery (ACM), which was the first
professional society in the new field.

The digital electronic computer married three historical lines: mathematical
logic, engineering, and science. The original teams included experts in all three
fields. Mathematical logic brought notations for algorithms, universal machines,
and mapping from logic formulas to physical switching circuits. Engineering
brought passionate know-how for mechanical calculation and much expertise in
electronics and electro-mechanical systems. Science brought a wealth of
applications and methods for predicting the behavior of physical systems from
their computational models. The imprint of these lines is still felt today. We will
discuss them again later.

Computing’s Childhood (1950-1970)
By 1950, the first computer building projects had succeeded and had stimulated a
widening interest in the new technology. Over the next 20 years, the computing
industry invented many technologies in programming languages, computer
architecture, storage systems, time sharing, virtual memory, remote access,
database, graphics, and robotics.

The academic world plunged in as well by creating courses in computers and
computation, first as limited offerings, then as specializations within existing
degree programs, and finally as separate departments with their own degree
programs. The first computing degree was offered in the Moore School at
University of Pennsylvania in the late 1950s. The first two computer science
academic departments were founded at Purdue and Stanford in 1962. After that,
academic departments in computer science (CS), computer engineering (CE), and
information science (IS) sprung up like weeds in schools of science, engineering,

© 2008, Peter J. Denning 4

and business respectively. The number of CS and CE departments grew steadily,
passing 160 in the early 1980s, 180 in the early 1990s, and 200 in the early 2000s.

In the mid 1960s, the ACM undertook the task to define curriculum
recommendations for schools that wished to offer degrees in computer science.
They wanted to establish a solid intellectual core for the new field and some
minimum standards for all computer science degrees. Their report, titled ACM
Curriculum 1968, said that the field consisted of three main parts:

Information structures and processes,
Information processing systems, and
Methodologies.

The methodologies included design approaches for software and applications.
The core material was mostly the mathematical underpinnings for the parts
listed above:

Algorithms
Programming
Data Structures
Discrete Math
Logic Circuits
Sequential Machines
Parsing
Numerical Methods

Many computer science departments adopted these recommendations (1).
During this time, the different orientations of the key players -- science,

engineering, and business -- led to some interesting terminological confusion that
was not resolved until the late 1980s. They argued over the definition of
computer science and whether computer science was the appropriate title. Is the
emphasis on the construction and analysis of algorithms (CS), the construction of
fast and reliable machines (CE), or on information processes (IS)? Some leaders
tried to find definitions that would encompass all three perspectives. The most
famous was the definition by Alan Perlis with help from Gordon Newell and
Herb Simon: “Computer science is the study of phenomena surrounding
computers.” (5)

The title “computer science” seems to have originated with the writings of
John von Neumann, who recognized extensive ways computing could advance
science, for example computational methods for hydrodynamics and Monte
Carlo simulations of physical phenomena. He advocated for a science-based
approach to the architecture of computers. Not surprisingly, the computer
science title did not sit well with computer engineers or information systems
people; and it also did not sit well with physical scientists, who felt that science is
about natural phenomena, not man-made phenomena.

The Europeans avoided much of this wrangling by naming the field
“Informatics”; this title can accommodate all three branches. They thought the
field was about information processes; computers are tools for implementing and
studying information processes. However, “informatics” never took hold in the
US. The wrangling over title and scope lasted well into the 1980s.

© 2008, Peter J. Denning 5

The Adolescence of Computing (1970-1990)
This period was a time of great technological advances in computing. The
computer chip was invented and became the mainstay of ever-advancing
computing power. Intel’s Gordon Moore observed that the number of transistors
on a chip doubled every two years; this trend became known as Moore’s Law.
Computing power per chip increased by about 1 million over that time. The
relentlessly advancing chip gave us the personal computer revolution and made
computers ubiquitous.

The Internet was another major advance during that time. Its first nodes came
online at the beginning of 1970. It grew very slowly at first, reaching about 200
nodes by 1980. Then it started to take off, reaching about 200,000 nodes by 1990.
The Internet and the personal computer advanced together, accelerating each
other’s progress.

The major computer makers of the 1950s and 1960s mostly disappeared,
except for IBM, and they were replaced by new generations that excelled with
networked personal computers --- Apple, Microsoft, and Sun are conspicuous
examples. All the major technologies advanced -- new programming languages,
machine architectures, networks, operating systems, databases, robots, and
graphics. Online services appeared, such as bulletin boards, software
distribution servers, reprint distribution servers, X windows, authentication
services, and more.

The disciplines CS, CE, and IS also flourished during this time. Many
students were attracted to these fields so that they could make their careers out
of helping advance the technologies.

In the mid-1970s the National Science Foundation (NSF) commissioned
COSERS, which was the Computer Science and Engineering Research Study
(7,14). Their objective was to take stock of all the research in the computer
science and engineering (CS&E) fields and make its key ideas accessible to a
wide audience. They defined CS&E as the field that studied algorithms and
representations, always looking toward efficient implementations, and driven by
the question, “What can be automated?” They reported ten subject areas for
CS&E research:

Artificial intelligence
Data management
Hardware systems
Numerical computation
Operating systems
Programming languages
Software methodology
Theory of computation
Special topics
Applications

By the mid-1980s, the advancing computing technologies fostered a
transformation in science. In 1982, Ken Wilson won the Nobel Prize in Physics
by discovering a computational method that explained the way materials

© 2008, Peter J. Denning 6

changed their magnetic states. He became a strong advocate for using
computation to advance science and coined the phrase “computational science”.
By the late 1980s, scientists from many fields had joined the refrain: Computation
had become the third paradigm of science, joining the traditional theory and
experiment. Many leading scientists articulated “grand challenge problems” in
science, which they believed were very hard but would yield to advanced
supercomputing power. These problems included the design of materials from
first principles, artificial intelligence, full simulation of aircraft in flight, and
design of new drugs. The US government created an interagency effort called
High Performance Computing and Communication (HPCC) initiative to provide
funds to build supercomputers and apply them to the grand challenge problems.
Many computer scientists collaborated in these projects. The US Congress
passed an HPCC act in 1991.

As the opportunities for computer science to engage with grand challenge
problems enlarged, leaders of the computing field became painfully aware that
their field had an external image “CS=programming” (computer science equals
programming). They found that computer scientists and engineers were
welcomed to the grand challenge projects mainly because of their expertise at
programming, but not for their prowess in the scientific research.

The way this image developed is interesting. Ever since the early computer
projects, computer scientists and engineers realized that a major part of their
lives would be finding and correcting mistakes in their programs. The bigger the
software system, the less reliable it was. In 1968, a group of software leaders
came together at a NATO conference to consider how to address the growing
“software crisis”. They concluded that software could be made reliable only if
software systems were put together with the same rigor as other engineering
systems. They called for the creation of a new field, which they called software
engineering. Software engineering has made some enormous advances in tools
and methods, but it has always lagged behind the size and complexity of systems
that we reach for. Thus, the software crisis has been an enduring crisis.

Curriculum 68 recognized that programming is a major activity of computer
scientists and put it at the center of their curriculum recommendations. Just a
few years later, Donald Knuth and Edsger Dijkstra both proclaimed they were
programmers and made algorithms design and analysis into a high art. They
made it intellectually respectable to be programmers.

Unfortunately, the trend in the outside world was heading in the reverse
direction. Programming was seen as tedious work. Mildly derogatory words
like “code jock” and “hacker” became synonyms for “programmer”. The US
Bureau of Labor Statistics defined programmers narrowly, essentially as coders.
By the late 1980s, insiders saw programming as a noble calling and outsiders saw
it as low-level drudgework. This conflict threatened future jobs of computer
science and engineering graduates as well as scientific collaborations.

In 1987, ACM and Institute for Electrical and Electronics Engineers (IEEE)
joined together to create a task force to defeat the narrow notion that
“CS=programming”. In early 1989, they published an influential report,
“Computing as a discipline” that made three major contributions (8):

© 2008, Peter J. Denning 7

1. It recognized that computer science and computer engineering had a
common core of knowledge and used the term “computing” to encompass
both. Thus “computing discipline” was shorthand for “the discipline of
computer science and engineering.” The term computing has since
become widely accepted and is on par with the European Informatics.

2. It recognized that the three paradigms of mathematics, science, and
engineering played major roles in the field. Mathematics brings the rigor
of clear notation and the power of logic and deduction. Science brings
experimental methods, modeling, validation of hypotheses, and induction.
Design brings order and reliability to the processes of constructing large
systems. The unique flavor of computing comes from the constant
interplay among these ways of thinking.

3. It recognized nine core areas of computing. The nine topic areas all had
their own identities, which included technical expertise, literature, and
professional organizations.

Table 1 depicts the 9x3 matrix model of the computing field offered by the
report. Theory, abstraction, and design were used in the report for the
mathematics, science, and engineering paradigms respectively. The report gave
details about what ideas and technologies fit into each of the 27 boxes in the
matrix. It became the basis for a major ACM/IEEE curriculum revision in 1991.

Although this effort had a strong internal influence on the curriculum, it had
little external influence on the perception that “CS=programming”. In fact, that
perception was alive and well in 2004 and was causing considerable difficulty in
recruiting majors (15).

Table 1: Matrix Model of Computing Discipline, 1989.

Topic Area Theory Abstraction Design

1 Algorithms & Data Structures

2 Programming Languages

3 Architecture

4 Operating Systems and Networks

5 Software Engineering

6 Databases & Information Retrieval

7 Artificial Intelligence & Robotics

8 Graphics

9 Human Computer Interaction

© 2008, Peter J. Denning 8

Computing’s Young Adulthood (1990-2010)
The World Wide Web was launched in 1989. It became visible widely in the
computing research community by 1991 and among all Internet users by 1994
with the first portable and free browser (Mosaic). It completely transformed the
Internet and the way we thought about computing. It expanded our perceptions
of the size of an information system. It enabled electronic commerce and Web-
based businesses and services. It brought the problem of search into
prominence. It created controversies over free distribution and copyrights. It
enabled computing on massive scales (grids). It enabled massive multiplayer
games. It stimulated new courses of study at universities.

In 1998, the ACM launched an “IT profession” initiative, in which it
recognized that the field had evolved from a discipline to a profession (16). The
initiative responded to the growing interest in the industry for professional
standards (especially in safety critical systems), organized professional bodies
representing various specialties, and the university movement to establish
degree programs in information technology. The ACM concluded that the
computing met the following four criteria for a profession:

1. A durable domain of human concerns.
2. A codified body of principles (conceptual knowledge).
3. A codified body of practices (embodied knowledge including competence).
4. Standards for competence, ethics, and practice.

The ACM concluded that these criteria were met for the computing field and that
it was time for the ACM to configure itself to support the field as a profession.

The ACM made an inventory of the organized groups that participated in the
field (Table 2) (17). IT professionals are a much larger and more diverse group
than computer scientists and engineers. They have organized affinity groups in
at least 42 specialties of three categories. The first category comprises the major
technical areas of IT and spans the intellectual core of the field. The second
category comprises other well-established fields that are intensive users of IT;
they draw heavily on IT and often make novel contributions to computing. The
third category comprises areas of skill and practice necessary to keep support the
IT infrastructures that everyone uses.

Several important conclusions can be drawn as follows: (1) The IT profession
has broad scope, which includes subfields from science, engineering, and
business; (2) the players share a common base of science and technology but
have distinctive professional practices; (3) many players are willing to identify
with the IT field but not with the computer science discipline; and (4) strong
leadership from the professional societies is needed to keep these players united
under the common IT identity. The ability of the IT field to resolve broad,
systemic problems such as software quality, basic research, and professional
lifelong education requires extensive cooperation among the players. Several
universities established IT departments and schools to address the needs of the
profession directly (18,19).

© 2008, Peter J. Denning 9

Table 2: The Profession of Information Technology

IT-Core
Disciplines

IT-Intensive
Disciplines

IT-Supportive
Occupations

Artificial intelligence Aerospace engineering Computer technician
Computer science Bioinformatics Help desk technician
Computer engineering Cognitive science Network engineer
Computational science Cryptography Professional IT trainer
Database engineering Digital library science Security specialist
Graphics E-commerce System administrator
Human computer interaction Economics Web services designer
Network engineering Genetic engineering Web identity designer
Operating systems Information science Database administrator
Performance engineering Information systems
Robotics Public Policy and Privacy
Scientific computing Quantum Computing
Software architecture Instructional design
Software engineering Knowledge engineering
System security Management information systems
 Materials Science
 Multimedia design
 Telecommunications

The talk about “profession” led to a new round of terminological confusion.
The IT profession is a social structure that includes many disciplines; but it is not
a discipline in its own right. IT is not a field of research; the core disciplines (left
column) and partner disciplines (middle column) attend to the research. To what
does the term “computing field” refer in this context?

This was one question on the minds of ACM and IEEE when in 1999 they
undertook a major review of curriculum recommendations. In their report,
Computing Curriculum 2001 (CC2001), they focused on the core specialties (Left
column of Table 2) (11). They identified the “computing discipline”
(“informatics” outside the US) with these six academic specialties:

EE -- Electrical Engineering
CE -- Computer Engineering
CS -- Computer Science
SWE -- Software Engineering
IS -- Information Systems
IT -- Information Technology

Here the term “IT” can be confusing. It refers to a set of degree programs that
focus on organizational applications of computing technology; it does not refer to
the entire profession. The ACM/IEEE used the map of Fig. 1 to illustrate how
the field had changed and to suggest the choices available to students interested
in hardware, software, or organizational issues.

They also constructed a “body of knowledge” representing the common core
of the six disciplines in the family. The body of knowledge listed 14 core areas of
the computing field (Table 3), up from the 9 areas listed by ACM just a dozen
years before. Under the 14 major headings, they listed 131 subareas, of which 63

© 2008, Peter J. Denning 10

were designated as core. This reorganization was a major expansion over
previous summaries of the field. Theory, Abstraction, and Design were still
present, but less prominent (11).

Figure 1. Student’s view of academic offerings in computing (ACM 2005).

Thus we recognize in the maps of the field from around 2001 a two-

dimensional structure: One dimension maps a social structure of professional
subfields, the other maps a technical structure represented by the body of
knowledge.

All this left the term “IT” referring to both the profession and to a degree
program, and the term “computing field” with no precise definition. Perhaps
that is just as well: Fuzzy terms are more easily reinterpreted as the field
matures.

The CC2001 report was still fresh when another challenge appeared. The
computing field faced another paradigm shift, just as it had done in the mid-
1980s with computational science. Now many fields of science claimed
information processes in their deepest structures. Because some information
processes occur in nature, computing was recognized as a natural science. That
claim killed the Perlis notion that computing is about phenomena that surround
computers. It forced a resurrection of the older notion that computing is the
work of information processes. The computer is a tool, not an object of study. In
reality, it had always been this way: Computing always had natural and artificial
flavors (20, 21).

© 2008, Peter J. Denning 11

Table 3: Model of Computing Discipline, 2001.

Topic Area T A D
1 Discrete Structures
2 Programming Fundamentals
3 Algorithms and Complexity
4 Architecture and Organization
5 Operating Systems
6 Net-Centric Computing
7 Programming Languages
8 Human Computer Interaction
9 Graphics and Visual Computing
10 Intelligent Systems
11 Information Management
12 Social and Professional Issues
13 Software Engineering
14 Computational science

Even the two-dimension structures of the curriculum 2001 were not flexible

enough to deal with this shift. A movement to understand computing in terms
of great scientific principles was launched and gained momentum (22). The
great principles framework complements but does not replace the other ways of
looking at the field. It organizes the principles of computing into the seven
categories:

Computation
Communication
Coordination
Recollection
Automation
Evaluation
Design

See the article in this encyclopedia on Great Principles of Computing for details
on this framework.

It is an irony that computer science, the discipline that gave birth to the IT
profession and computing field, is not the driving force. The field is being driven
by the large numbers of user pragmatists, which include many powerful
business, civic, government, and industry leaders. Computer scientists no longer
“control” the field. Their main role is to advance the scientific, engineering, and
mathematical knowledge of computing.

© 2008, Peter J. Denning 12

Relations with Other Fields
A hallmark of the computing field has been its close relations with numerous
other fields. The reason is not hard to understand: Information processes are
part of most fields. All the taxonomies of the field from the 1960s to the present
day contain some sort of entry for “applications”, which expressly acknowledges
these many links.

Computer science has always had close bonds with mathematics.
Mathematical logic, the theorems of Turing and Gödel, Boolean algebra for
circuit design, and algorithms for solving equations and other classes of
problems in mathematics played strong roles in the early development of the
field. Conversely, computer science has strongly influenced mathematics; for
example, proofs of existence are often formulated as algorithms that construct or
select a mathematical object. In some cases, computers have been essential to
mathematics; for example, the solution of the four-color theorem relied on a
program that searched a large finite number of cases for counterexamples.
Within computer science the powerful and far-reaching theory of complexity is a
mathematical tour-de-force, and “Is P=NP?” is one of the hard questions of
mathematics. For these reasons, some observers like to say that computing is a
mathematical science.

The bond between engineering and computer science has been much stronger
than between many natural science disciplines and their engineering
counterparts -- for example, chemical engineering and chemistry, aircraft design
and fluid dynamics, pharmacy and biology, and materials engineering and
physics. This bond exists because computer science has a strong heritage in
electrical engineering and because many algorithmic methods were designed
originally to solve engineering problems. Examples include electronic circuits,
telecommunications, engineering graphics, engineering design, systems
engineering, fabrication, and manufacturing. Conversely, computers have
become indispensable in many engineering disciplines -- for example, circuit
simulators, finite-element simulators, flow-field simulators, graphics, computer-
assisted design (CAD) and computer-assisted manufacturing (CAM) systems,
computer-controlled tools, and flexible manufacturing systems. For these
reasons, some observers like to say that computing is an engineering field.

There has always been a bond between the physical sciences and computer
science. Computers were always envisioned as tools for scientific and
engineering calculations. In the late 1980s, leaders of physics, chemistry, biology,
geology, seismology, astronomy, oceanography, and meteorology brought to
prominence certain very hard, “grand challenge” problems that demand massive
high-speed computations, which are performed on new generations of massively
parallel computers with massively parallel algorithms. These problems include
crystalline structure, quantum electrodynamics, calculation of chemical
properties of materials from the Schrödinger equation, simulation of aircraft in
flight, exploration of space, global climate modeling, oil exploration, models of
the universe (cosmology), long range weather forecasting, earthquake prediction,
turbulent fluid flow, and human genome sequencing. Those leaders proclaimed
that computation had become a third paradigm of science, joining theory and
experimentation. After 2000, this bond deepened as those fields recognized

© 2008, Peter J. Denning 13

information processes in their deep structures and entered into many
collaborative relationships with computing people (20). For these reasons, some
observers like to say computing is a science.

Who’s right? They all are. The computing field is rich and deep, with a strong
heritage in mathematics, engineering, and sciences. In addition to the influences
of these heritages, interactions with other fields are woven into the discipline
itself. Here a few examples:

• The computer science problem “Is P=NP?” has been listed as one of the
most difficult unsolved problems in modern mathematics. The computer
science collaboration in discrete mathematics has placed modern discrete
mathematics on a par with the older continuous mathematics.

• Computer science has contributed advanced methods in computing over
adaptive grids that have enabled advances in the design of buildings,
aircraft, automobiles, and mechanical parts.

• Computer science has worked closely with computer engineering on
architectures for parallel computation, neural computation, functional
computation, and dataflow computation.

• Library science is concerned with archiving texts and organizing storage
and retrieval systems to give efficient access to texts. Digital library
systems have changed libraries from book repositories to electronic data
centers, which are accessible throughout the world via the Internet.
Libraries are concerned with advanced search technologies to locate
information in the Internet. They have a special concern with data
migration from older storage media onto newer ones.

• Medicine uses computer models and algorithms in ingenious ways to
diagnose and treat diseases. Modern imaging methods such as magnetic
resonance scans, coronary scans, and tomography have drawn heavily on
computer science. Medical researchers use computer models to assist them
in tracking mutations of viruses and in narrowing the search for new
molecules that may be effective drugs. The Human Genome Project used
large distributed databases and new kinds of string-matching algorithms
to aggregate the tens of thousands of DNA-sequencing experiments.

• Biology is deeply concerned with the meaning of DNA and the mechanics
of DNA transcription. In collaboration with computer scientists, biologists
have developed new algorithms for classifying and searching genome
databases (which are enormous). They have been studying DNA
transcription as a form of computation. They have demonstrated how
problem statements can be encoded into DNA molecules and solutions
generated in their chemical interactions.

• Physicists regard quantum functions as information waves whose
interactions generate physical particles and forces. These ideas have led to
quantum computation, a new form of computation in which information is
represented with quantum waves, and to quantum cryptography.

© 2008, Peter J. Denning 14

• Materials chemists regard molecules as manifestations of forces described
by the Schrödinger equation. They can design new materials by
computing and testing molecular structures.

• Management science uses computer models to plan and forecast economic
conditions for business. They store business records in databases from
which they manage complex customer relations and enact complex
commitments.

• Economics views markets as information flow and exchange media. They
use computer models to forecast economic conditions and to evaluate the
possible effects of macroeconomic policies.

• Forensics uses computer models and large databases to identify evidence
and make inferences about the criminal intents of users.

• Psychology, xognitive, and behavioral sciences are concerned with
understanding human thought and emotions. They use computer models
to gain insight into the operation of human brains and nervous systems
and to design effective interventions for human problems.

• Linguistics is concerned with using computers to recognize speech,
translate between languages, and to understand the role of language in
human affairs.

• Social scientists use graph and clustering algorithms for social network
mapping, which aids in understanding trust, influence, power, and
information flow in social systems.

• Philosophy studies the way people acquire knowledge, create social
realities, and act morally and ethically. Philosophers have contributed
much to the debates on whether machines can think or whether formal
models are sufficient for dependable software systems. The subdiscipline
of language action has contributed much to our understanding of how
people carry out work in organizations and has helped give birth to the
workflow industry. The technologies of “virtual realities” have rekindled
debates on the nature of reality and the worlds in which people live.

• Humanities uses computers extensively to correlate and search through
historical artifacts that can be represented digitally. One of the more
colorful examples is the use of computers to determine authorship of
historical texts, such as Shakespeare’s plays.

This list is hardly exhaustive. The number of contacts between computing
and other disciplines grows each year. The people who bridge between
computer science and other fields are doing some of the most innovative work.
These interactions are likely to be the hallmark of computing in the future (23-
25).

Paul Rosenbloom has mapped the structure of the relationships between
computing -- meaning computer science and engineering -- and other fields (26).
It is very rich. The non-CS&E fields are of three kinds:

© 2008, Peter J. Denning 15

• Physical sciences (P), which focus on nonliving matter,
• Life sciences (L), which focus on living matter, and
• Social sciences (S), which focus on humans and their societies.

The relations between computing and these other fields are of three kinds:
• Implementation (/), in which technology from one field is used to

implement a function in another field.
• Interaction (•), in which two fields collaborate as peers.

• Embedding [], in which a fragment of one field is integrated into
another.

He constructed a chart (Table 4) that provides examples of fruitful relationships
in all the categories above.

Table 4: Interactions between computing and other fields

C+P C+L C+S C+C

Implementation (/): Technology from the physical sciences (P), life science (L), or social sciences
(S) is used to implement computation (C) or computation is used to implement (possibly a model
or function of) an aspect of one of the domains.

C/* C/P: Silicon and
quantum computing

C/L: Biological and
neural computing C/S: Wizard of Oz

*/C
P/C: Modeling and
simulation,
data/information
bases

L/C: Artificial life,
bioinformatics,
systems biology

S/C: Artificial
intelligence

C/C: Languages,
compilers,
operating
systems,
emulation

Interaction (•): A symmetric relationship in which two domains interact as peers.

C•*
*•C

C•P and P•C:
Sensors, effectors,
robots, peripherals

C•L and L•C:
Biosensors

C•S and S•C:
Human-computer
interaction,
authorization

C•C: Networking,
security, parallel
computing, grids

Embedding ([]): Some fragment of one domain is embedded in another.

C[*] C[P]: Analog
computing

C[L]: Autonomic
systems C[S]: Immersion

*[C] P[C]: Embedded
computing L[C]: Cyborgs S[C]: Cognitive

prostheses

C[C]: Embedded
monitoring and
testing

© 2008, Peter J. Denning 16

Conclusion
We have traced the evolution of the structure of the computing field from its
inception to the early twenty-first century. In the beginning (1930s), it was an
amalgam of mathematics, engineering, and science. By the 1960s, it had an
emerging identity as “computer science and engineering” and a simple internal
structure of core technologies. By the 1980s, it had responded to the explosive
growth of computing by enlarging the basic structure and had begun to deal
with the challenge of computational science. By the 1990s, it had to contend with
the Internet and the Web, which brought ordinary users and businesses into
computing, and fostered growth of three other computing-related fields --
software engineering, information systems, and information technology. By the
2000s, recognizing itself as a profession, it focused on managing the core identify
and the interactions between the computing-related disciplines and all the other
users of computing. It began to meet the new challenge of its acceptance as a
natural science by developing a great principles framework of its scientific
fundamentals.

Our review of the history of computer science reveals an interesting
progression of definitions for computer science:

Study of information processing (1940s)
Study of phenomena surrounding computers (1960s)
Study of what can be automated (1970s)
Study of computation (1980s)
Study of information processes, both natural and artificial (2000s)

Over time, the definition of computer science has been a moving target. It has
cycled back to a definition that resembles our roots because of recent affirmations
from the physical sciences that they study information processes found in nature.

Paradoxically, just as it was entering its adulthood in the early 2000s, the
computing field experienced a sudden decline in student enrollments -- 50%
drop from 2002 to 2007 -- at a time when industry demand for graduates was
growing, and prospects for novel collaborations were higher than ever. The
decline seemed related to an external identity that most workers in the field were
programmers, system administrators, and network configuration engineers. The
new configurations and relationships outlined here set the stage for a new period
of innovation and growth of computing.

Bibliography
1. ACM, Curriculum 68, William F. Atchison, et al, eds., ACM Communications

11(3), 151-197, 1968.
2. National Academy of Sciences, The mathematical sciences: A Report. Publication

1681, Washington, D. C., 1968.
3. R. W. Hamming, One man’s view of computer science, ACM Turing Lecture. J.

ACM 16(1), 1-5, 1969.

© 2008, Peter J. Denning 17

4. P. Wegner, Three computer cultures -- computer technology, computer
mathematics, and computer science, in Advances in Computers 10, W.
Freiberger (ed.). New York: Academic Press, 1970.

5. G. Forsythe, B. A. Galler, J. Hartmanis, A. J. Perlis, and J. F. Traub, Computer
science and mathematics, ACM SIGCSE bulletin 2(4), 1970. Available:
http://doi.acm.org/10.1145/873661.873662

6. S. Amarel, Computer science: a conceptual framework for curriculum
planning, ACM Communications 14(6), 1971.

7. B. Arden, The computer science and engineering research study. ACM
Communications 19(12), 670-673, 1971.

8. P. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, P.
R. Young, Computing as a discipline, ACM Communications 32(1), 9-23, 1989.

9. J. Hartmanis, et al. Computing The Future. Washington, D.C.: National
Academy of Science Press, 1992.

10. A. Tucker Jr. and P. Wegner, Computer Science and Engineering: The
discipline and its impact, in Handbook of Computer Science and Engineering.
Boca Raton, FL: CRC Press, Chapter 1, 1996.

11. ACM-IEEE, Curriculum Recommendations, 2001 and 2005. Available:
www.acm.org/education/curricula-recommendations

12. J. Burke, The Day the Universe Changed. Boston, MA: Back Bay Books, 1995.
13. A. Turing, On computable numbers with an application to the

Entscheidungsproblem, Proc. of the London Mathematical Society, Series 2, 42,
1936, pp. 230-265.

14. B. Arden (ed.), What can be automated? -- The Computer Science and Engineering
Research Study. Cambridge, MA: The MIT Press, 1980.

15. P. Denning, The field of programmers myth, ACM Communications 47(7), 15-
20, 2004.

16. P. Denning, Computing the profession, Educom Review 33(6), 26-30 and 46-59.
17. P. Denning, Who are we? ACM Communications 44(2), 15-19, 2001.
18. P. Denning, The IT schools movement, ACM Communications 44(8), 19-22,

2001.
19. N. Holmes, Fashioning a Foundation for the Computing Profession, IEEE

Computer (July), 97-98, 2000.
20. P. Denning, Is computer science science? ACM Communications 48(4), 27-31,

2005.
21. P. Denning, Computing is a natural science, ACM Communications 50(7), 13-

18, 2007.
22. P. Denning, Great Principles of Computing, ACM Communications 46(11), 15-

20. 2003.

© 2008, Peter J. Denning 18

23. P. Denning and R. Metcalfe (eds.) Beyond Calculation: The Next 50 Years of
Computing, New York: Springer-Verlag, 1997.

24. P. Denning, Talking Back to the Machine: Computers and Human Aspiration, New
York: Springer-Verlag, 1999.

25. P. Denning, The Invisible Future. New York: McGraw-Hill, 2001.
26. P. Rosenbloom, A new framework for computer science and engineering,

IEEE Computer (November), 31-36, 2004.

