
CSCE 330 Fall 2011
FINAL EXAM Review Questions

Thursday 2011-12-01

1 Syntax and Semantics—25 points

1. (Robert Sebesta–5 points) Describe, using a single English sentence, the
language defined by the following grammar:

<S> ::= <A><B><C>

<A> ::= a<A> | a

<B> ::= b<B> | b

<C> ::= c<C> | c

Answer: strings consisting of one or more a followed by one or more b
followed by one or more c.

2. (2 points) What does it mean for a context-free grammar to be ambiguous?

Answer: The grammar generates a sentence with two (or more) parse
trees.

3. (8 points) The grammar of the original definition of Algol 60 contained
the following production rules:
<statement> -> <conditional-statement> | begin <statement> end

<conditional-statement> -> if <condition> then <statement>

| if <condition> then <statement> else <statement>

Show that any grammar containing these production rules is ambiguous.

Answer: See slide 41 in the slides on syntax for the answer for the Clite
language, which has very similar production rules.

4. (6 points)

if 5 < 6 orelse (5 div 0) < 6 then 7 else 8;

(a) ML is a functional programming language. Is the above ML state-
ment an expression or a command? (Choose one). Answer: an
expression

(b) The above ML statement does not result in an exception. Explain
why. Answer: The second argument of orelse is evaluated only if
the first argument evaluates to false.

(c) What is the result of the ML statement above? Answer: 7

5. (4 points) Match:

(a) Command

1



(b) Declaration

(c) Expression

with

(a) Is evaluated to yield a value.

(b) Is executed to change the value of a variable or to change the input
or output streams.

(c) Is elaborated to produce a binding, usually to allocate memory, and
sometimes to initialize variables.

Answer: c-a, b-c, a-b.

2



2 FP–28 points

1. (2 points) Match the FP combining forms to their examples:

(a) composition

(b) construction

(c) apply-to-all (map)

(a) & %1

(b) [id, %5]

(c) tl @ [%1, id]

Answer: 1-3, 2-2, 3-1

2. (1 point) What is !+:<1,2,3>? Answer: 6

3. (1 point) Composition and construction (in FP) are examples of

(a) primitive functions

(b) control structures

(c) combining forms

(Choose one)

Answer: combining forms (3)

4. (1 point) Combining forms are also called higher-order functions, because

(a) they are closer to the way programmers think than normal functions

(b) they take other functions as arguments

(c) their domains and ranges have high dimension

(Choose one)

Answer: they take other functions as arguments (2)

5. (4 points) Write a function that multiplies its argument by seven. Call it
timesseven. So, for example, timesseven:5 is 35.0. (The “.0” appears
if you use Carter Bays’s FP interpreter.) Answer: {timesseven * @ [id, %7]}

6. (4 points) Write a function that applies timesseven to all elements of a
sequence and give an example of its application to a sequence of three
numbers. Do not give a name to the function. Answer: & timesseven

Answer: & timesseven: <1 2 3>

7. (2 points) What is !+: <1 2 3>? What do you call ! in FP? Answer: 6;
insert.

3



8. (7 points) Write a function that computes the length of a sequence. Do
not use recursion. Do not use while. Use composition. (Hint: What is
& %1 : <1 2 3>?) Answer: !+ @ & %1

9. (5 points) Call the function you wrote in the previous exercise length. (So,
for example, length: <2 3 4> is 3.) Write a function that computes the
average of a sequence of numbers. Call the function avg. For example,
avg: <1 4 4> is 3.0. (The “.0” appears if you use Carter Bays’s FP
interpreter.) Answer: / @ [!+, length]

4



3 Haskell—68 points

1. (1 point) In Haskell, [1,2,3] is an abbreviation for 1 : (2 :(3 : [])).
True or false?

Answer: True.

2. (1 point) Here are signatures for two Haskell functions. Which one is
curried?

(a) add_a :: (Int, Int) -> Int

(b) add_b :: Int -> Int -> Int

Answer: The second one

3. (2 point) What is the domain of the type ([a], [a]) in Haskell?

Answer: Tuples of two lists of elements of the same type. (Note: a tuple
of two is also called a pair.)

4. (4 points) A recursive function has two parts, the basis and the inductive
step.

(a) The basis computes the result for sufficiently small arguments, with-
out making any recursive call.

(b) The inductive step calls the function recursively, with smaller argu-
ments.

The following recursive function (which is intended to reverse a list) breaks
one of these two rules. Which one? In which way?

reverse :: [a] -> [a]

reverse(L) = if L = [] then [] else reverse(L) ++ [head(L)];

Answer: The second (because the recursive call does not have a smaller
argument)

5. (15 points total) Define functions fact of one argument that compute the
factorial of a non-negative integer in four different ways:

(a) (2 points) a non-recursive function using product. Do not use a loop.
(Name this fact1.)

(b) (5 points) a recursive function with a conditional expression. (Name
this fact2.)

(c) (4 points) guarded equations. (Name this fact3.)

(d) (4 points) pattern matching. (Name this fact4.)

Answer

5



--fact in four different ways

--using product

fact1 :: Int -> Int

fact1 n = product [1..n]

--recursive, with conditionals

fact2 :: Int -> Int

fact2 n = if n == 0 then 1 else n * fact2 (n - 1)

--with guarded equations

fact3 :: Int -> Int

fact3 n | n == 0 = 1

| otherwise = n * fact3 (n - 1)

--with patterns

fact4 :: Int -> Int

fact4 0 = 1

fact4 n = n * fact4 (n - 1)

\newpage

\item

(10 points)

Define a function {\tt rev1} of one argument that reverses a list. Use

patterns.

{\bf Answer:}

\begin{verbatim}

--reverse

rev1 :: [a] -> [a]

rev1 [] = []

rev1 (x:xs) = (rev1 xs) ++ [x]

6. (20 points total)

(a) (8 points) Define a function count of two arguments that counts the
number of occurrences of the first argument in the second argument,
which is a list of elements of the type of the first argument, using a
list comprehension.

(b) (2 points) What is the type of this function? (Hint: a class constraint
is needed because of equality testing.)

(c) (8 points) Define a function that counts the number of occurences of
the character ’a’ in a string. Name your function countA. Here is an
example of use:

6



Main> countA "CSCE330 is a great course!"

2 :: Int

countA must be defined as a partial application of count.

(d) (2 points) What is the type of countA?

Answer:

--count

count :: Eq a => a -> [a] -> Int

count x xs = length [x’ | x’ <- xs, x == x’]

--countA

countA :: [Char] -> Int

countA as = count ’a’ as

7. (10 points) The combinatorial function choices used in the countdown
problem gives all sublists of a list. For example, choices [1,2,3] is the
list (not necessarily in the order given): [[], [3], [2], [2, 3], [3, 2], [1], [1, 3], [3, 1], [1, 2], [2, 1],
[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]. Define choices using a
list comprehension and the functions subs, which computes a list contain-
ing all subsets of a given list (e.g., subs[1, 2] = [[], [1], [2], [1, 2]]), and perms,
which computes a list containing all permutations of a given list (e.g.,
perms[1, 2, 3] = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]). Assume
that subs and perms are given to you; you only need to define choices

using them.

Answer: choices xs = [zs | ys <- subs, zs <- perms ys]

7


